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Abstract
Existing and near-term quantum computers may not be large
enough to support fault-tolerance. Such systems with few
tens to few hundreds of qubits are termed as Noisy Intermedi-
ate Scale Quantum computers (NISQ), and these systems can
provide benefits for a class of quantum algorithms. In this
paper, we study the problem of Qubit-Allocation (mapping
of program qubits to machine qubits) and Qubit-Movement
(routing qubits from one location to another for entangle-
ment) for NISQ machines.
We observe that there can be variation in the error rates

of different qubits and links, which can impact the deci-
sions for qubit movement and qubit allocation. We analyze
publicly available characterization data for the IBM-Q20 to
quantify the variation and show that there is indeed signifi-
cant variability in the error rates of the qubits and the links
connecting them. We show that the device variability has
a significant impact on the overall system reliability. To ex-
ploit the variability in error rate, we propose Variation-Aware
Qubit Movement (VQM) and Variation-Aware Qubit Allocation
(VQA), policies that optimize the movement and allocation of
qubits to avoid the weaker qubits and links, and guide more
operations towards the stronger qubits and links. Our evalua-
tions, with a simulation-based model of IBM-Q20, show that
Variation-Aware policies can improve the system reliability
by up to 1.7x. We also evaluate our policies on the IBM-Q5
machine and demonstrate that our proposal significantly
improves the reliability of real systems (up to 1.9X).
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1 Introduction
Quantum computers can accelerate conventionally hard prob-
lems such as prime-factorization, and simulation of materials
and molecules [10, 27]. Quantum algorithms use quantum
bits (qubits) to exploit the properties of superposition and
entanglement and rely on quantum operations to change
the state of the qubits. In the last two decades, the field
of quantum computing has moved from theoretical ideas
to realizable systems (albeit at a small scale). The last two
years represent significant milestones in the field of quan-
tum computing, as Google IBM, and Intel have announced
blueprints for quantum computers with 72, 50 and 49 qubits
respectively [11, 15, 16]. Theses prototype quantum comput-
ers provide an opportunity to understand the challenges in
building a practical quantum computer and use these insights
to improve the design of future quantum computers.

Qubits are fickle as the qubit devices can lose state due to
decoherence or operational errors. Qubits can be protected
against errors using Quantum error correction codes (QEC).
Unfortunately, QEC requires significant overheads, typically
incurring 10-100 physical qubits to encode one fault-tolerant
qubit. Existing and near-term quantum computers with tens
to hundreds of qubits may not have the capacity to utilize
QEC due to the limited number of qubits. Such quantum com-
puters with 10 to 1000 noisy qubits are termed as Noisy Inter-
mediate Scale Quantum computers (NISQ) [25]. Even though
NISQ machines lack fault-tolerance, they can still provide
benefits for a class of quantum applications [22]. In this paper,
we study policies for Qubit-Movement (routing a data-qubit
from one location to another) and Qubit-Allocation (mapping
of program qubits to the physical qubits) for NISQ machines.
Quantum computer harness its power from the ability

to create an entangled collective state. An entangled state
is generated by coupling a pair of qubits using two-qubit
operation. A quantum machine can entangle only the qubits
that have a link between them. Existing quantum computers
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Figure 1. (a) A hypothetical quantum computer with five-qubits – the number on the edge denotes the success probability
when that edge is used (b) Variation-Aware Qubit Mapping (VQM) can use more SWAP instructions and yet have higher
probability of success (c) Variation-Aware Qubit Allocation (VQA) select the mapping that improves overall system reliability.

from IBM, Google, and Intel are designed using networks
that offer limited connectivity, only to a few of the neigh-
boring qubits, and this connectivity dictates the qubits that
can be entangled. For example, Figure 1(a) shows a hypo-
thetical quantum computer with five qubits where circular
nodes represent the qubits and edges represent the coupling
links between qubits. A pair of qubits can only be entangled
if there exists a coupling link between them. Fortunately,
quantum computers provide a SWAP instruction that can
exchange the state of two neighboring qubits. For example,
we want to entangle data qubit Q1 and data qubit Q3 which
are initially residing at physical qubit-A, and physical qubit-
C respectively. We can perform this operation in two steps:
first swap the data between qubit-A and qubit-B such that
Q1 and Q2 interchanges positions. Next, entangle qubit data
Q1 and Q3. In quantum programs, a large number of SWAP
instructions are inserted to move data so that entanglement
between arbitrary qubits can be performed.
The Qubit-Movement policy deals with the problem of

selecting a route to move the state of one qubit to another.
For example, in Figure 1(a), we may choose the route A-B-
C for going from A to C, as doing so would minimize the
number of SWAP operations. The Qubit-Allocation policy
deals with the problem of mapping of program qubits to the
physical qubits. For example, in Figure 1(a), if we want to
map three program qubits to five physical qubits, we would
choose any of 3 connected qubits (for example, Q1 maps to
A,Q2 maps to B, andQ3 maps to C), as placing qubits nearby
results in efficient movement. Prior studies [26, 28, 34] have
proposed qubit allocation policies based on minimizing the
number of SWAPs. These studies assume uniformity in the
cost of performing SWAPs. However, in reality, we expect
variation in the behavior of different qubits and links, and
optimizing for a uniform behavior may not result in the best
policy when device variation is taken into account.

To demonstrate that there is variation in the error-rates of
different qubits and links, we analyze the publicly-available
characterization data for the IBM-Q20 (20 qubits) machine.
Such a characterization is performed for the IBM-Q20 several

times a day, and we analyze the data for 52 days. We present
the statistics of coherence time for all the 20 qubits, the error
rate in performing single-qubit operations, and the error-rate
in performing two-qubit operations across different qubits.
For all these metrics we observe significant variation in the
behavior of different qubits and links – in essence, qubits
and links are not created equal. For example, our detailed
analysis for the links connecting different qubits show that
the error rates can vary by as much as 7x across different
links in the system. Such variation can have a significant
impact on the overall system reliability (Section 3).
To analyze the impact of variation on the overall system

reliability, we use the Probability of Successful Trial (PST)
metric. The PST metric indicates the probability that the pro-
gram finished successfully without any error. As IBM-Q20
is not open to the public, we build a reliability evaluation
infrastructure to compute the PST for the IBM-Q20 machine
using the machine configuration and error rates based on the
characterization data. Our evaluations show that the device
variation has a significant impact on the system reliability.
To improve system reliability, we should steer more instruc-
tions and movement to strong qubits and links, and fewer
instructions and movement on weaker qubits and links. We
propose such Variation-Aware policies to exploit the varia-
tion in the behavior of qubits and links, assuming error-rates
are known at compile time (Section 4).
We propose Variation-Aware Qubit Movement (VQM) pol-

icy that routes the qubit from source to destination based
on minimizing the probability of failure. For example, in
Figure 1, the success probability of each link is denoted as
a weight of the edge. Let us assume, we want to entangle
data qubit Q1 and data qubit Q3. A conventional variation-
unaware policy will use a path that minimizes the number
of SWAP instructions, taking the path A-B-C, resulting in
an overall probability of success of 42% for these operations.
With VQM, we would take the route A-E-D-C, even though
this route has more SWAP instructions, since it has an over-
all probability of success of 56.7%, as shown in Figure 1(b).
VQM shows a significant improvement in PST (Section 5).



We also propose Variation-Aware Qubit Allocation (VQA)
policy that performs themapping of program-qubit to physical-
qubit with the aim of improving the overall system reliability.
For example, in Figure 1(c), we want to allocate three pro-
gram qubits to 5 physical qubits. A conventional mapping
policy can choose any of the listed mapping possibilities as
they all would have similar cost in terms of SWAP operations.
However, with VQA, we would use the mapping D, E, A, as
this mapping uses the strongest links, and would improve
the overall system reliability. We extend prior proposals for
Qubit-Allocation with VQA and show that VQA+VQM can
improve the PST of the IBM-Q20 by up to 1.7x (Section 6).
In addition to the simulation-based studies for IBM-Q20,

we evaluate our proposed policies on a real quantum ma-
chine (IBM-Q5) and demonstrate that our policies continue
to provide a significant improvement on the system reliabil-
ity even in a realistic setting. VQM+VQA improves the PST
of the IBM-Q5 by up to 1.9x (and average 1.36x) (Section 7).

We also perform a case study, where we analyze programs
that require less than half the available qubits, and we have
an option of either executing two copies of the program
concurrently (to increase the rate of trials) or executing only
one copy but map the work on strongest qubits and links
(to improve the PST of the given trial). We demonstrate that,
in certain cases, having one strong copy has better overall
performance (successful trials per unit time) than having two
concurrently running copies. Thus, variation-awareness can
enable intelligent partitioning for NISQ machines (Section 8).

2 Background and Motivation
In this section, we provide a brief background on quantum
computing, discuss the issues of errors and error correction,
present a usage model for NISQ computers, and then discuss
the problems associated with the NISQ machines.

2.1 Background on Quantum Computing
Conventional computers use binary data representation. In
contrast, a quantum computer represents data using quan-
tum bits (qubits). Consider a sphere, where the binary data
can either be at the north pole or the south pole of the sphere,
and conventional digital computers operate by switching the
data between the two poles. In quantum computing, the state
of a qubit can be viewed as an arbitrary point on the sphere
that is a superposition of two basis states as shown in Fig-
ure 2(a). Quantum operations manipulate the state of the
qubit by moving it from one point to another point on the
sphere, as shown in Figure 2(b) and Figure 2(c). The ability
to store and manipulate the state of qubits is key to quantum
algorithms. The second property that facilitates quantum
speedup is entanglement. Entanglement is the ability to pro-
duce a collective state of multiple qubits that are correlated.
The entangled states are produced using two-qubit opera-
tions such as the Controlled-NOT (CNOT) instructions [21].
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Figure 2. (a) Bloch Sphere representation of qubit. (b)–(c)
Quantum operations manipulate the state by moving the
point on sphere. (d) SWAP instruction interchanges the data
of two qubits and can be done using 3 CNOT operations.

On IBM quantum machines, two-qubit operations are per-
formed using a coupling-link that connects two qubits. For
practical reasons, superconducting quantum computers do
not allow all-to-all connectivity between the qubits and use
a restricted network (such as Mesh) that allows connectivity
between only the neighboring qubits. The network struc-
tures impose constraints on which qubits can be entangled.
Fortunately, there are SWAP operations that can move the
qubit from one location to another and enables entanglement
of any two arbitrary qubits. Even if the quantum machine
does not provide a native SWAP instruction, it can be accom-
plished using 3 CNOT gates, as shown in Figure 2(d).

2.2 Errors on Quantum Computers
Qubits are fickle as even a small perturbation in the environ-
ment can change the state of a qubit. The error rate for a qubit
can be defined as the probability of undesired change in the
qubit state. Errors in quantum computers can be classified
into two categories: retention-errors or operational-errors.
Retention Errors (or Coherence Errors): A qubit can re-
tain data for only a limited time, and this duration is called as
Coherence Time. There are two types of retention errors that
can occur, and there are two metrics to specify the coherence
time of a quantum device. A qubit in a high-energy state (|1⟩)
naturally decays to the low-energy state (|0⟩), and the time
constant associated with this decay is called as the T1 Coher-
ence Time. T1 indicates the time for natural relaxation of a
qubit. However, there is also a possibility that qubit might
interact with the environment and encounter a phase error,
and the time constant associated with this decay is called
the T2 Coherence Time. T2 indicates the time for a qubit to
get affected by the environment.
The coherence times for superconducting quantum com-

puters have improved from 1 nanosecond to 100 microsec-
onds in the last decade [6]. Furthermore, existing supercon-
ducting qubits show improving trend in coherence times [15][6].



(a)

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

(b) (c)

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

(d)

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1

(e)

Figure 3. (a) Layout of a 6-qubit quantum computer, (b)-(e) are possible routes from A to F. Note that options (b)(c)(d) have an
identical number of swaps and (e) incur higher swaps. An intelligent policy would choose one from (b)(c)(d).

Operational Errors (or Gate Errors): Performing opera-
tions on qubits can also affect their state incorrectly due to
errors, as quantum operations are not perfect. For example,
an instruction that rotates the state by some desired angle
can introduce extra erroneous rotation. Operational error-
rate is defined as the probability of introducing an error
while performing the operation [17]. For publicly available
quantum-computers from IBM, the single-qubit instruction
error-rates are of the order of 10−3, whereas for two-qubit
instructions, such as CNOT, it is 10−2. A typical quantum
program contains a significant number of two-qubit opera-
tions, and given the error-rate of two-qubit operations are
an order of magnitude higher than for the single-qubit opera-
tions, the two-qubit operations usually dominate the overall
error rate. In this paper, we focus on operational errors, and
specifically the ones caused by two-qubit operations.

2.3 Near-term Quantum Computers
Quantum computers can be made resilient to errors by us-
ing Quantum Error Correction (QEC) codes. Unfortunately,
QEC requires a large number of physical qubits (10x-100x)
to encode one fault-tolerant bit. This 10x-100x overhead in
terms of physical qubits for performing error correction may
be acceptable when the quantum machines have thousands
of qubits. However, the current and near term quantum ma-
chines will not have enough capacity to implement QEC.
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Figure 4. Iterative Computing Models for NISQ

Executing large-scale quantum application, such as Shor’s
factoring algorithm, requires having a quantum computer
with millions of qubits. Existing quantum technologies are
not mature enough to have millions of qubits. In fact, for
existing quantum computers (fifty-plus qubits) or near-term
quantum computers (with few hundreds of qubits), it may be

impractical to perform error correction even for an applica-
tion requiring few dozens of logical qubits. However, there
exists a class of applications highlighted by Preskill [25] that
can still be viable with such Noisy and Intermediate-Scale
Quantum (NISQ) computing. Even though NISQ machines
may not have enough resources for error correction, they rely
on application properties to perform useful work. Figure 4
describe a general computing model for the NISQ machines.
In this model, the given program is run multiple times and
the log of the output is stored after each trial. As long as the
correct results appear with non-negligible probability, we
can infer the correct results by analyzing the output log.

2.4 Restricted Connectivity Between Qubits
In this paper, we focus on the problems due to the archi-
tecture of NISQ computers. If a NISQ computer contains
N qubits, then ideally all the qubits will be connected to all
other qubits. Such unrestricted connectivity would allow any
two arbitrary qubits to get entangled. Unfortunately, such
an organization would requireO(N 2) links, which is imprac-
tical even for the 49-72 qubits machines that are available
today. The links in a quantummachine are not just wires, but
resonators that operate at a dedicated frequency, and having
a large number of such circuits operate reliably on the chip
is a difficult task. Therefore, almost all qubit machines use
a Mesh network (or a variant that allows diagonal connec-
tions). Such networks restrict that the movement of qubits
can occur only between neighboring qubits. For example, for
the hypothetical 6-qubit machine shown in Figure 3(a) there
is no direct connection between qubits A and F. The commu-
nication between these qubits must happen via intermediate
qubits. Such restrictions give rise to the two sub-problems:
(a) Qubit-Movement policy, and (b) Qubit-Allocation policy.
Qubit-Movement Policy: This policy decides the route
that should be used while moving the data from one location
on the chip to another. Given that such movement is done
using SWAP instructions between neighboring qubits, it is
reasonable to select the route that minimizes the number of
SWAP instructions. Figure 3(b)-(e) shows the four possible
routes from A to F. The first three (b)-(d) requires only 3
SWAP operations, while (e) requires 4 SWAP operations. The
policy may arbitrarily pick one of the routes from (b)-(d).



Qubit-Allocation Policy: This policy decides the initial
mapping of program qubits to the data qubits. For example,
it is preferred that qubits that communicate frequently be
placed near each other. For example, if we wanted to place
4 qubits on the machine shown in Figure 3(a), we would
not keep these qubits on the four corners, and instead we
will try to use the middle two qubits (D and E), as doing so
would minimize the SWAPs, required for communication. In
fact, recent studies [26, 28, 34] have proposed such allocation
policies based on minimizing the number of SWAPs.

In this paper, we use the compiler developed by Zulehner
et al. [34] as the baseline for both Qubit-Allocation and Qubit-
Movement. Our baseline compiler compiles the quantum
program for given connectivity to generate the instruction
schedule (with additional extra swaps) and initial program-
qubit to physical-qubit mapping. It is designed to minimize
the number SWAPs by using a greedy search algorithm.
Baseline policy for Qubit-Movement and Qubit-Allocation
assume uniform cost (specifically reliability impact) in per-
forming SWAP operations. However, in reality, there can
be significant variation in reliability of qubits and the links.
Policies that take this variation into account can provide
better overall system behavior (performance, reliability etc.)
To enable such variation-aware policies, we first analyze the
publicly available characterization data for the IBM-Q20 ma-
chine as IBM-Q20 has the most number of qubits for which
characterization data is publicly available.

3 Analyzing Variation in IBM-Q20
To understand and quantify the variation in the error-rates of
different qubits and links, we analyze the publicly-available
characterization data for the IBM-Q20 (20-qubit) machine.
IBM provides the data for the link error rates and the coher-
ence times by publishing it on the IBM quantum experience
web-page [5]. We monitored the IBM website for 52 days
and gathered more than 100 different characterization re-
ports. The characterization reports consist of error-rate for
all single-qubit operations, two-qubit operations (link errors),
and measurement operations. IBM machines are calibrated
(one or more times) every day and error-reports are updated
after each calibration cycle.

3.1 Distribution of Coherence Times
Both T1 and T2 coherence time of a qubit depends on several
design, manufacturing and experimental parameters. Due to
process variation, biasing and temperature drifts the coher-
ence time can vary significantly. Figure 5 shows the T1 and
T2 distribution of IBM-Q20. The data is collected for all 20
qubits over 100 observations (so a total of 2000 data points
are plotted in the graph). The mean and standard deviation
for T1-Coherence time are 80.32µS and 35.23µS respectively.
The mean and standard deviation for T2-Coherence time are
42.13µS and 13.34µS respectively.

0 100 200
T1 Coherence (uS)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
e
q

u
e
n
cy

 o
f 

O
cc

u
rr

e
n
ce

 

0 50 100
T2 Coherence (uS)

Fr
e
q

u
e
n
cy

 o
f 

O
cc

u
rr

e
n
ce

Figure 5. Distribution of (a) T1 Coherence time (b) T2 Co-
herence time for all 20 qubits with 100 samples per qubit

3.2 Error-Rate for Single-Qubit Operations
Single qubit operations rotate the quantum state from one
point to other on a state-sphere. On IBM machine, it is per-
formed by applying a microwave signal with a set duration
and frequency on the qubit device. Unfortunately, qubit de-
vices are highly non-linear and a small perturbation or exper-
imental conditions can cause drift in device characteristics.
This can cause variation in the robustness of the quantum
operations. Figure 6 shows the distribution of error-rate for
single-qubit operations. The data shows a large fraction of
the error-rate below 1%. Single-qubit operations are more
robust than two-qubit operations.
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Figure 6. Distribution of the error-rates of single-qubit op-
eration for all 20 qubits with 100 samples per qubit.

3.3 Error-Rate of Two-Qubit Operations
Two-qubit operations are essential to entangle quantum
states and move the state of the qubits. In IBM quantum
computers, two-qubit operations are performed by applying
microwave pulses on target devices, control qubit devices as
well as on the coupling link that connects the two. Similar
to single-qubit operations, two-qubit operations suffer from
variation in error-rate i.e. there is a fraction of coupling links
significantly unreliable than most of the links. We analyze
the reliability of two-qubit operations for the IBM quantum
computer. Figure 7 shows the distribution of the error-rate
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Figure 7. Distribution of the error-rates of two-qubit oper-
ations for all 76 links of IBM-Q20. The data consists of 100
observations for per link (so a total of 7600 datapoints).

of two-qubit operations for the 20 qubit machine. It consists
of data from 76 coupling links collected over 100 calibration
cycles. The mean two-qubit error-rate is 4.3% and standard-
deviation is 3.02%.

3.4 Temporal Variation in Two-Qubit Gate Errors
Error-rate of a link can change with time. IBMQ-20 are fre-
quently re-calibrated to ensure that the characterization is
reliable. However, a qubit and the associated coupling links
can change their behavior across two different calibration
cycles. For example, a qubit pair with a low error rate on
one day can have opposite behavior on the other. This might
result from tuning parameters, drifts, and other experimental
factors. Figure 8 shows a time-series of error-rate for three
coupling-links. From this data, we observe that error-rate of
the links tend to retain their mean error characteristics and
stronger links tend to remain strong.
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Figure 8. Temporal variation in error rate of two-qubit oper-
ations for three links. For most periods, the strong link tends
to remain strong and the weak tends to remain weak.

3.5 Spatial Variation in Two-Qubit Gate Errors
Figure 9 shows the layout of the IBM-Q20 qubit computer.
Circular nodes represent the qubits and the edges represent
a coupling link that is used for performing a two-qubit op-
eration between a pair of qubits. The weight on the edge
shows the failure rate of the link and indicates the average

probability of failure of the link. For example, the link be-
tween Q14 and Q18 has the highest probability of failure
(0.15) and there are several links with a probability of failure
as low as 0.02. Thus, there is a variation of 7.5x between the
failure rate of the strongest links versus the weakest link.
We observe that for all the metrics we have analyzed

(coherence times, error-rate of single-qubit operations, and
error-rate of two-qubit operations), there is significant vari-
ation in the behavior of qubits and links. Given that the
data for this variation can be obtained using characterization
(which is performed periodically), we can use the variation
data and develop variation-aware policies. We first define our
evaluationmethodology and the figure of merit (for assessing
system level reliability) and then present our proposals.
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Figure 9. Layout of IBM-Q20, each edge represents a possi-
ble 2-qubit operation. The label on the edge represent the
average probability of failure on that link when an operation
is performed. The best link(s) have an error-rate of 0.02 and
the worst link has 0.15, so a difference in strength of 7.5x.

4 Evaluation Methodology
In this section, we define figure-of-merit for system-level
reliability, benchmarks, and evaluation infrastructure to esti-
mate the effectiveness of proposed variation-aware policies.

4.1 Figure-of-Merit for System-Level Reliability
In an iterative model of computing for NISQ programs, the
trial contributes to useful information if the trail can be exe-
cuted without errors. In fact, if the workload can be executed
with only a small probability of error, then wemay not need a
large number of trials to converge on the correct solution. To
quantify the overall system reliability, we use the Probability
of Successful Trial (PST)metric as the primary figure-of-merit.
PST can be computed as the ratio of successful trials to the
total number of trials performed.



Table 1. Benchmark Characteristics

NISQ Benchmark Num Total SWAP
Workload Description Qubits Inst Inst

alu Quantum adder [34] 10 299 19
bv-16 Bernstein Vazirani [3] 16 66 7
bv-20 Bernstein Vazirani [3] 20 90 10
qft-12 Quantum Fourier Trans. 12 344 35
qft-14 Quantum Fourier Trans. 14 550 53
rnd-SD Rand benchmark with 20 100 24

short distance communication
rnd-LD Rand benchmark 20 100 35

long distance communication

4.2 Benchmarks
For our evaluations, we use micro-benchmarks used by the
prior studies on quantum compilers and qubit allocation [28,
34] and small kernels demonstrated with IBM quantum com-
puters [5]. These micro-benchmarks are scaled down version
of larger quantum applications and subroutines. Table 1 show
the seven benchmarks used in our study, their description,
number of quantum instruction performed, and the num-
ber of qubits and the SWAP operations. We choose work-
loads with diverse qubit entanglement patterns. For example,
Quantum Fourier Transform (qft) requires almost all to all
entanglement whereas Bernstein-Vazirani (bv) requires one
qubit entangledwith rest of the other qubits.Whereas, bench-
marks: rnd-SD, rnd-LD have repeated randomized CNOTs.

4.3 Evaluation Infrastructure
We perform our studies using the variation data from the
IBM-Q20 machine. Unfortunately, the access to IBM-Q20 is
not publicly available. Therefore, for our system reliability
evaluations, we built a Monte-Carlo based fault-injection
simulator using the architecture-level model for the IBM-
Q20 machine. We use the iterative model for NISQ where
the same workload is executed a large number of times, and
the output is analyzed. Figure 10 shows an overview of our
fault-injection simulator.
The simulator accepts the (a) NISQ program (b) layout,

configuration, and error rate, and (c) management policies.
The simulator injects errors based on the error rate of the
given qubit and link and then tracks if the program com-
pleted without an error. We use the IBM-Q20 characteriza-
tion data to estimate the probability of failure for two-qubit,
single-qubit, and measurement operations. We perform 1
million trials for each workload to get PST estimates for the
NISQ application by modeling errors as uncorrelated events
with independent probability across trails.

Note that the compilation and mapping policies can be
evaluated by using first-order simulators to gain insights.
Nonetheless, in addition to simulation-based evaluations,
we also analyze the effectiveness of our proposal on a real
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Figure 10. Monte-Carlo fault-injection simulator for esti-
mating system level reliability of quantum computers.

quantummachine, albeit at a smaller scale, using the IBM-Q5
machine. In Section 7, we demonstrate that our proposal is
effective even in a realistic setting and provides a significant
improvement in PST for real systems.

4.4 Layout and Error-Rate Parameters
The layout configuration specifies the number of qubits and
their connectivity. For our studies, we use the IBM-Q20 lay-
out and error-rate collected from IBM-Q20 over 52 days as is.
The error-rate parameters describe the error rates for single-
qubit, two-qubit and measurement operations. We model the
errors in quantum operations as independent trials. We also
model the coherence errors for all qubits. For the error-rate
of IBM-Q20, the gate errors have a domination impact on the
overall system reliability and the impact of coherence errors
is negligible (e.g., for bv-20, the gate errors are 16x more
likely to cause system failures than the coherence errors).

4.5 Baseline for Qubit Movement and Allocation
We use a baseline mapping policy proposed by Zulehner et
al. [34] that seeks to minimize the number of SWAP opera-
tions. The steps for the baseline scheme are as follows:

1. Initialize an unweighted graph (G) that represents
qubits as set of nodes (V) and links as edges (E).

2. Compute distance matrix for minimum number of
SWAPs required to entangle any two qubits in G.

3. Partition the input program in layers such that each
layer consists of independent operations that can be
executed in parallel while respecting data dependen-
cies. For example, an input program is partitioned into
L, which is a set of n layers, L = {l0, .., li , li+1, .., ln−1}
where n equals the depth of the program.

4. Iterate through all the layers to find the mapmi be-
tween program qubit and physical qubit for each layer
li such that all the CNOTs in the layer can be performed
with available physical connectivity.

5. Find optimal set of swap operations (Si−→i+1) for each
pair of layers li and li+1 that transforms the mapmi
tomi+1. To search for the optimal set of SWAPs in an
exponentially scaling search space, authors propose to
use A* search that using cost function and heuristics
based on the number of hops or Manhattan distance.

Note that the baseline tries to reduce the cost of SWAPs by
implicitly assuming a uniform cost for all SWAP operations.



5 Variation-Aware Qubit Movement
5.1 The Problem of Qubit-Movement
The Qubit-Movement policy is responsible for deciding the
route to take while moving qubit data from one device to
another.1 Such a policy can consider all possible routes and
pick the one that requires the fewest number of SWAP in-
structions. Fortunately, most of the designs for quantum
computers use a mesh-like network, so all the choices that
go either in the X direction or Y direction towards the des-
tination will have identical Manhattan distance, and hence
the identical number of SWAP instructions. For example,
for the 6-qubit quantum computer shown in Figure 11, if
we want to go from physical qubit A to physical qubit F, all
three routes (A-B-C-F, A-D-E-F, A-D-C-F) have identical hop
counts (3), and the Qubit-Movement policy can choose any
of these routes. It may consider making the Qubit-Movement
decision simple by first going in the "X" dimension and then
going in the "Y" dimension (or vice versa) – while such a
policy would ensure the shortest route (minimum number
of SWAP instructions), such a policy would exclude the se-
lection of path A-D-C-F.
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Figure 11. A 6-qubit quantum computer, weight indicates
probability of success of each link. To move Q1 (at A) to Q3
(at F), a variation-aware policy would use route A-D-C-F as
it maximizes the probability of success of the movement

5.2 "Variation-Awareness" in Qubit-Movement
Given that there is variation in the error-rates of different
links, policies (such as X-first or Y-first) that choose one
choice among the list of shortest routes will not always
provide the best overall system reliability. For example, the
number on each link in Figure 11 shows the probability
of success of the link. Route A-D-F would maximize the
probability of success of the overall movement from A to F,
and a variation-aware policy would choose such a route.

1Qubit-Movement policy is analogous to network-routing algorithms, which
decide the path followed by a packet from the source to destination within
a network. Similar to how network-routing algorithms try to minimize
the "hop count", Qubit-Movement policies try to minimize the number of
SWAPs. Network-routing algorithms make localized decisions at each node,
so they must be designed carefully to avoid deadlocks. However, Qubit-
Movement is orchestrated globally by the compiler, with the knowledge of
the usage of all links, so it is easy to avoid schedules that cause deadlocks.

5.3 Design for Variation-Aware Qubit-Movement
We propose Variation-Aware Qubit Movement (VQM) that
seeks to perform Qubit-Movement while taking into account
the variation in the per-link error rates. VQM selects the
paths with the highest reliability for the data movement and
actively tries to avoid paths that have poor reliability. Exist-
ing mapping policies such as the baseline policy [34] find the
optimal path to entangle qubits by formulating a state-space
search problem that uses the cost function that is based on
the number of inserted SWAPs.Whereas, in VQM, we change
the cost function from the number of SWAPs to the overall
failure rate incurred by moving the qubit from source to
destination. Our variation-aware mapper determines the set
of SWAP instructions that minimizes the probability of fail-
ure. In case of no variation in error-rates, our policy selects
the path with the minimum number of swaps to minimize
the probability of failure (identical as a baseline). However,
for non-uniform link-errors, VQM picks a path that has the
highest reliability. Thus, VQM leverages the locality preserv-
ing traits of baseline while using a variation-aware heuristic.
Algorithm 1 describes the steps for VQM.

Algorithm 1 Variation-aware qubit movement algorithm

1. Initialize weighted graph (H ) with N
qubits as vertices (V ), links as edges (E)
with weights (W ) that represent a failure
rate of the links, compute distance matrix
(D) using Dijkstra’s algorithm that holds
pairwise shortest distance. Each element
in D is the minimum cost for the most re-
liable path to entangle two qubits on H

2. Using W, compute the node strength or
weighted degree (di ) of each qubit (vi )
such that di =

∑N
j wi j

3. Break the input circuit into layers (li =
(l0, l1, ...ln)) similar to baseline.

4. Find program-qubit to physical-qubit map
mi for each layer li such that physical
qubits with higher node strengths are pri-
oritized during the mapping process.

5. Find optimal set of swap operations that
transforms the map mi to mi+1. The op-
timal set of SWAPs minimize the proba-
bility of error by choosing most reliable
paths using D. To choose the optimal set
of swaps, we use A* search proposed by
the baseline with a reliability-aware cost
function and with an additional heuristic
Maximum Additional Hop (MAH)



For implementing VQM, we assume that the characteriza-
tion data of the error rates for different links are available
and that this characterization data remains valid during the
execution. VQM compiles the application and tries to select
the route that tries to maximize system reliability.2 For se-
lecting the route, VQM simply forms a cost graph where
each link has a probability of success, and the overall proba-
bility of success of a route is computed as the product of the
probability of success of the individual links. VQM selects
the route that maximizes the probability of success for the
overall route. VQM can select a longer path over the shortest
path if the longer path has higher reliability. This will result
in an extra number of SWAPs. Furthermore, more qubits get
displaced due to a longer chain of SWAPs. The displaced
qubits may cause additional set SWAPs for future CNOT
operations. We use a parameter that limits the extra SWAP
instructions using Maximum Additional Hop (MAH). VQM
with such limitations will select the path with the lowest
cost, such that the extra hops do not exceed MAH. We use
MAH = 4 to analyze such hop-limited VQM.

5.4 Impact of VQM on System Reliability
Figure 12 shows the Relative-PST for our seven benchmarks
when compiled with VQM and the constrained version of
VQM (MAH=4). All benchmarks see a significant improve-
ment in the PSTwith VQM. Benchmarks such as qft, rnd-LD
require long-distance entanglement and a considerable num-
ber of SWAPs (limited locality), therefore they see higher
improvement in PST compared to other benchmarks.
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Figure 12. Impact of VQM on the Probability of Successful
Trials (PST). Note that reported PST numbers are normalized
to PST of the baseline policy that selects the shortest route.

We also observe that the hop-limited policy has similar
improvement to an unconstrained policy that does not put
any limit on the increased hop count. This is especially true
for workloads that have locality as the limited hops preserve
the locality by restricting the qubit path among active qubits.

2In conventional computer systems, applications may be compiled once, and
run unchanged for several years. However, it is reasonable in NISQ domain
to assume that each time the workload is scheduled, it gets recompiled
by the runtime system (using the latest characterization data) and then
repeated trials are performed with the updated executable.

6 Variation Aware Allocation
The Qubit-Allocation policy is responsible for assigning the
program qubits to the physical qubits.

6.1 "Variation-Awareness" in Qubit-Allocation
Baseline qubit allocation is oblivious to the variation in the
link reliability. It uses an allocation that minimizes the num-
ber of SWAPs. For example, if we want to allocate 2 qubits on
the machine in Figure 15(a), the baseline policy may pick any
two neighboring qubits, including D and A, which are con-
nected by the weakest link. If the allocation policy was aware
of the variation, it would pick D and C, which are connected
by the strongest link. We propose such a Variation-Aware
Qubit Allocation (VQA) policy.

6.2 Design of Variation-Aware Qubit-Allocation
The baseline policy starts with carefully selected initial map-
ping and then tries to converge to a configuration that has
a minimum number of SWAPs. However, doing so does not
take into account the variation in the link-errors of the qubits.
VQA, on the other hand, maps the frequently used qubits
to the qubits with most reliable link to improve reliability
and preserve the locality. VQA achieves this by starting with
the most reliable initial mapping and restricting frequently
used pair of qubits to most reliable links. VQA estimates the
most frequently entangled qubits by analyzing the first-N in-
struction in the program and tracking the number of CNOT
operations between each of possible pair of qubits. The steps
for VQA are shown in Algorithm 2.

Algorithm 2 Variation-aware qubit allocation algorithm

1. Find the sub-graph (SGk ) with k-nodes
that has highest aggregate node strength
(ANS). ANS =

∑k
i di where di =

∑N
j wi j .

2. Find qubit activity by calculating the num-
ber of CNOTs per qubit for first t layers.

3. Map program qubit to physical qubit map-
pingmi prioritize the mapping of qubits
with high activity to SGk such that top K
active qubits are mapped to SGk .

4. Use baseline algorithm to find SWAPs be-
tween layer li and li+1.

Furthermore, when mapping less number of qubits than
the available qubits, baseline exposes all the qubits to the
mapping process which can sometimes result in the map-
ping of frequently used qubits to weak qubits. VQA prevents
such undesirable assignments by selecting the strongest (sub-
graph) and restricting the qubit mapping that maximizes the
overall system reliability. VQA computes the strongest set of
sub-graphs by using K-core algorithm that that recursively
prunes nodes with degrees less than k [2].



6.3 Impact of VQA on System Reliability
By using VQA, we ensure the mapping of program qubits
with high activity (total number of CNOT operations) to the
set of physical qubits with the higher node strength. This
improves the reliability for workloads that has repeated en-
tanglement operations between few select pairs of qubits.
We implement VQA in conjunction with the variation-aware
movement. Figure 13 shows the relative-PST for the micro-
benchmarks normalized to the baseline, VQM, andVQM+VQA.
Our evaluations show that VQM+VQA can provide up to 1.7x
improvement in PST. Note that, for all the benchmarks, the
combination of VQM+VQA provides higher PST than the
VQM scheme standalone.
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Figure 13. PST for VQA and VQM+VQA normalized the
baseline policy (variation unaware). We also compare the
normalized PST of the native compiler of IBM.

6.4 Improvement Relative to Native IBM Compiler
We use a state-of-the-art baseline policy that tries to min-
imize the number of SWAP instructions. Our baseline is
stronger than an alternative policy that uses randomized
assignment, such as the native compiler from IBM. Figure 13
compares the PST for IBM’s native compiler with our base-
line and the proposed policies. As the IBM native compiler
performs randomized initial mapping, we evaluate 32 con-
figurations (each over 10000 trials) and report the average
and the min-max (using the error-bars) PST. Note that our
baseline policy has 4x higher PST than the IBM native com-
piler. Whereas, VQA+VQM improve PST up to 7x over the
IBM compiler.

6.5 Effectiveness to Per-Day Variation
We perform our evaluations using average behavior of the
link/qubit based on characterization data across 52 days. The
behavior of the qubit and links can vary over time, and with
it the benefit of our scheme. To analyze this, we evaluated
bv-16 with per-period characterization data across the 52
days. Figure 14 shows the improvement in PST for bv-16
benchmark for each day (the dotted line denotes the average).
VQA+VQM provides larger PST improvement on days with
higher variability and smaller on days with lower variability.
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Figure 14. Relative improvement in PST for bv-16 bench-
mark evaluated with error-configs collected over 52 days

6.6 Sensitivity to Scaling of Error Rates
As technology improves, we can expect the error rates to
reduce, however the variation may still persist even at lower
error rates, meaning our proposal can still be effective. We
evaluate bv-16 benchmark with 10x lower average error rate
(standard deviation reducing proportionally or by half as
much). As shown in Table 2, VQM+VQA provides significant
benefits that increases with increased relative variation.

Table 2. Sensitivity of VQA+VQM with Error Scaling.

Benchmark Average Error Covariation Relative PST
Name Error-Rate of Error Rate Benefit(VQA+VQM)

bv-16 1x Cov-Base 1.43x
bv-16 10x lower Cov-Base 2.02x
bv-16 10x lower 2*Cov-Base 2.59x

7 Evaluation on Real System: IBM-Q5
Access to IBM-Q20 is not publicly available, so we evaluated
our policies for IBM-Q20 using a simulator. We demonstrate
the usefulness of our ideas for real quantum systems by
performing experiments on the IBM-Q5 machine. For IBM-
Q5, the average two-qubit error rate is 4.2%, and the worst
link-error is 12%. We use the error configuration of IBM-
Q5 to compile the benchmarks that are suitable for IBM-
Q5. A compiled program with the baseline policy and with
VQA+VQM are then executed on a IBM-Q5 machine and the
output is logged. We run each experiment with 4096 trials
and analyze the output log to compute the PST for each
program and policy. Table 3 shows the PST of the baseline
and (VQA+VQM). Our proposal improves the PST for IBM-
Q5 machine by up to 1.9x improvement (average 1.36x).

Table 3. PST for Baseline and Proposed Policies on IBM-Q5.

Benchmark PST PST Relative
Name (Baseline) (VQA+VQM) Benefit in PST

bv-3 0.31 0.38 1.22x
bv-4 0.21 0.23 1.09x

TriSwap 0.13 0.25 1.90x
GHZ-3 0.57 0.77 1.35x

GeoMean 0.26 0.36 1.36x



8 Partitioning Quantum Computer
We have explored the variation-aware policies for Qubit-
Movement and Qubit-Allocation. This concept can be used
to provide insights into other design trade-offs that may
come in NISQ systems. We do a case study for a scenario,
where the workload requires half or fewer qubits than what
is physically available, and the computer can be partitioned
to run multiple copies of the same workload (to provide more
trials per unit time). We analyze whether it makes sense to
partition the NISQ computer in such scenarios.

8.1 Two Weak-Copies versus One Strong-Copy
When the number of program qubits are less than or equal
to half of the physical qubits, we can run two copies of the
same program. In an ideal world, the simultaneously running
two copies can provide twice as many number of error-free
trials per unit time. However, for a quantum computer with
variation, running two copies restrict the program qubit to
physical qubit mappings. For example, running a single copy
provide an opportunity to choose the strongest set of qubits
and links in a given quantum computer, whereas, running
two copies would constrain us to also useweaker set of qubits
and links. Thus, the single copy would try to maximize the
PST for a given trial, even if it means sacrificing the increased
trials per unit time that would be possible with two copies.
Whereas, having two-copies provides more trials per unit
time at the expense of PST for each trial. On a given NISQ
with variable reliability, should we run two weak copies or
run one strong copy of the program?
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Figure 15. (a) NISQ with six qubits using mesh connectivity.
A CNOT reliability is reported on the top of each link. (b) (c)
Mapping policy that runs two copies of a NISQ program (d)
Mapping policy that runs one copy using the strongest links

For a hypothetical machine with six physical qubits with a
mesh-layout as shown in the Figure 15(a). The edge-weights
in the graph show the strength of the coupling links. For a
quantum program with three program qubits as shown in
the Figure 15(a), we can either run two copies by partitioning
the quantum computer or run just one copy. Figure 15(b),

shows two copies of a program: Copy-X and Copy-Y running
on a quantum computer. The success probability of individ-
ual copy can be calculated by multiplying all the success
probabilities of operations in the program. For example, Fig-
ure 15(b) shows the PST for Copy-X and Copy-Y to be 0.32
and 0.12 respectively. Thus, running two copies does not
increase the rate at which successful trials can be done by
2x, instead in our case it is only 37.5% (0.44/0.32).

For the example program, if we choose to run a single copy,
we can intelligently select the strongest subset of qubits and
links to improve the overall reliability. Figure 15(c) shows one
such example whereby choosing to run just one strong copy
can improve the cumulative PST. When running two copies,
the constraints on connectivity restricts the use of link CD
which is one of the strongest links.When running two copies,
programmer has to resort to the weaker links. Whereas,
when running a single copy, we can pick most reliable links
and achieve better PST as shown in the Figure 15(b).

8.2 Benchmark-Based Evaluation
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Figure 16. Successful Trials per Unit Time (STPT) when
running (a) two-copies (b) one strong copy. Note that the
micro-benchmarks were modified to have 10 program qubits.

We extend our evaluation infrastructure to support two
copies of the same workload. For the two-copy mode, we
explore all possible partitions and select the best. Note that
besides the number of copies, movement and the mapping
algorithm used for both of the policies are identical. The only
difference is the available number of qubits. For the evalu-
ation in this section, we use the figure of merit as Number
of Success Trials Per Unit Time (STPT), as it captures both
the PST and the increased rate of trials with two copies. We
modify these benchmarks to use only 10 qubits. Figure 16
shows the STPT of the single strong-copy and two-copies,
both normalized to the STPT of the two copies. For this
study, we selected the three workloads that can operate with
ten qubits. We observe that sometimes two-copy is better
(bv-10) and sometimes one strong-copy is better (qft-10).
For NISQ applications, we can estimate which solution is
likely to perform better for the workload and used that so-
lution. Thus, our variation-aware policies may be useful in
enabling Adaptive Partitioning for NISQ machines, where
the decision between one strong copy versus two-copies can
be based on STPT.



9 Discussion of Limitations
Computer architecture for NISQ-era quantum computers is
still in the stage of infancy. There is no clear and established
evaluation infrastructure to estimate the impact of different
policies on the system-level reliability of quantum computers
using benchmarks or applications, especially when direct-
access to the quantum machine is not available. As with any
initial research, our study is based on a number of assump-
tions, which may not hold, as the technology matures. We
discuss some of the limitations of our study:
Workloads: Our evaluations are done using small kernels
and random benchmarks, similar to the ones used in the area
of compilation for quantum computers. These kernels and
benchmarks may not be representative of the NISQ applica-
tions that will be developed in the future.
Error Models: We make several simplifying assumptions
such as no-correlations between errors, static error-rates,
and exponential-model for coherence errors. Noise in the
real quantum computer is significantly complex to model
and is currently an open problem.

The basic insight in our work is that there is variation in
qubit and link reliability. Exploiting the variability allows
better-than-worst-case behavior and avoids the overall sys-
tem reliability getting dictated by a few weak components.
While we expect this basic insight is useful for future quan-
tum computers, some of our assumptions about evaluations
and error models may get redefined as the field progresses.

10 Related Work
Quantum System Architecture: Early works in quantum
system architecture provided a blueprint for quantum sys-
tems by defining system abstractions [1, 14, 29, 31]. Several
papers highlighted the resource overheads of quantum error
correction and proposed the microarchitectural solutions to
mange error correction efficiently [12, 23]. A large body of
work has also focused on quantum compilers that synthesize,
simulate, and analyze quantum programs [13, 18].

NISQ Compilers: The availability of NISQ machines to
the general public has sparked the interest in building com-
piler tools for the near-term quantum computers. Moreover,
recent works provide an excellent theoretical understanding
of the mapping problems [4, 8, 20, 26, 28, 32]. Along with
general mapping problems, researchers have started focusing
on the machine specific mapping problems [28, 34].

ReliabilityMetrics: IBM researchers proposed theQuan-
tum Volume (QV) metric to compare quantum computers
with different qubit technologies and varying degree of con-
nectivity. However, QV does not capture the reliability loss
due to variation, is an application-agnostic metric, and does
not account for policy decisions. Therefore, we use PST as
the critical metric for system reliability [19].

Demonstrations on IBM Quantum computers: IBM
Quantum Experience is a cloud service that enables public ac-
cess to quantum computers [5]. Researchers have used these
insights to design light-weight error detection/correction
codes or device level techniques that can improve the gate
fidelity [7, 9, 24]. Variation in error-rate is a crucial hurdle
towards developing new applications. Currently, a program-
mer has to rely on hand optimized data-movements and
mapping to improve the application-level reliability [33]. Un-
fortunately, the error rate and error patterns are not static,
and they change every calibration cycle (performed twice
a day for IBM computers), rendering hand-optimized map-
pings unscalable.

11 Summary
We study the policies forQubit-Allocation andQubit-Movement
for current quantum computers. We observe that there can
be variation in the error rates of different qubits and links,
which can mean that prior studies that try to minimize com-
munication may not maximize overall system reliability. The
system reliability of quantum computers can be improved
significantly by steering more operations towards stronger
qubits and links and limiting operations on weak links. To
this end, our paper makes the following contributions:

• We highlight the problem of variability in error rates
by analyzing the publicly available characterization
data for IBM-Q20. We show that there is significant
variation in the error rate of qubits and links.

• We propose Variation-Aware Qubit Movement policy
that exploits the variation in error rates by trying to
pick a route that has the lowest probability of failure.

• We propose Variation-Aware Qubit Allocation policy
that exploits the variation in error rates by allocating
program qubits to physical qubits such that the use of
links with high error rates gets minimized.

• We develop an evaluation methodology to assess the
impact of device variation and management policies
on the system-level reliability of quantum computers.
We show that our policies provide significant improve-
ment both in simulated setting and on the IBM-Q5.

Our insights can also help in understanding the resource
sharing and partitioning problems in the near-term quantum
computers, such as deciding between running one strong-
copy versus two concurrent copies of NISQ program.
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