
Randomized Row-Swap: Mitigating Row Hammer by Breaking
Spatial Correlation between Aggressor and Victim Rows

Gururaj Saileshwar∗

gururaj.s@gatech.edu

Georgia Tech

Atlanta, USA

Bolin Wang
bolin@ece.ubc.ca

Univ. of British Columbia

Vancouver, Canada

Moinuddin Qureshi
moin@gatech.edu

Georgia Tech

Atlanta, USA

Prashant J. Nair
prashantnair@ece.ubc.ca

Univ. of British Columbia

Vancouver, Canada

ABSTRACT

Row Hammer is a fault-injection attack in which rapid activations

to a single DRAM row causes bit-�ips in nearby rows. Several recent

defenses propose tracking aggressor-rows and applying mitigating

action on neighboring victim rows by refreshing them. However, all

such proposals using victim-focused mitigation preserve the spatial

connection between victim and aggressor rows. Therefore, these

proposals are susceptible to access patterns causing bit-�ips in

rows beyond the immediate neighbor. For example, the Half-Double

attack causes bit-�ips in the presence of victim-focused mitigation.

We propose Randomized Row-Swap (RRS), a novel mitigation

action that breaks the spatial connection between the aggressor

and victim DRAM rows. This enables RRS to provide robust de-

fense against even complex Row Hammer access patterns. RRS is an

aggressor-focusedmitigation that periodically swaps aggressor-rows

with other randomly selected rows in memory. This limits the pos-

sible damage in any one locality within the DRAM memory. While

RRS can be used with any tracking mechanism, we implement it

with a Misra-Gries tracker and target a Row Hammer Threshold of

4.8K activations (similar to the state-of-the-art attacks). Our evalu-

ations show that RRS has negligible slowdown (0.4% on average)

and provides strong security guarantees for avoiding Row Hammer

bit �ips even under several years of continuous attack.
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1 INTRODUCTION

Row Hammer attacks enable a software-based attacker to inject bit

�ips in DRAM locations that are not explicitly accessible by it. These

attacks pose a serious security threat as they subvert the process

isolation guarantees provided by modern operating systems. The

phenomenon of Row Hammer (RH) [17] was �rst demonstrated in

2014, when a frequently accessed DRAM row was shown to cause

bit-�ips in the nearby rows due to disturbance errors. Subsequently,

a large body of attacks [3, 8, 11, 13, 14, 19, 29] has shown that

bit-�ips injected by RH can be exploited in a variety of ways. An

attacker can �ip bits in page tables to achieve privilege escalation,

i.e., gain kernel privileges and access data stored at arbitrary loca-

tions. Furthermore, bit-�ips from RH are data-dependent, and this

can also be used to stealthily infer data stored in nearby rows [19].

Moreover, the vulnerability to bit-�ips due to RH in modern devices

has only increased in recent years. For example, the number of

activations required on a particular aggressor row to obtain a bit-

�ip due to RH (termed as the Row Hammer Threshold) has reduced

by almost 30x in the last seven years, coming down from 139K in

DDR3 (in 2014 [17]) to 4.8K for LPDDR4 (in 2020 [16]).

Developing techniques to mitigate RH has been an active area

of research in the software and hardware domains. Software-based

defenses [3, 5, 18, 35, 36] can protect existing systems with vulner-

able DRAM against speci�c Rowhammer attacks and exploits, but

are unable to address the root cause of the vulnerability and of-

ten vulnerable to newer attacks [12, 40]. Hardware-based defenses

tend to be better suited to address the root-cause of RH, and typ-

ically consists of two parts: (1) a tracking mechanism to identify

the aggressor-rows (rows that receive frequent activations), and

(2) a mitigating-action that is issued when the aggressor row re-

ceives a speci�ed number of activations. While there have been

several proposals for identifying the aggressor rows at low-cost (e.g.

state-less PRA [15] and PARA [17], TRR [11], CRA [15], TWiCE [20],

Graphene [25]), all these proposals employ the same mitigating ac-

tion – speci�cally, issuing a refresh for the immediate neighbor

rows, to restore the charge in the cells of these rows, deemed to be

victim rows. We term such a mitigation as victim-focusedmitigation.

Victim-focused mitigation su�ers from two shortcomings. First,

it requires knowledge of the location of the immediate neighboring

rows. This is challenging to know from the memory controller in

the CPU as DRAM chips use propriety addressing schemes and

this mapping may not get revealed. Second, it assumes that RH

attack patterns do not cause any bit-�ips in any other rows beyond

the ones identi�ed as the victim rows. Unfortunately, attackers

continue to develop complex access patterns that can cause bit-�ips

beyond the immediate neighboring rows, and such access patterns

cause bit-�ips even in the presence of RH mitigation.
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Figure 1: (a) Classical Row Hammer attack (b) Victim-focused mitigation refreshes immediate neighbors (c) Half-Double attack

breaks victim-focused mitigation (d) Randomized Row-Swap breaks spatial connection between aggressor and victim row.

We explain the vulnerability of victim-focused mitigation with

an example. Figure 1 (a) shows the classical RH pattern that causes

bit-�ips in the neighboring rows and Figure 1 (b) shows the victim-

focused mitigation that issues refresh to the immediate neighboring

rows. Figure 1 (c) shows the recent Half-Double attack from Google.

Half-Double causes a large number of activations to a given row

(called Near-Aggressor), which causes mitigative refreshes in neigh-

boring rows (called Far-Aggressor). These mitigating actions aid

activations to the Far-Aggressor and cause bit-�ips in rows that are

at a distance of 2 from the Near-Aggressor. Half-Double showed

such an attack to be practical by causing 100+ bit-�ips within 64ms.

Moreover, mitigating Half-Double by refreshing two neighbors on

each side is ine�ective as the row at a distance of 3 from the Near-

Aggressor could now incur bit-�ips. Thus, Half-Double defeats all

prior mitigation [11, 15, 17, 20, 25] relying on victim refreshes.

We expect new RH attacks will develop more complex patterns

capable of bit-�ips at a greater distance, even in the presence of

victim-focused mitigation. This is possible because prior mitigation

retains the spatial proximity between the aggressor and victim

rows even after performing the mitigating action, thereby giving

the attacker a large time window to orchestrate complex patterns

(for example, Half-Double requires 900K activations on the same

aggressor row in 64ms). The key insight in our work is to develop

a new mitigating action that breaks the spatial connection between

the aggressor-row and victim-rows, thereby limiting the time the

attacker has to orchestrate the attack pattern at any one location.

We propose Randomized Row-Swap (RRS), an aggressor-focused

mitigating action that performs mitigation by swapping the aggres-

sor row with a randomly selected from the same bank within the

memory. As RRS limits the time an aggressor row spends around

any set of victim rows, it provides a strong defense against both

classical RH patterns and more complex access patterns that �ip

bits in rows beyond immediate neighbors. A key parameter of RRS

is the number of activations an aggressor row is allowed before

being swapped ()''( ), and this parameter is decided by both the

Row Hammer Threshold ()'� ) and the possibility of the attacker

to randomly discover the new location of the aggressor row. We

perform security analysis to determine)''( and show that)''( of

one-sixth of )'� is su�cient to provide security for several years

of continuous attack.

A design with RRS has two key components: Hot-Row Tracker

(HRT) and Row-Indirection Table (RIT). The HRT is responsible for

identifying the rows that exceed a given number of activations

()''( ). The RIT is responsible for tracking the location of the rows

that undergo swap. The RIT is consulted on each memory access

to determine the physical location for the given request.

We note that unlike prior defenses against RH that focused on

tracking mechanisms to identify aggressor rows, the focus of RRS

is a new mitigating action after such identi�cation. So, RRS may

be implemented with any tracking mechanism used for the HRT.

Without loss of generality, we use the recently proposedMisra-Gries

tracker from Graphene [25] for hot-row tracking in RRS.

However, designing scalable hardware structures (for the Misra-

Gries tracker and RIT) in RRS is challenging with the decreasing

Row Hammer threshold ()'� ). As )'� has reduced to 4.8K acti-

vations [16], we target our RRS implementation to this value. To

guarantee no row has 4.8K activations per 64ms, our security anal-

ysis suggests a row needs to be randomly swapped each time it

has a multiple of 800 activations in 64 ms ()''( = 800). With 1.36

Million row activations possible in 64ms, up to 1700 rows can reach

800 activations per 64ms and need to be swapped. Therefore, both

HRT and RIT must accommodate at least 1700 entries to prevent

any attacker-induced evictions, a security threat.

Unfortunately, the prior design [25] forMisra-Gries tracker based

HRT (targeted at 10x higher)'� ) uses Content Addressable Memory

(CAM), which is not scalable beyond few dozens of entries. More-

over, the RIT is latency-critical as it is looked up on the critical path

of each DRAM access. To guarantee minimal latency and power

overheads, we develop scalable designs for HRT and RIT, with low-

latency lookup similar to two-way skewed-associative cache and

no premature eviction of entries due to con�icts.

Our analysis shows the slowdown of RRS for benign workloads

is less than 1% on average, as they typically have few rows (70 on

average) with 800 or more activations in 64ms that incur swaps.

In comparison, Blockhammer [37], the only other aggressor-based

mitigation, which delays activations for potential aggressor rows,

introduces severe denial of service that can frequently stall the

application for tens of microseconds as we discuss in Section 8. On

the other hand, prior victim-based mitigation [11, 15, 20, 25] are

vulnerable to Half-Double and similar future attacks, unlike our

design that provides principled mitigation.
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Overall, our paper makes the following contributions:

(1) We propose Randomized Row-Swap (RRS), a novel aggressor-

focused mitigating action that breaks the spatial connection

between aggressor and victim rows, providing strong secu-

rity against complex Row Hammer attacks.

(2) We design RRS with the state-of-the-art tracking mechanism,

and do security analysis to determine the thresholds. RRS

incurs negligible performance and power overheads.

(3) To enable our design to operate at a low RowHammer thresh-

old of 4.8K, we also develop scalable hardware structures

that can hold thousands of entries while meeting the latency

and eviction requirements of our design.

2 BACKGROUND & MOTIVATION

2.1 Threat Model

We assume an unprivileged attacker that can run code natively on

the system. We assume the system has a typical modern Operating

System (OS) with virtual memory and page tables providing process

isolation. But the system uses DRAM main memory hardware that

is vulnerable to bit-�ips due to Row Hammer (RH) phenomenon.

The attacker can run process(es) under user privilege and exploit

RH to �ip bits in the page-table and achieve privilege escalation

or simply �ip bits in another program’s data to corrupt it. We

generically assume an untargeted attack, where the attack succeeds

if it causes a bit-�ip in any DRAM location (which is harder to

defend compared to targeted attacks). We assume the RH bit-�ip

can occur at any unspeci�ed victim location when a row incurs

more activations than the Row Hammer Threshold ()'� ) within

a refresh interval of 64ms. We use a )'� value of 4.8K as it is the

lowest known value for any attack pattern (single-sided, double-

sided, or Half-Double attack). Lastly, we assume the attacker does

not have physical access to the system and cannot probe the DRAM

or the DRAM bus to arbitrarily identify the mapping of addresses

to DRAM physical rows.

2.2 DRAM Organization and Timing Parameters

DRAM modules consist of multiple banks, which can be operated

in parallel and share a common data bus. Internally, the banks are

organized as a two-dimensional array of rows and columns. To

access data from DRAM, a row must be activated using the ACT

command, which brings the data into a row bu�er for the bank. If

the memory controller needs to access data in another row of the

same bank, it must �rst clear the row-bu�er using the precharge

command, followed by activation of the new row. DRAM cells leak

charge and require periodic refresh operations to maintain data

integrity. Memory systems typically use a refresh period of 64ms.

An important DRAM timing parameter is C'⇠ (Row Cycle Time),

which indicates the time between consecutive activations in a

given bank. The C'⇠ for DDR4 systems is approximately 45ns,

which means a bank can encounter up to 1.36 million activations

(�⇠)<0G ) in the refresh window of 64ms if we discount the time

spent in refresh.

2.3 Row Hammer and Security Implications

Row Hammer (RH) is a failure mode that occurs when a row under-

goes a large number of activations, which cause bit-�ips in nearby

rows due to charge leakage. The frequently activated row is referred

to as the aggressor row, and the neighboring rows (candidate for

bit-�ips) are referred to as the victim rows. Row Hammer Threshold

()'� ) denotes the number of activations required on the aggressor

row to cause bit-�ips in the victim rows. Table 1 shows the )'�
for di�erent DRAM generations over the last 7 years. As a given

standard can span multiple technology nodes, we use old and new

to distinguish di�erent versions. When the RH was �rst character-

ized in 2014, )'� was 139K, whereas it has reduced by an order of

magnitude to 4.8K [16] – 9K [12] in 2020.

Table 1: Row Hammer Threshold Over Time

DRAM Generation RH-Threshold

DDR3 (old) 139K [17]

DDR3 (new) 22.4K [16]

DDR4 (old) 17.5K [16]

DDR4 (new) 10K [16]

LPDDR4 (old) 16.8K [16]

LPDDR4 (new) 4.8K [16] - 9K [12]

Bit-�ips caused by RH are a severe security problem. RH gives

the attacker a powerful weapon to potentially �ip any arbitrary bit

in the memory system, and the attacker can use it to �ip bits in

Page-Tables and cause privilege escalation [8, 11, 13, 29], or use the

data-dependent nature of RH to read con�dential data [19].

2.4 Proposals for Mitigating Row Hammer
Mitigating Row Hammer is an active area of research in both the

hardware and the software community (we discuss related work

in detail in Section 8). In this paper, we focus on hardware-based

mitigation. Such mitigations can be classi�ed as global mitigation

or precise mitigation.

Global-mitigation [21] is performed by increasing the refresh

rate of the entire memory to avoid RH. Unfortunately, this is not

a viable method for tolerating RH at thresholds below 30K, as we

would need to refresh the memory in less than 2.8 ms (which is the

minimum time it takes to refresh the memory even if the memory

was doing only refresh 100% of the time).

Precise-mitigation [11, 15, 15, 17, 20, 25] consists of: (1) a tracking

mechanism that identi�es the rows that receive frequent activations,

(2) amitigation policy, which is invoked when the activation counts

for an aggressor row reaches a particular threshold. The tracking

policy is based on the )'� , and there are various probabilistic or

tracking schemes to identify which rows must be deemed as aggres-

sor rows. However, the mitigation policy typically used in precise

method is to refresh the immediate neighbors of the aggressor row.

We call such mitigation as victim-focused mitigation.

Victim-focused mitigation requires identifying the location of

the victim row for a given aggressor row. Unfortunately, DRAM

chips often use proprietary mapping, and this mapping may not

be available within the memory controller. Furthermore, victim-

focused mitigation relies on the assumption that the adversary

cannot cause bit-�ips beyond the immediate neighbors.
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2.5 Defeating Victim-Focused Mitigation

RHmitigation techniques are implicitly designed with particular as-

sumptions around the attack patterns and Blast Radius (the distance

of the victim rows from the aggressor) [22]. A solution developed

for a particular attack pattern may become vulnerable when the

attacker employs a more complex pattern that can increase the

blast radius. This mode of vulnerability poses a continuing risk for

current and future solutions that rely on victim-focused mitigation.

Recent work from Google, Half-Double [12], discloses an attack

pattern that targets victim rows at a distance-of-two away from the

aggressor rows. Such an attack pattern, shown in Figure 1 (c), can

cause bit-�ips even in the presence of victim-focused mitigation

techniques. For example, Half-Double is able to cause more than

a hundred bit-�ips in LPDDR4 modules at a distance of 2 away

from the aggressor rows. The key insight in Half-Double was to

use the existing RH mitigation itself as a source of activations

for the immediate neighbor aiding the attacker activations, such

that bit �ips are injected at a distance 2 away from the original

aggressor row. As DRAM cells scale, it is reasonable to assume

that an adversary can target victim rows even farther away from

aggressor rows. Therefore, relying on victim-focused mitigation

remains an unsafe option for RH mitigation.

2.6 Goal: Enable Aggressor-Focused Mitigation
All existing RH mitigation retains the spatial ordering between

the aggressor row and the victim rows, thus giving the attacker a

large time window to orchestrate complex pattern. The insight in

our work is to reduce the time that a given aggressor row spends in

a neighborhood, thereby breaking the spatial correlation between

the aggressor and the victim. Such aggressor-focused mitigation can

avoid the security risks emanating from complex access patterns.

We develop a simple and practical aggressor-focused mitigation

that perform row swap between the aggressor row and another

randomly selected row within the same bank. We discuss our ex-

perimental methodology before presenting our solution.

3 EVALUATION METHODOLOGY

Simulation Framework. We use USIMM [7], a detailed mem-

ory system simulator, which models the DDR protocol, refresh,

and scheduling policies, and was used in the Memory Scheduling

Championship [1]. We modi�ed USIMM to enforce the DDR4 pro-

tocol. We implement the HRT and RIT in RRS within the memory

controller. We report the performance and related metrics from

USIMM, the DRAM power based on USIMM’s power models, and

SRAM power from Cacti 6.0 [24] with 32 nm technology.

Our memory controller in USIMM uses a First-Come-First-Serve

(FCFS) scheduling policy. Table 2 shows the con�guration for our

baseline system. We use a DRAM con�guration with 16 banks per

rank and 1 rank per channel (similar to prior works [25, 37]) and 2

channels. Each bank has 128K rows of 8KB each and 1.36 million

activations possible per bank in 64ms.

Workloads and Figure-of-Merit.Weevaluate our design across

SPEC2006 [9], SPEC2017 [33], GAP [26], BIOBENCH [2], PAR-

SEC [4] andCOMMERCIAL [7] benchmarks. The SPEC2006, SPEC2017,

andGAP benchmarks traces are extracted using Intel Pintool for rep-

resentative regions of execution, while COMMERCIAL, BIOBENCH,

Table 2: Baseline System Con�guration

Cores (OoO) 8

Processor clock speed 3.2GHz

ROB size 192

Fetch and Retire width 4

Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory size 32 GB – DDR4

Memory bus speed 1.6 GHz (3.2GHz DDR)

T'⇠⇡ -T'% -T⇠�( 14-14-14 ns

T'⇠ , T'�⇠ , T'⇢�� 45ns, 350 ns, 7.8`s

Banks x Ranks x Channels 16 x 1 x 2

Rows per bank 128K

Size of row 8KB

and PARSEC benchmark traces are used from the USIMM distribu-

tion. We executed each benchmark for 1 Billion instructions per

core. We also create 6 mixed workloads by combining randomly

selected benchmarks. We run the workloads in rate mode and con-

tinue executing these benchmarks until all cores complete 1 billion

instructions each. For brevity, we show detailed results only for

workloads that encounter at least one row with 800+ activations

within a 64ms timewindow and report averages for all 78 workloads.

Table 3 shows the memory footprint, Misses Per 1000 Instructions

(MPKI), and the average number of rows that encounter > 800 row

activations (ACT-800+) within 64ms window.

Table 3: Workloads Characteristics (with Rows ACT-800+)

Workload Footprint (GB) MPKI Rows ACT-800+

hmmer 0.01 0.84 1675

bzip2 2.41 5.57 1150

h264 0.05 0.52 1136

calculix 0.16 1.12 932

gcc 0.09 4.42 818

zeusmp 0.55 2.00 405

astar 0.04 1.04 352

sphinx 0.13 12.90 242

mummer 2.17 19.13 192

ferret 0.79 5.67 132

gobmk 0.2 1.17 79

blender_17 0.24 1.53 53

freq 0.59 2.89 44

stream 0.63 3.48 41

gcc_17 0.36 0.55 38

swapt 0.76 3.52 37

black 0.55 3.08 37

comm1 1.55 5.93 19

xz_17 0.64 5.12 12

comm2 3.37 6.14 8

omnetpp_17 1.55 9.81 7

�uid 0.99 2.70 7

omnetpp 1.1 17.24 5

face 1.1 7.18 3

mcf 7.71 107.81 2

gromacs 0.06 0.58 1

comm5 0.67 1.48 1

comm3 1.77 2.84 1
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4 RANDOMIZED ROW-SWAP

We propose Randomized Row-Swap (RRS), an aggressor-focused

mitigating action that breaks the spatial correlation between the

aggressor and the victim. In this section, we provide an overview

of RRS, explain the structures required for RRS, and present some

key results for the number of rows swapped and the slowdown.

We perform security analysis to determine the parameters for our

design in Section 5.

4.1 Overview of RRS

Figure 2 shows the overview of RRS. The two main structures for

RRS are the Hot-Row Tracker (HRT) and the Row-Indirection Table

(RIT). The HRT keeps track of rows that receive frequent activation

and identi�es rows that have received more than a given number

of activations. These rows are candidates for undergoing row-swap.

The RIT keeps track of the rows that have undergone swap and

their destination locations. Each access �rst checks the RIT to see if

it should be sent to the original location or the remapped location.

Memory 

Access

Hot-Row

Tracker (HRT)

DRAM Bank

Row Indirection 

Table (RIT)1

1

5

3
Absent

 Present 2

Swap = Yes4

Swap = Yes5

Figure 2: Overview of the Randomized Row Swap (RRS). The

Row Indirection Table (RIT) is checked to determine if the

access should go to original or remapped location. The Hot-

Row Tracker (HRT) identi�es rows that must undergo swap.

Figure 2 also shows the �ow of events for RRS when a memory

access occurs. 1 Each memory access indexes the RIT and the HRT

in parallel. 2 If the request is present in the RIT, then it is redirected

into the swapped location. 3 If the request is absent in the RIT,

then it is directed into its original location. 4 The HRT could deem

the request to be a potential aggressor and recommend swapping

the requested row. 5 In such an event, the RIT swaps the original

address of the memory access with a randomly chosen destination

from the same bank (while avoiding the random selection of rows

that are already being tracked by the RIT and the HRT).

We de�ne the refresh window of 64ms to be an Epoch. The HRT

is reset at the end of every epoch to ensure that row accesses only

within the current epoch are used for determining the eligibility for

swaps. We do not do a bulk reset for the RIT as this would cause

a torrent of un-swap operations for all the RIT entries. Instead,

we let the RIT drain out lazily by replacing entries installed in a

previous epoch (currently invalid) as and when new entries are

inserted (entries installed in the current epoch are not evicted).

A key parameter for RRS is the threshold ()''( ) number of ac-

tivations allowed for a given row before it becomes eligible. This

threshold must be kept lower than the Row-Hammer threshold to

ensure security (more details in Section 5). This threshold deter-

mines the number of entries in the HRT and the maximum rate at

which the rows can undergo swap, which determines the number of

entries in the RIT. In our paper, we target a Row-Hammer threshold

of 4.8K and our analysis (in Section 5) shows that )''( of 800 is

su�cient for security.

In the next few sections, we describe the design of the HRT and

RIT, the row-swap operations and its impact on performance.

4.2 Hot-Row Tracker (HRT)

The HRT is responsible for identifying rows that have activation

counts equal to (or multiple of) ()''( ). We note that RRS is a mit-

igating action and not a speci�c tracking technique, therefore it

can be implemented with any tracking mechanism.1 Without loss

of generality, we implement HRT with the state-of-the-art Misra-

Gries Tracker (proposed in Graphene [25]) as it is guaranteed to

track all rows with activation counts greater than )''( using just

⇢ =
�⇠)<0G

)''(
entries, where �⇠)<0G is the maximum number of

activations within the 64ms window.

Figure 3 describes the operation of a 3-entry Misra-Gries Tracker

(tracker). Each entry contains row addresses and estimated access

count. When Row-A arrives, as it is present in the tracker, the

access count is incremented from 6 to 7. Next, when Row-B arrives,

as it is not present in the tracker, the minimum value of all the

access counters is compared to the spill-counter. As the minimum

access counter value is 3 and the spill counter value is 2, only the

spill-counter is incremented. Thereafter, when Row-C arrives, as

it is also not present in the tracker, the minimum value of all the

access counters is compared to the spill-counter. As the minimum

access counter value is equal to the spill-counter, the entry with

minimum access counters (Row-X) is replaced with Row-C and its

access count is incremented to 4. For more detailed operation and

bounds we refer the reader to [25].
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Figure 3: Operation of Misra-Gries Tracker with 3-entries. If

the requested address is present, increment the count. Else,

increment the spill-counter (if no ties for count and spill-

counter) or install the address (with count=spill-counter+1).

The tracker can identify all rows that exceed )''( within the

current epoch and issue a swap for a row whenever the access

count associated with the row crosses an integer multiple of )''( .

So an attacker could attempt to cause a large number of random

1In fact, one could have a probabilistic version of RRS, similar to PARA [17], where the
row-swap is triggered with probability ? on each row activation. Unfortunately, the
rate of swap with such state-less methods is much higher than with a tracker, making
them unsuitable for low Row-Hammer Threshold (such as 4K). These designs would be
viable if the Row-Hammer Threshold were more than an order of magnitude higher.
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Figure 4: An overview of the row-swap for Row-X and Row-Y using the two Swap-Bu�ers. The RIT is updated at the end.

swaps to ensure some physical rows get multiple swaps and cross

)'� activations. Our analysis in Section 5 studies such attacks and

determines )''( = 800 is su�cient for a )'� of 4.8K.

4.3 Row Indirection Table (RIT)

When the access count for a row in the HRT crosses (an integer

multiple) of )''( , our design initiates a row-swap to prevent fur-

ther damage. For rows that undergo swap, any future access must

be routed to the new destination. This is facilitated by the Row

Indirection Table (RIT). When two rows (say Row-X and Row-Y)

get swapped, the tuple hX,Yi is stored in the table. To enable quick

lookups, we store two entries: one indexed by X and provides Y,

and the other indexed by Y and provides X, as shown in Figure 4(d).

We do not reset the RIT at the end of the epoch as this can cause

a torrent of row-swaps corresponding to all the valid entries in the

RIT. Therefore, we use lazy eviction out of the RIT as other entries

get installed. When an entry is evicted out of the RIT the dual entry

corresponding to the same tuple is also evicted. Upon eviction from

RIT, the rows are un-swapped. The RIT must ensure that entries

that are installed in an epoch are retained in the RIT at least until

the end of the Epoch. To achieve this, we add a lock-bit with each

RIT entry that indicates that the entry must not be selected for

eviction. When an entry is installed the lock-bit of that entry is set.

At the end of the epoch, the lock-bit of all entries are reset, so that

these entries are eligible for eviction. The RIT is sized with enough

capacity to install the maximum number of row-swaps that can

occur in an epoch (as dictated by )''( ).

4.4 Support for Row Swapping

When a row is identi�ed to undergo swap, the destination row

for the swap operation is picked randomly from all the rows in

the bank. We exclude rows tracked by the HRT (as these rows

may be swapped soon) and the RIT (as these rows are already

under swap) from being the random destination. We observe that a

typical memory bank has a large number of rows (128K rows in our

16GB DIMM), but only a few rows can receive su�cient accesses

to be eligible for swap (a maximum of 1700 rows for )''(=800 in

a window of 64ms). Thus, more than 98% of the rows are suitable

(rows with less than)''( activations) to be chosen as random swap

destinations; if our �rst random choice is present in the RIT or

HRT another randomized location is re-generated and checked.

The probability of more than 1 such re-generation is < 1%.

The random swap destinations are generated using a hardware

pseudo-random-number-generator (PRNG). This is accomplished

by a low-latency cipher (64-bit PRINCE cipher has< 2ns latency [28])

in CTR-mode with a 64-bit cycle counter as input. The output of

the cipher provides cryptographically-secure random values at neg-

ligible overheads.

To facilitate row-swap, we equip each channel with two SRAM-

based Swap-Bu�ers, each having the same as the DRAM row (8KB

in our study). Figure 4 shows the row-swap for Row- X with Row-

Y . To perform row-swap, the content of Row- X is streamed and

stored into Swap-Bu�er-1 (Figure 4(a)), then the content of Row-

Y is streamed and stored into Swap-Bu�er-2 (Figure 4(b)), then

the content of Swap-Bu�er-1 is streamed and written to Row- Y

(Figure 4(c)), and �nally the content of Swap-Bu�er-2 is streamed

and written to Row- X (Figure 4(d)). The RIT is updated with hX,Yi.

To perform row-swap e�ciently, we leverage streaming accesses

from DRAM, whereby accesses to the same row can be serviced

quickly (one 64 byte line every 4 DRAM bus cycles, after the �rst

line) once the row has been activated. To transfer the 8KB row (128

lines), we would need 512 bus cycles (at 1.6GHz bus frequency for

our DDR4-3200 memory) after the activation time (45 ns ACT-to-

ACT delay). For our system, it takes approximately 365 nanosec-

onds to transfer the row between DRAM and the Swap-Bu�er. As

a row-swap requires four transfers, it takes approximately 1.46

microseconds to do a row-swap. As the bus is shared by all banks in

the channel, no memory request for the given channel can be ser-

viced during the row transfer operation (fortunately, the frequency

of row-swap is negligibly small for benign workloads).

An install of a new tuple in the RIT may evict a tuple and trigger

an un-swap of the rows in that tuple (the operations of row-unswap

is identical to row-swap). Thus, marking a row for swap may trig-

ger two back-to-back swap operations and incur a total latency

overhead of approximately 2.9 microseconds (our design provides

two registers to store the evictions out of RIT). An adversary can

also do enough activations for a swapped-row in RIT to trigger

a re-swap operation, in which the existing tuple hX,Yi in RIT get

swapped with two di�erent rows (hX,Ai and hY,Bi), requiring a

total latency overhead of 2.9 microseconds. Finally, in an extreme

case, the re-swap operation might also require evicting a tuple,

that was installed in the RIT in the previous 64ms: this can incur a

worst-case latency overhead of 4.4 microseconds. This latency can

be avoided by periodically draining some of the RIT entries.
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4.5 Threshold and Impact on Structure Sizes

The threshold )''( determines the size of the structures and the

maximum rate at which row-swap can be performed. We need

)''(=800 for a Row-Hammer threshold of 4.8K to guarantee suf-

�cient security, as we show in Section 5. To support this thresh-

old, the Misra-Gries tracker must contain 1700 entries (�⇠)<0G =

1.36million activations). A row can be selected for row-swap by the

tracker at most once every 800 activations, therefore the RIT would

observe at most 1700 swap requests and at most 1700 new RIT-tuple

installs. If a swap is requested for a row which was already swapped

in the current epoch, such re-swaps require two RIT-tuples (one

for swapping the row, and one for keeping its previous location

also swapped with a new destination). So, the maximum number

of RIT-tuples that can be used in an epoch is 3400 and we size the

RIT with a capacity of 3400 tuples. We discuss scalable hardware

implementations for the Misra-Gries tracker and RIT in Section 6.

For this section, we assume scalable implementations exist and

analyze the number of row-swaps and slowdown.

4.6 Results: Number of Row-Swaps in 64ms

A typical row-swap (including the un-swap due to RIT evictions)

incurs a latency of 2.9 microseconds. Over a window of 64ms, there

are 22K row-swaps possible per channel. Figure 5 shows the aver-

age number of row-swaps incurred for each workload over 64ms

with RRS. Note that y-axis is log-scale. The average number of

row-swaps across all 78 workloads is 68 (or 34 per channel), indi-

cating only about 0.1ms of the 64ms is spent on row-swap. Only

hmmer and bzip2 have close to 1000 row-swaps as these workloads

continuously access a working-set slightly larger than the last-level

cache. Workloads with large footprint (mcf and GAP) have less than

5 row-swaps as their accesses are spread over many rows. Thus, the

workloads with large footprint size may not necessarily correlate

with higher number of swaps, as it would depend on how focused

the activations are on individual rows.

4.7 Results: Performance Impact of RRS

RRS impacts performance in two ways: (1) the latency of RIT is in-

curred on each memory access (2) the memory channel can be busy

doing row-swap and is unavailable for service. We add a 4-cycle

latency for RIT access. Figure 6 shows the normalized performance

of RRS. The average slowdown (measured over all 78 workloads)

is 0.4%. The slowdown depends on both the number of row-swaps

(Figure 5) and the MPKI (Table 3). For example, both hmmer and

bzip2 have similar number of row swaps, however, bzip2 has an

MPKI of 5.6 whereas hmmer as an MPKI of 0.84, therefore bzip2 has

a much higher overhead than hmmer as it is more memory inten-

sive. Among the workloads with the highest slowdown of around

5%, bzip2 and gcc have high swap counts, while xz-17 has a rela-

tively high MPKI. Overall, as the number of swaps is low in benign

workloads, RRS has a low performance impact.
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5 SECURITY ANALYSIS

In this section, we analyze the security of our design. We �rst

discuss the assumptions of our solution and the invariant properties

of our defense. We then describe an optimal strategy an adversary

might use to launch a Rowhammer attack against our defense and

�nally determine the design parameters (RRS Swap Threshold or

)''( ) required to mitigate such attacks.

5.1 Assumptions

The only assumption for our defense is the following:

A successful row hammer attack (using any attack pattern) re-

quires activating at least one row more than )'� (4.8K) times

within a refresh period.

We make no assumptions regarding the attack pattern used or

the placement of the attacker rows with respect to victim rows to

keep our defense robust to current and new attacks. By aiming to

prevent an attacker from reaching )'� (4.8K) activations on any

row, our defense encompasses all current attacks, including single-

sided and double-sided rowhammer (which require at least 4.8K

activations per row [16]), and even the recent half-double attack

(which requires at least 296K activations on one row [12]).

5.2 Invariants of our Design

For simplicity, in this section, we will denote the threshold after

which a swap occurs in RRS ()''( ) simply by ) . Our RRS design

with a swap threshold of ) has the following invariants:

Invariant 1: The Misra-Gries tracker is guaranteed to detect any

row before it crosses a threshold of) activations within a tracking

window, and also before it crosses a multiple of the threshold, i.e.

= ⇤) activations within the window.

Invariant 2: Each time a row reaches a threshold number of row

activations () or = ⇤) ) within a tracking window, it is guaranteed

to be swapped with a randomly selected row in the bank, with

less than ) activations within the same tracking window.

The proof of Invariant 1 directly follows from the guarantees of

the Misra-Gries (MG) algorithm (proved in Graphene [25]), that

as long as the number of counters tracking the activations (# )

satisfy the inequality # >, /) � 1, where, is the total number

of row activations possible in a tracking window, all rows with

� ) activations will have a counter value � ) . Similarly, all rows

with � = ⇤) activations within the tracking window would have a

counter value � = ⇤) . Thus, rows which will cross an activation

threshold of ) (or a multiple of ) ) within the tracking window are

a subset of rows whose counter values in the MG table reach ) (or

a multiple of ) ) and can be preemptively identi�ed when the MG

counter value reaches the threshold ) .

The proof of Invariant 2 is based on the row-swapping guaran-

tees of RRS.Whenever theMisra-Gries tracker �nds a row’s counter

equals ) or = ⇤) , implying that the row’s activation count could

cross the same threshold (from Invariant 1), the tracker signals RRS

to initiate a swap of this row with a randomly selected row. If the se-

lected row is already present in the RIT, indicating that it is already

swapped, another row is randomly chosen till an unswapped row is

selected. This guarantees that the destination of the swap has less

than ) activations in the current tracking window, as otherwise it

would already be swapped and be in the RIT.

Refresh Refresh

T  ACT T  ACT

Randomized
Swap

Random 
Guess

…

Random 
Guess

Randomized
Swap

Figure 7: Attacker strategy to maximize the number of row

activations (ACT) within a refresh period for a row. Each

time a attacker row reaches a multiple of ) ACTs in a track-

ing window, a randomized row swap occurs. This forces the

attacker to randomly choose another row repeatedly after

each ) activations, in the hope that it discovers a previously

swapped row, so that its activations can continue.

5.3 Row Hammer Prevention with RRS

The goal of a successful attack is to reach )'� activations on a

single row. However, Invariant 2 guarantees that an adversary can

only activate a row at most ) times (smaller than )'� ), before

it is swapped with a randomly selected row in the bank, which

has not been swapped in the current window. Thus, the physical

location accessible to the attacker after a swap always has less than

T activations in the current window: so it is not bene�cial to keep

attacking this row. Instead, it is bene�cial to attack the physical

row that already has) activations. But, the attacker does not know

which row now maps to that physical location after the swap.

So, the best possible strategy for the attacker is to randomly

choose a row address in the same bank, hoping that its current

physical location has already received more than ) activations in

the current window (its physical locationwas previously involved in

a swap), and activate it an additional) times. This attack strategy is

shown in Figure 7, where the attacker repeatedly chooses a random

row within the same bank, activates it ) times till it gets swapped,

then repeats this with another random row from the bank, for the

entire window of 64 ms. This attack has a reasonable chance of

activating physical rows that have already been swapped (similar

to birthday paradox), as the space of randomization is only within

128K rows. So, a physical row could receive several multiples of )

activations and may eventually cross )'� activations within 64ms.

5.3.1 Statistically Modelling Rowhammer A�acks on RRS. For se-

curity against Rowhammer attacks, we seek the probability that

any physical row receives )'� activations within a refresh win-

dow of 64ms. We assume that the RRS row swap threshold (T) is

chosen such that )'� is an integer multiple of T, i.e., )'� = : ⇤) .

To achieve � : ⇤) activations on any physical row within 64ms,

it must undergo at least : swaps. So for each step of the attack

shown in Figure 7, it is bene�cial for the attacker to make exactly

) activations (no more) to make it swap, and then focus the attack

on another random row within the same bank. Thus, the attack
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e�ectively picks a random row, causes it to swap, then repeats this

with another random row in the bank successively for the entire

refresh period. We model this attack behavior statistically.

Bucket and BallsModel:Wemodel this attack using the bucket

and balls model and obtain the probability of achieving at least :

swaps on any physical row within 64 ms (to cross : ⇤ ) or )'�
activations). Let � be the number of maximum activations possible

for any bank within a period of 64ms. For our study, A equals

1.36 million. With RRS, the bank can be busy doing row-swap for a

subset of the 64ms, so the bank is available for doing row activations

for only a fraction of the 64ms: we call this fraction for which the

bank is available for activations as the Duty Cycle (D). Thus, with

RRS, a bank can undergo � · ⇡ activations in 64ms. For an attack

focusing only on one bank, we estimate D to be 0.925 (the bank

is busy for 2.9 us every ) = 800 activations), and thus a total of

� ·⇡ = 1.26million activations are possible for a bank within 64ms.

We can represent each round of attack (T activations on a row)

as an event of throwing a ball randomly into # buckets, the number

of rows per bank (# = 128 ). The attacker will be able to throw

a total of ⌫ = � · ⇡/) such balls during the period of 64ms. We

calculate the probability of a row having : swaps in 64 ms as the

probability (?:,) ) of a bucket having : balls per bucket after ⌫ balls

are randomly thrown in # buckets, for a given ) .

Calculating Probabilities using Bernoulli Trials: ?:,) can

be calculated as the probability of : successes in a Bernoulli trial

over ⌫ trials, where each trial has a success probability of ? = 1/# .

From the probability distribution of Bernoulli trials, we calculate

the probability of a row having : swaps (?:,) ), as

?:,) =
⌫⇠: ⇤ ?: ⇤ (1 � ?) (⌫�:) (1)

The expected number of rows with : swaps in 64ms is, #: =

# ⇤ ?:,) . For cases where #: ⌧ 1, the expected number of attack

iterations (�)8C4A ) to obtain a single row with : swaps is,

�)8C4A = 1/(# ⇤ ?:,) ) (2)

Thus, the expected number of attack iterations (each iteration

spans a refresh window of 64ms) before a row crosses Row Ham-

mer threshold ()'� = : ⇤ ) ) activations leading to a successful

attack, is calculated by combining Equation (1) and Equation (2),

and using ⌫ = � · ⇡/ ) . We thus obtain the expected number of

attack iterations (�)8C4A ) for a successful attack as,

�)8C4A = 1/(# ⇤ ⌫⇠: ⇤ ?: ⇤ (1 � ?) (⌫ � :) ) (3)

Here, : can be replaced by : = )'� /) to parametrize it for

a particular Row Hammer threshold and the time required for a

successful attack is �)C8<4 = 64 ms ⇤�)8C4A .

5.3.2 Determining the RRS Threshold () ) to Mitigate Rowhammer.

Table 4 shows the number of attack iterations (�)8C4A ) for a suc-

cessful attack calculated using Equation (3) and the time required

(�)C8<4 ) based on 64 ms per attack iteration. We show the attack

time in Table 4 for di�erent values of ) for which : ⇤ ) = 4800

(our value for)'� ). As) (the threshold for a swap in RRS) reduces,

the time for a successful attack and the security of RRS design

increases as the mitigation (swap) gets invoked more frequently.

However, there is a security vs performance trade-o�, as a smaller

) would incur higher performance and storage overhead, due to

more frequent swaps and larger tracking structures. Hence, we

choose ) such that the system is protected for at least a year of

continuous attack: with ) = 800, the expected time for a successful

attack is 3.8 years. A lower swap threshold ) could also be used if

a higher level of security is desired or if the Rowhammer threshold

itself reduces in the future. Alternatively, a higher level of security

can also be obtained with the same ) , by co-designing this with

attack-detection2, which can be explored in future work.

Table 4: Number of Attack Iterations (�)8C4A ) and Attack Time

(�)C8<4 ) needed to cause )'� = 4800 activations on a row

RRS Threshold () ) Attack Iterations (�)8C4A ) Time (�)C8<4 )

960 (: = 5) 9.3 ⇥ 10
6 6.9 days

800 (: = 6) 1.9 ⇥ 10
9 3.8 years

685 (: = 7) 3.8 ⇥ 10
11 762 years

We also analyze an all-bank attack, where the adversary tries to

cause failures in all the 16 banks. While this theoretically provides

the adversary 16 times greater chance for success, the swaps caused

by attacking all the banks reduce the amount of time available for

each banks to do row activations. For this attack, the duty cycle

(D) equals 0.55, which means the actual time for successful attack

becomes even larger than the single-bank attack (for example, for

:=6, the attack time for the all-bank attack increases from 3.8 years

to 5.1 years). Therefore, we focus on the single-bank attack.

5.4 Security of Row Swap Structures

Security of Row-Indirection-Table: The security of our design

hinges on the rows swapped in the current tracking window remain-

ing swapped for the entirety of that window. The row indirection

table guarantees this by ensuring its entries are not victimized un-

til after the completion of the tracking window when they were

originally installed. Moreover, the attacker cannot over�ow the

row-indirection table to force a premature unswap operation for

swapped rows, as the table is su�ciently sized to accommodate the

maximum possible rows that may be swapped rows in a tracking

window (bounded by the number of entries in Misra-Gries tracker).

Latency Implications of RIT Lookups and Installs: The two

RIT operations in RRS are RIT lookups on a DRAM access and RIT

installs on a Row-Swap. The RIT lookup has a constant latency:

so it does not introduce any information leakage via any timing

variation. The Row-Swap may have a higher latency if the row to

be swapped is already present in the RIT. But this does not leak any

useful information to the adversary, as the destination of the row

after the swap is unknown. The mitigation of swapping a given

row with a random row occurs within the same bank. We ensure

that the row bu�er of the bank is closed after swap and no accesses

are allowed during swap. Thus, the attacker cannot deduce the

location of the destination-row (the attacker can only infer that a

swap occurred), thus ensuring no security impact to our design.
2A trivial mechanism to detect an attack on RRS is to count the number of swaps in
64 ms for each swapped row as a successful attack requires repetitive swaps in 64 ms
on one row. When an imminent attack on RRS is �agged, a preemptive refresh of the
entire DRAM can prevent the attack, thus providing higher security than RRS alone.
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6 ARCHITECTING SCALABLE STRUCTURES

For )''( of 800, we need the Misra-Gries tracker to have 1700 en-

tries and the RIT to store 3400 tuples (6800 entries). Unfortunately,

the prior design [25] for Misra-Gries tracker (targeted )'� of 25K)

uses Content Addressable Memory (CAM), which is not scalable be-

yond a few dozens of entries. Furthermore, RIT is a latency-critical

structure that is looked up on every memory access, so it requires

low lookup latency. Finally, to ensure security, both the tracker and

RIT cannot evict entries (due to con�ict misses) that are installed in

the current epoch, so we cannot use conventional set-associative

structures. In this section, we develop scalable hardware primitives

that have lookup latency similar to set-associative structures, while

still guaranteeing con�ict-free storage for a given number of items.

We �rst describe the generic structure and establish bounds, then

discuss implementation of RIT and Misra-Gries tracker.

6.1 Collision Avoidance Table

Our solution Collision Avoidance Table (CAT) is inspired from recent

work on practical fully associative cache, MIRAGE [28]. CAT com-

bines a set-associative structure and multiple randomizing hashes,

as shown in Figure 8. Let us say we want to store ⇠ items. CAT

has two tables ) 1 and ) 2, which are set-associative and indexed by

independent hashes �1 and �2 (constructed using a low latency

cipher with di�erent keys [28]). The tables have S sets and D de-

mand ways such that ⇡ = ⇠/2( . We over-provision CAT so that

each set has ⇢ extra ways, for a total of (⇡ + ⇢) ways per set. Given

su�cient over-provisioning, CAT installs always occur in invalid

entries, without needing to evict any entry from the same set [28].

Demand Ways Extra Ways

Sets

Table T1

Read Set → Check for Match

Demand Ways Extra Ways

Table T2

Read Set → Check for Match

Hash1 Hash2

Address

On a miss, 

install  in set with 

more invalid entries

Figure 8: Overview of Con�ict-Avoidance Table (CAT) o�er-

ing set-associative look-ups and con�ict-free storage.

To lookup CAT, the T1 and T2 are indexed with two independent

hash functions. If the entry is found in either set, a hit signal is pro-

vided, and any metadata associated with the entry can be updated.

Thus, look-ups are similar to set-associative tables.

To install an entry, we �rst lookup the set corresponding to the

address in both T1 and T2, and select the set that has the most num-

ber of invalid entries as the destination. Picking the lower loaded

set in this manner provides a balanced distribution of invalid entries

across sets; this ensures installs can continue to happen in invalid

entries, while avoiding con�icts with a high probability given su�-

cient over-provisioning of entries (see Section 4 of MIRAGE [28]

for a more rigorous analysis and an analytical model). If the install

would cause CAT capacity to exceed the target capacity of⇠ , then a

random entry from CAT (that can be evicted) is selected for eviction,

thus maintaining a capacity of at-most C entries. Next, we show

how many extra ways (over-provisioning) are needed to ensure the

con�ict-avoidance property.

6.2 Setting Bounds on Con�ict with CAT

We deem a con�ict in CAT when an install �nds that both sets have

zero invalid lines. We are interested in determining the number of

installs required to cause a con�ict in CAT. Let us assume that we

have 64 sets and the number of demand ways is 14. We add extra

1-6 ways to each set to handle con�icts. Figure 9 shows the number

of installs required to get a con�ict with CAT. We generate the data

for 1 - 4 extra ways using a Monte Carlo simulation of a buckets

and balls model of the CAT and the data for 5 and 6 extra ways

is based on the continued squaring behavior demonstrated in the

analytical model from MIRAGE (Equations 6 and 7) [28]. With 6

extra ways, we need 10
30 installs, and at a rate of 1 install per 10

microseconds, it would take CAT 10
18 years (more than the lifetime

of the universe) to encounter a con�ict. Thus, with 6-extra ways,

we claim that CAT is con�ict-free. Nonetheless, if ever a con�ict

occurs, CAT can rely on Cuckoo relocation to check if each of the

20 entries in both sets can be moved to their alternative set in the

other table, similar to MIRAGE-Lite [28].

Figure 9: Number of installs required to cause a con�ict in

CAT with 64-sets (numbers are similar for 256 sets).

6.3 Designing Scalable RIT with CAT

Our design needs RIT with 3400 tuples, or 6800 entries. This can be

done with CAT by having 2 tables, each with 256 sets and slightly

less than 14 demand ways. So with 20 total ways per set, we get 6

extra ways – enough for the con�ict-free property. Each entry has

the source and destination row-ids, valid bit, and lock bit. During

eviction, we only pick a valid entry for which lock-bit is 0. When

an RIT entry is evicted, we also evict the other pair of the tuple.

6.4 Designing Scalable Tracker with CAT

The Misra-Gries tracker with 1700 entries can be achieved with

CAT having 2 tables, with 64 sets and slightly less than 14 demand

ways, so with 20 ways per-set, we get the required 6 extra ways.

Each entry has a row-id and access counter. For the Misra-Gries

algorithm, we also need the ability to check if spill counter is equal

to the minimum access counter. To avoid fully associative search

for counter values, we append each set with (4C"8= counter, which

tracks the minimum value of the access counter in the set. On

access, install, and invalidation in a set, the SetMin is recomputed.

So, the spill-counter is �rst only checked with 64 SetMin counters,

and only then checked with the set where there is a match. These

accesses are performed in the shadow of a memory access as they

are not on the critical path.
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7 RESULTS AND ANALYSIS

7.1 Storage Analysis

RRS requires storage for the tracker, RIT and per-channel swap-

bu�ers. Table 5 shows the storage overhead of RRS. We assume a

17-bit rowid, with the set-associative structures (tracker and RIT)

storing the tag as the rowid without the set-index bits. In total, the

SRAM overhead of RRS is 42.9KB per bank and 686KB per rank.

Table 5: Storage Overhead Per Bank

Structure Entry-Size Entries Cost

RIT 28-bits (valid+lock+src+dest) 2x256x20 35KB

Tracker 22-bits (valid+row+counter) 2x64x20 6.9KB

Swap-Bu�ers 16KB (amortized over 16 banks) 1/16 1KB

Total 42.9KB

7.2 Power Analysis

RRS incurs a power overhead due to the extra DRAM accesses for

the row-swap operations and for the additional SRAM structures

(RIT and tracker). Table 6 shows the extra power consumed in

RRS per rank. We measure the DRAM power from USIMM [7])

and observe that on average, RRS has a negligible DRAM power

overhead of 0.5%. It is proportional to the additional row-swap

operations performed: workloads with more frequent row swaps.

We also measure that the RRS SRAM structures consume 903mW

per rank in 32nm technology using Cacti 6.0 [24], however, this is

likely to reduce with smaller more modern technology nodes.

Table 6: Extra Power Consumption in RRS Per Rank

Type of Power Overhead Average

DRAM Power Overhead (Row-Swap) 0.5%

SRAM Power Overhead (RRS Structures) 903 mW

7.3 Performance Sensitivity to RH-Threshold

Figure 10 shows the performance of RRS as )'� is varied from

0.25⇥ to 4⇥ of our default threshold 4.8K. We adapt the parameters

of our design for each threshold to maintain security. On average,

we observe 4.5% slowdown at)'� of 1.2K (0.25⇥), 2.2% slowdown at

)'� of 2.4K (0.5⇥), 0.4% slowdown at )'� of 4.8K (1⇥), and almost

no slowdown at 9.6K (2⇥) and 19.2K (4⇥).
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Figure 10: Performance of RRS across RH-Threshold.

8 RELATED WORK

In this section, we describe the closely related works, and compare

and contrast when applicable.

8.1 Aggressor Focused Mitigation

To the best of our knowledge, the only other example of aggressor-

focused mitigation, similar to RRS, is BlockHammer [37].

BlockHammer (BH) identi�es aggressor rows using counting

bloom �lters and uses a delay-based mitigation for such rows. For

rows that map to bloom �lter entries with counts greater than a

given threshold (e.g 512 or 1K), i.e., the blacklisting threshold, ac-

tivations are delayed such that that the total activations for such

rows never crosses )'� in a refresh period. Similar to RRS, this so-

lution has the bene�t of mitigating Rowhammer without requiring

knowledge of the DRAM-row mappings or adding any new DRAM

commands. Unfortunately, the inserted delays in Blockhammer

can be quite large at lower values of )'� . For example at )'� of

4.8K, we would need to delay memory requests for approximately

20 microseconds per activation. Such large delays can make the

system susceptible to denial-of-service concerns.

Performance. Figure 11 shows the performance S-curve across

78 workloads for RRS and BlockHammer, for a)'� of 4.8K. We an-

alyze BlockHammer with two values for the blacklisting threshold,

512 and 1K, as recommended in [37] for low )'� . BlockHammer

has signi�cant slowdowns for several applications, with up to a

21.7% slowdown in the worst-case (10-25 workloads have more

than 5% slowdown); the average slowdown is close to 2%. This

is because hot rows (with frequent activations), and other rows

mapping to the same bloom �lter entry which get blacklisted, have

their activations delayed for the entire refresh window of 64 mil-

liseconds. In comparison, RRS has more robust performance with a

worst-case slowdown of 7.6% (with only 3 workloads over 5%) and

an average of 0.4%, as the mitigation overheads are only incurred

for the duration of a row-swap (few microseconds).

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 10 20 30 40 50 60 70 80

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Benchmarks

Randomized Row-Swap
BlockHammer (Blacklist Point = 512)
BlockHammer (Blacklist Point = 1K)

Figure 11: Performance S-Curve for RRS and Block-Hammer

(with a blacklist point of 512 and 1K) over all 78 workloads.

Denial of Service. As BlockHammer could delay every sin-

gle activation for rows mapping to blacklisted bloom �lter entries,

it is susceptible to severe denial of service. For instance, attacks

that continuously activate few rows can make BlockHammer incur

slowdown of close to 200x (20 microsecond delay for DRAM access

that takes 100ns). Moreover, with an attack that hammers DRAM

rows using OS activity, such as in PTHammer [40], the delayed
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OS memory accesses could cause cascaded delays in all OS opera-

tions, leading to system-wide denial of service. In comparison, RRS

incurs a worst-case latency overhead of row-swaps once per 800

activations (800 ⇥ 45ns = 36 microseconds) to a bank; so, it has a

much lower worst-case slowdown (of approximately 2x). The RRS

slowdown under attack can be reduced even further with DRAM-

based techniques for faster copying of rows, such as RowClone [30],

which could considerably reduce the row-swap latency.

Storage and Scalability. BlockHammer requires a storage over-

head of 100-200KB per rank for SRAMandCAM structures for a)'�
of 4.8K, which is lower than RRS which requires 690KB of SRAM

per rank. This is in part because RRS uses scalable con�ict-avoiding

designs for its tables. However, BlockHammer faces practical chal-

lenges in scalability: as )'� scales to 1K, the delay for blacklisted

rows even in benign applications can reach almost 100 microsec-

onds, close to SSD latencies, making it impractical. Additionally,

BlockHammer requires changes to memory scheduling policies

and operating system to limit performance impact under attack

scenarios Whereas, RRS does not su�er from such performance

problems, even at lower thresholds, as shown in Section 7.3.

8.2 Victim-Focused Mitigation

Victim-focused mitigation (VFM) restores the charge of victim cells

in rows neighboring aggressor rows by issuing targeted refresh.

Prior hardware-based proposals for row-hammer mitigation di�er

primarily on when the victim refresh is issued, and this is done

either probabilistically (PRA [15], PARA [17], MRLOC [39], Pro-

HIT [32]) or counting accesses to speci�c rows (CRA [15], CBT [31],

TWiCe [20], Graphene [25]). Table 7 compared RRS with VFM,

where VFM is implemented with idealized tracking (100% accuracy

and no overhead). Both RRS and VFM incur negligible slowdown.

While VFM can mitigate classic row-hammer attacks that target

immediate neighbors, it fails with complex patterns such as Half-

Double [12], that causes bit-�ips in rows farther away. RRS is robust

to both classic patterns and complex patterns. Furthermore, unlike

VFM, RRS does not require any knowledge of internal DRAM map-

pings to identify speci�c victim rows.

Table 7: Comparison of RRS with Victim-Focused Mitigation

Attribute Victim-Focused RRS

Slowdown <0.1% 0.4%

Mitigates Classic Rowhammer
3 3

(Neighboring Row Bit-Flips)

Mitigates Complex Patterns
7 3

(Far Aggressors of Half-Double [12])

Works Without Knowing
7 3

DRAM Mapping

8.3 ECC-Based Defenses

If the number of bit-�ips due to RH are small, then they can po-

tentially be corrected by ECC memories. However, a recent work,

ECCploit [8], shows that an attacker can even overcome ECC pro-

tection to still cause RH. Integrity protection, as provided by Syn-

ergy [27] and a contemporary work, SafeGuard [10], can detect

RH bit-�ips. However, such schemes cannot correct the arbitrary

bit-�ips possible with RH, thus potentially leading to data loss.

8.4 Software-Only Defenses

Unlike hardware-based solutions that can only be deployed in

future generations, software-based defenses can practically pre-

vent Rowhammer attacks on existing systems. However, such so-

lutions [3, 5, 18, 35] often require knowledge of DRAM properties

that may be proprietary or not easily available to software.

For instance, ANVIL [3] uses CPU performance counters to de-

tect RH attacks and issues refresh to the immediate victim rows.

GuardION [35] inserts a guard row between data of di�erent se-

curity domains. ZebRAM [18] and RIP-RH [5] provide isolation

by keeping the kernel space and user space(s) in isolated parts

of DRAM. However, all such solutions require knowledge of the

DRAM-internal row mappings which may not be easily available

to software. Other solutions like CATT [6] that perform testing of

cells and blacklists pages with cells vulnerable to RH, can lead to

considerable loss of memory capacity at lower RH thresholds.

Software-based solutions may also be unable to fully mitigate the

root cause of the Rowhammer vulnerability in DRAM. For example,

a single guard-row in GuardION or refresh of immediate neighbors

in ANVIL can be broken with Half-Double attack [12]. Despite

isolation between user and kernel spaces in ZebRAM and RIP-RH,

bit-�ips in kernel memory from user-space code continues to be

possible with attacks like PTHammer [40], which hammer kernel

memory with frequent page-table walks initiated from user space.

Monotonic pointers [36] prevents privilege escalation exploits

using Rowhammer targeting page-tables – a typical class of Rowham-

mer attacks on vulnerable systems. It provides this protection by

mapping page-tables to DRAM cells where bit �ips only occur from

1 ! 0 and stores them only in higher physical address ranges. This

prevents any page-table entries from becoming self-referential after

bit-�ips, which is a key requirement for privilege escalation exploits

attacking page-tables, thus preventing such exploits. However, this

defense is unable to prevent non-page-table privilege escalation

exploits like those exploiting op-code tampering in sensitive bina-

ries with Rowhammer [13], or bit-�ips in other user programs that

a�ect correctness [38] and cause con�dentiality breaches [19]. In

contrast, RRS mitigates the root-cause of Rowhammer attacks, i.e.,

charge leakage due to inter-cell interference, by breaking the spatial

co-relation between aggressor and victim rows, thus preventing all

current attacks (including Half-Double) and related exploits.

9 CONCLUSION

Row-Hammer (RH) bit-�ips continue to be a serious security threat

leading to privilege escalation and break of con�dentiality. While

classic RH patterns a�ected only nearby rows, prior works built

defenses using victim-focused mitigation that refreshes immediate

neighbor rows. However, the RH threshold has reduced signi�-

cantly in recent years, and attackers are developing complex access

patterns that can cause �ips in many rows beyond immediate neigh-

bors. In this paper, we design an e�ective RH defense by breaking

the spatial connection between the aggressor and victim rows. Our

proposal of Randomized Row-Swap (RRS) swaps the aggressor row

with a random row in memory, thereby severely limiting the time

the attacker has to mount an attack on the same neighborhood.

We show that RRS incurs negligible slowdown (0.4%) and provides

strong security of several years even under continuous attack.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact presents the code and methodology to simulate Ran-

domized Row-Swap (RRS), our defense against Rowhammer attacks.

We provide the C code for the implementation of RRS which is en-

capsulated within the USIMM [7] memory system simulator. The

RRS structures and operations are implemented within the memory

controller module in our artifact. We provide scripts to compile our

simulator, and run the baseline and RRS for all the workloads we

studied in this paper. We also provide scripts to parse the results

and collate the performance results shown in Figure 6.

A.2 Artifact Check-List
• Algorithm: Implementation of RRS structures and operations in C.

• Program: Memory-access traces with information for non-memory

instructions (�ltered through an L1 and L2 cache model) for any

benchmark. This can be generated with any tracing tool (like Intel

Pin [23] v2.12). We tested the artifact with benchmarks from SPEC-

2006, SPEC-2017, PARSEC, BIOBENCH, and GAP suites.

• Compilation: Tested with gcc (versions 4.8.5, 6.4.0, 8.4.0), but

should compile with most standard compilers.

• Run-time environment: Tested on Linux RHEL Server 7.9, but

should broadly run on any Linux distribution.

• Hardware: Running all the 78 benchmarks in parallel (78 simulta-

neous instances of the simulator) requires a CPU with a su�cient

number of cores (64+) and memory (128GB+).)

• Metrics: Normalized Performance (IPC).

• Output: Performance results shown in Figure 6.

• Experiments: Instructions to run the experiments and parse the

results are available in the README �le.

• How much time is needed to complete experiments (approx-

imately)?: 15 hours on Intel Xeon CPU, if all 78 benchmarks are

run in parallel (7-8 hours for baseline and RRS each on our system).

• Publicly available?: Yes.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5800077

A.3 Description

A.3.1 Link. The code is available at https://github.com/gururaj-

s/randrowswap and https://doi.org/10.5281/zenodo.5800077.

A.3.2 Hardware Dependencies. The artifact requires a CPU with a

su�cient number of cores (64+) and memory (128GB+) to run all

the benchmarks (78) in parallel for one con�guration.

A.3.3 So�ware Dependencies. Perl (for the scripts to run experi-

ments and collate results) and gcc (tested to compile successfully

with versions: 4.8.5, 6.4.0, 8.4.0).

A.4 Installation and Experiment Work�ow

The run_artifact.sh performs all the steps required to reproduce

the results from the artifact:

• Downloads the trace �les.

• Compiles the code using themake�les in the src_baseline

and src_rrs) and also runs the benchmarks.

• Executes the simulations for all 78 benchmarks in parallel,

�rst for the baseline and then for rrs con�guration.

• Collates the results for all 78 benchmarks, and provides

the normalized performance.

A.5 Evaluation and Expected Results

The artifact provides the getdata.pl in the simscript folder.

The perl script allows collation of the results and the commands

to collate the IPC are provided in the run_artifact.sh and the

README �le. After the completion of the run_artifact.sh, the

normalized performance for all benchmarks can be obtained as

shown in Figure 6. The sample results �les for the baseline and rrs

con�gurations for all the benchmarks are provided in the output

folder of the artifact.

A.6 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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