
Reducing Refresh Power in Mobile Devices with
Morphable ECC

Chiachen Chou Prashant Nair Moinuddin K. Qureshi

School of Electrical and Computer Engineering

Georgia Institute of Technology

Altanta GA,USA

{cc.chou, pnair6, moin}@ece.gatech.edu

Abstract—Energy consumption is a primary consideration
that determines the usability of emerging mobile computing
devices such as smartphones. Refresh operations for main mem-
ory account for a significant fraction of the overall energy
consumption, especially during idle periods, when processor can
be switched off quickly; however, memory contents continue to
get refreshed to avoid data loss. Given that mobile devices are
idle most of the times, reducing refresh power in idle mode is
critical to maximize the duration for which the device remains
usable. The frequency of refresh operations in memory can be
reduced significantly by using strong multi-bit error correction
codes (ECC). Unfortunately, strong ECC codes incur high latency,
which causes significant performance degradation (as high as
21%, and on average 10%).

To obtain both low refresh power in idle periods and high
performance in active periods, this paper proposes Morphable
ECC (MECC). During idle periods, MECC keeps the memory
protected with 6-bit ECC (ECC-6) and employs a refresh period
of 1 second, instead of the typical refresh period of 64ms. During
active operation, MECC reduces the refresh interval to 64ms, and
converts memory from ECC-6 to weaker ECC (single-bit error
correction) on a demand-basis, thus avoiding the high latency of
ECC-6, except for the first access during the active mode. Our
proposal reduces refresh operations during idle mode by 16x,
memory power in idle mode by 2X, while retaining performance
within 2% of a system that does not use any ECC.

Keywords—Mobile DRAM, DRAM Refresh Rate, Mobile Mem-
ory System, Error Correction Code, DRAM Power Consumption,
Memory Reliability

I. INTRODUCTION

The past few years has seen a paradigm shift in computing
platforms. Emerging handheld devices such as Smartphones
and Tablets have become one of the most common devices for
computing in everyday use. Energy consumption is one of the
prime considerations that influence the development of mobile
hand-held devices, as it determines the duration for which the
device remains usable on battery power [1][2]. The usage pat-
terns for devices such as smartphones are quite different from
traditional computing devices such as workstations. These
devices are used in short bursts of few minutes, over extended
period of time, as shown in Figure 1. Recent studies [3] have
indicated that the idle periods account for 90%-95% for these
devices. Therefore, reducing the energy consumption during
idle mode of operation has become vital. However, users

expect these devices to provide instant response when they
are activated; it is also important to retain the application state
at the point where it was last used in order to reduce system
wake-up time.
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Fig. 1. The typical usage pattern of handheld devices is bursty with long
idle periods. During active mode memory consumes 9x more power than idle
mode. The contribution of refresh to overall power is small during active
mode, but significant only during the idle periods.

One of the main sources of energy consumption during
idle periods is the main memory system [1, 4], which takes up
to 30% of the energy. The main memory system is typically
made of Dynamic Random-Access Memory (DRAM) devices,
which requires periodic refresh operations to retain data. When
the mobile device becomes idle, the processor can be switched
off in less than one millisecond [5] and the memory is put into
self refresh mode, where an internal circuitry performs refresh
operations. Thus, the memory continues to consume power
for retaining data even during idle mode and this is one of
the significant source of idle power consumption that needs to
be reduced. One option is to restore the memory contents into
non-volatile storage (i.e., flash or external SD card). This may
be feasible in systems where the memory capacity is small
and storage bandwidth is high. However, the memory capacity
on current smartphones is already in the 3GB range [6]. The
bandwidth on Flash storage in mobile devices is in the regime
of 32MB-64MB per second, which means saving and restoring
state of memory from storage would incur several seconds of
delay [7], resulting in large response time and degrading user
experience. Therefore, platforms such as Android try to retain
the state of recently accessed apps in the main memory to
reduce application loading times [8].

The refresh power of memory can be reduced by exploiting
the variability in retention times of DRAM cells. By using
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multi-bit Error Correction Code (ECC), one can correct the few
bits that fail with slower refresh operations [5]. Our analysis
shows that correcting for up to six bits of errors per line (ECC-
6) can allow the system to reliably reduce the refresh interval
from 64ms to 1 second. Unfortunately, such multi-bit error
correction incurs several tens of cycles of delay for decoding
operations, which increases the memory latency and reduces
system performance. We found that for our baseline system,
the latency overhead of ECC-6 degrades performance by as
much as 21%, and on average by 10%. Ideally we want to
retain high performance of weak ECC (e.g., SECDED or No
ECC) and the refresh power savings of ECC-6.

To obtain high performance of weak-ECC codes and the
refresh saving of strong-ECC codes, this paper proposes Mor-
phable ECC (MECC). MECC is based on two key observa-
tions. First, the idle periods in mobile devices are long, in the
range of several minutes. Second, the contribution of refresh
power to overall memory power is small during active mode
and significant during idle mode. Therefore, we can have the
best of both worlds by trying to optimize refresh power only
during idle mode (using strong ECC code) and optimize for
performance during active mode (using weak ECC code).

MECC appends each line with ECC-mode bits, which
indicates whether the line uses strong-ECC or weak-ECC code.
When the system becomes idle, MECC ensures that the entire
memory uses ECC-6, and reduces the refresh rate by 16x to 1
second. Thus, the refresh power and the memory idle power
are reduced significantly. When the system becomes active,
and a line is accessed from memory, ECC-status is checked.
Given that for the first access, the line would have ECC-6, it
is decoded with ECC-6 decoder and written back with weak-
ECC. We refer to this conversion form strong-ECC to weak-
ECC as an ECC-Downgrade. All subsequent access to the line
in the active period is decoded with the weak-ECC decoder,
which has much lower latency, and avoids the performance
degradation of the strong-ECC. Thus, with Morphable ECC,
the system pays the latency overhead of strong-ECC only on
the first access, but not the subsequent access. When the active
mode finishes, the system becomes idle, MECC converts the
line to ECC-6 and marks the ECC-mode bits associated with
lines as such. We refer to this conversion from weak-ECC to
strong-ECC as an ECC-Upgrade.

MECC is a purely hardware proposal that does not require
changes to the source code and does not compromise appli-
cation reliability for power saving [7]. Our evaluations with
28 applications shows that MECC reduces refresh operation in
idle mode by 16x, while providing a performance that is within
2% of a system that does not incur any latency overhead from
error correction.

On entering idle mode, MECC tries to convert all the lines
in memory to ECC-6. This may be wasteful if majority of
the lines in memory were not accessed since the last idle
period, and therefore were already equipped with ECC-6. To
avoid such wasteful conversions, we propose a simple Mem-
ory Downgrade Tracking (MDT) scheme that tracks memory
regions that have been downgraded from ECC-6. When the
system goes to idle mode, only the memory regions indicated
by MDT are converted to ECC-6. We found that a simple MDT
with 128 bytes storage reduces the system upgrade latency
from approximately 400ms to 50 ms.

When a mobile device is not used, it may still get fre-
quently invoked by periodic operations such as interrupts
interrupts from I/O, network devices, bluetooth signal check
etc. Fortunately, such periodic operations tend to be quite
short (few milli seconds) and are typically not bounded by
memory peformance. Such periodic system activity willl incur
transitions of ECC-Downgrade and ECC-Upgrade frequently,
which may ruin the benefits of MECC. To avoid this, we
propose Selective Memory Downgrade (SMD) which can avoid
the transitions between ECC-6 and ECC-1 for such processes.
SMD periodically checks the memory traffic and starts ECC-
Downgrade only if the application has memory traffic above
a certain threshold. We found that for minor degradation in
performance (< 2%), this extension of MECC does not enable
ECC-Downgrade in active mode for 7 out of 28 applications,
and all of these 7 applications have small memory footprint
and their performance is not sensitive to memory latency.

II. BACKGROUND AND MOTIVATION

Ideally users want the mobile devices to be energy pro-
portional, in that they consume power when used and do not
consume any power when idle. This is especially important
given that these devices are idle most of the time. One of
the major components that make mobile devices non-energy-
proportional is the main memory system that is made of
DRAM. DRAM relies on periodic refresh of data to maintain
data integrity. Even when the device is idle, refresh operations
are done to maintain the contents of main memory. The
energy overheads associated with refresh is proportional to
the capacity of the main memory system, as all lines must
be refreshed in a given time period. To enable mobile devices
to execute a large variety of applications and to reduce the load
times of applications, the memory capacity of smartphone is on
the rise. While the first generation smartphones had 128MB-
256MB of DRAM, current smartphones (such as Samsung
Galaxy Note 3 [6]) already have 3GB of DRAM, and the next
generation devices are expected to have 4GB DRAM [9]. Thus,
the power consumption due to memory refresh is only going
to increase for future mobile platforms.

In this section, we first discuss the various modes of doing
refresh in DRAM systems, then we explore the trade-off of
DRAM cell failure versus refresh rate, next we describe the
usage of strong Error Correction Codes (ECC) to mitigate the
failures due to refresh, and finally discuss the shortcomings of
always using strong ECC.

A. DRAM Refresh Modes

Refresh operations are performed by simply activating and
precharging the particular row. JEDEC specification dictates
that the contents of the DRAM device must be refreshed every
64ms to maintain data integrity. Existing standards provide
several implementations to perform refresh in DRAM systems,
each geared for different system requirements. We describe the
refresh implementations below.

1) Auto Refresh (AR). This is the typical mode of
refresh, where the memory controller sends a refresh
pulse every 64ms (burst mode) or 7.8μs (distributed
mode) to the DRAM device. In DRAM devices, there
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is an internal register to keep track of the address of
the row(s) to be refreshed.

2) Self Refresh (SR). This mode of refresh is employed
in idle periods where the processor and the memory
controller are turned off. The responsibility of gen-
erating periodic refresh pulse is relinquished to the
DRAM device. DRAM array cannot be read while in
self refresh mode.

3) Partial Array Self Refresh (PASR). A type of self-
refresh mode where only a portion of memory is re-
freshed (other contents get lost). Thus, PASR reduces
the useful capacity of DRAM memory system.

4) Deep Power Down (DPD). An ultra low-power mode
where DRAM is not refreshed. The contents of
DRAM cells are lost. Before coming out of the Deep
Power Down mode, the DRAM cells are initialized.

Ideally we want to use the main memory capacity for
maintaining the working set of active applications, and to retain
the recently/frequently used applications in memory in order
to reduce the application loading time. Therefore, we want
the power savings close to PASR or DPD, and yet have a
usable capacity of Auto/Self Refresh. We can obtain the dual
goals of power savings and useful memory capacity if we
can significantly reduce the refresh rate in Self Refresh Mode
without compromising data integrity.

B. Increasing DRAM Refresh Period

The time for which a DRAM cells retains its data is called
the retention time, which is typically 64ms specified by JEDEC
standards. This rate is determined such that even the weakest
bit in the memory array can get refreshed in time. Thus, the
refresh rate is inherently determined by the retention charac-
teristics of the weakest cell. On average, DRAM cells have a
retention time in the range of few (tens of) seconds. However,
there is variability in retention time which causes a few weak
bits in the DRAM array to determine the memory retention
time. There are several device level studies that characterize
the retention time of the DRAM cells. Figure 2 shows the bit
failure probability for DRAM cells as the retention time is
changed (data derived from [10]).
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Fig. 2. Retention Time Distribution for DRAM cells (60nm Technology).
Y axis shows the bit failure probability for a given retention time. (Figure
derived from [10]) .

The bit failure probability at 64ms is in the regime of

10−9, which means 1 out a billion bits is expected to fail.
Such weak bits are decommissioned with device testing and
replaced by spare rows and columns, and the shipped DRAM
chip is expected to have all bits working at 64ms refresh
period. Unfortunately, spare rows are expensive means of
decommissioning bad bits, as they require an overhead of 1KB
or more for sparing each failed bit; therefore, it is not practical
to use when the bit error rate is high (in the regime where we
have few tens or more failed bits) [11, 12].

As the refresh period is increased, the bit error rate in-
creases significantly. At 1 second retention time, the bit error
rate is in the range of 10−4 to 10−5 regime. We will use a raw
bit error rate of 10−4.5 as a default in our studies for a refresh
period of 1 second. This means if we simply increase the
refresh period to 1 second, we can expect approximately 32K
bits to fail in a 1Gb array, and 256K bits in a 1GB memory. If
we are to employ a 1 second refresh rate to reduce the memory
refresh power, the system must be provisioned with means to
tolerate high bit error rates.

C. Error Correction for Reducing Refresh

Error Correcting Code (ECC) is often used to tolerate soft-
errors due to alpha particle strikes. A similar approach to
tolerating refresh errors can be provided in memory systems
by appending them with stronger levels of error correction.
So, in general, each line can be provided with the capability to
correct say K errors. A key question is what should be the error
correction strength that is required to ensure a refresh period
of say 1 second. For this analysis, we make two assumptions,
both of which are consistent with the recent literature on
memory reliability studies. First, the errors are uncorrelated,
that is each bit has a uniform and independent probability of
error[13, 5, 14]. Second, we deem the mechanism to be useful
if the likelihood of a system with an erroneous line is less
than 1 system out of 1 million systems (this is much stronger
guarantee than what is employed in cache studies, so chance
of data corruption is negligible).

TABLE I. LINE FAILURE AND SYSTEM (1GB MEMORY) FAILURE

PROBABILITY FOR BIT ERROR RATE OF 10−4.5 (64B CACHE LINE SIZE)

ECC strength Line Failure System (1GB) failure

No ECC 1.8 · 10−2 1.0

ECC-1 1.6 · 10−4 1.0

ECC-2 9.8 · 10−7 1.0

ECC-3 4.5 · 10−9 7.2 · 10−2

ECC-4 1.6 · 10−11 2.7 · 10−4

ECC-5 4.9 · 10−14 8.1 · 10−7

ECC-6 1.2 · 10−16 1.8 · 10−9

Table I show the probability of failure of a line and for a
1GB memory system when the raw bit error rate of each cell
is 10−4.5. The error correction level per line is varied from
zero to six. We denote the error correction code that corrects
up to K bit per line as ECC-K. Supposed the memory has
16 million lines, the probability of line failure must be well
below 1 in several tens of million to get a low probability of
system failure. To achieve our target system failure probability
of 1 in a million, we will need to provision the system with
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ECC-5. However, to prevent the system from soft-errors and
from the infrequent episode of few bits changing retention time
intermittently, we also deem it necessary to provision the line
with an extra ECC code for soft-error protection. Therefore,
to reliably operate the system with a refresh rate of 1 second,
the system needs to provision with ECC-6 code per line.

D. Drawbacks of Strong Multi-bit ECC codes

While strong multi-bit error correction codes, such as ECC-
6, can reduce refresh power, they suffer from two major
overheads: storage and latency. The storage overhead required
for error correction is linearly proportional to the number of
errors that we want to correct. Therefore, ECC-6 will require
six times as much storage overhead as ECC-1 for the same
granularity of data-bits that we want to protect with the code.
To make our solution practical, we would like to reduce the
storage overhead required to implement ECC-6.

The second overhead of strong multi-bit ECC is the latency
associated with encoding and decoding the line. While single
bit error correction is typically implemented with Hamming
codes, strong multi-bit ECCs are implemented with BCH
codes, involving complex steps of syndrome decoding. The
latency associated with decoding of strong multi-bit errors
typically ranges in few tens of cycles [5]. The decode latency
is in the critical path of memory access; therefore it increases
the effective memory latency and degrades performance.
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Fig. 3. Performance Impact of Decoding Latency of Error Correction
compared to a system that has no error correction. SECDED incurs negligible
performance impact, but ECC-6 degrades performance significantly (method-
ology in Section IV).

Figure 3 shows the system performance of ECC-1
(SECDED) and ECC-6 compared to a system that does not
perform any error correction. On average, ECC-1 codes have
negligible impact on performance (less than 1% on average)
as the decoding latency is only a couple of cycles. In our
system, we assume that ECC-6 decoding takes 30 cycles,
which degrades performance significantly up to 22%, and on
average 10%.

III. MORPHABLE ECC

We want to save refresh power by employing strong ECC,
while avoiding the performance impact of decode latency for
strong ECC. To get these conflicting benefits, we exploit the
observation that the refresh power contributes to a smaller
fraction of memory power (and system power) when the
system is actively used. However, during long idle periods, the

refresh power contributes significantly to the memory power
(and system power). We can get both high performance and
low refresh power if we optimize the ECC separately for
active mode and idle mode. During active mode, it is preferred
that memory be decoded with weak-ECC to avoid the latency
impact. Whereas, during idle mode, memory is not accessed
so it is desirable to use strong ECC and save refresh power.
Based on this insight, we propose Morphable ECC (MECC).

A. MECC: Concept and Overview

MECC consists of two levels of ECC codes: Strong ECC
and Weak ECC. Strong ECC is chosen to optimize for refresh
power. There is no requirement for weak ECC, except that
it has low latency overheads. One can substitute no ECC for
weak ECC. However, to ensure robustness against soft errors,
we use SECDED. For strong ECC, we use ECC-6. Figure 4
captures the overview of working of MECC.

Active 

Sleep Wakeup

(Strong−ECC, Slow Refresh)

ECC−Upgrade ECC−Downgrade

Normal Refresh)
(Weak−ECC

Active 

Idle Period

Time

Fig. 4. Overview and Working of Morphable ECC.

During the active mode, the system uses normal refresh rate
and accesses memory with the latency of weak ECC. When the
system becomes idle, memory is converted from weak ECC
to strong ECC. We call this conversion from weak ECC to
strong ECC as ECC-Upgrade. Once the memory is upgraded,
the memory is transitioned into self refresh mode, but with a
period of 1 second (instead of 64ms). Thus, in the idle period,
the refresh operations get reduced by 16x. When the system
is activated, the memory refresh rate is increased to 64ms.
The first access to a line gets the line in strong-ECC state;
however this line is then converted to weak-ECC state and
written back to memory. The conversion from strong ECC to
weak ECC is referred to as ECC-Downgrade. This conversion
ensures that subsequent memory request to the same data block
would not pay the latency overheads of strong ECC; therefore
in the active mode the common-case latency overhead becomes
that of weak ECC. Note that lines undergo ECC-Downgrade
on a demand basis, which avoids wasteful transitions of ECC
status for unused lines.

B. MECC: Design

Figure 5 shows an overview of the system that supports
MECC. MECC requires that the processor chip contains en-
coders and decoders for both weak ECC and strong ECC. The
DRAM module must support the storage overhead required
for both weak ECC and strong ECC as well. When a line is
accessed in the active mode, the memory controller needs to
know which decoder should be employed to decode the line.
To provide this information, the line is appended with status bit
called ECC-mode. When ECC-mode is 0, the line is decoded
with weak ECC and when it is 1, the line is decoded with
strong ECC.
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Fig. 5. System Support for Morphable ECC (Newly added parts for error
correction are shaded.) Figure not to scale

When the memory controller encounters a line that has
ECC-mode bits set to strong ECC, it generates the contents of
weak-ECC and writes the line back to memory with the ECC
corresponding to weak ECC and marking the ECC-mode bit
as such. Note this ECC-Downgrade is not in the critical path
of memory access.

When the system becomes idle, the OS can turn off the
processor chip (after flushing the caches), and send an self
refresh signal to memory and subsequently grounding the clock
to the memory. When this happens, the memory lines are read,
and converted to ECC-6, and the ECC-mode bit associated
with the line is marked as such. When the ECC-Upgrade
process finishes, the memory is put into self refresh mode,
and uses long refresh intervals.

MECC also relies on support from the memory device to
change the refresh frequency in idle mode, by simply having
an internal counter, which would be incremented on each
refresh pulse, and the outgoing refresh pulse is sent to the
DRAM array only on counter overflow. The size of the counter
will then modulate the refresh frequency. We assume that
such support will be available from future DRAM module to
optimize refresh power. A 4-bit counter is required to increase
the refresh rate from 64ms to 1 second.

C. ECC Support for Mobile Memories

MECC relies on having the ECC code (for both SECDED
and ECC-6) stored in the DRAM arrays. Current mobile
memories (and even the commonly used Desktop memories)
are typically not equipped with ECC support. However, as
a recent paper [15] from Intel and Samsung shows, that to
tolerate the failure modes at smaller technology nodes, even
the commodity memories will need to be provisioned with the
ECC support. Therefore, we assume that our baseline mobile
memory system is supported with SECDED using the (72,64)
code. While the (72,64) code requires that the number of x8
chips in Desktop DIMMs be increased from 8 to 9, having
an extra chip in mobile memories is harder as such memories
typically have only two x32 chips (so adding an extra chip
would incur 50% storage). We observe that the (72,64) code
be supported easily even for mobile memories by having x36
chips, or by having a burst length of 9 (instead of 8) to obtain

the extra 8 ECC bits required for the 64 bit of data. For the
remainder of the paper we will assume that our baseline mobile
memory system supports SECDED at a word granularity. We
show how MECC can be implemented on such a memory
system without requiring any additional storage.

ECC
for [8:15]

ECCECC ECC ECC ECC ECC
for [24:31]for [16:23] for [32:39] for [40:47] for [48:55] for [56:63]for [0:7]

0000

1111

ECC−Mode

ECC−Mode

Bits 4:63 used for ECC−6 for 64 Byte line

Bits 4:14 used for SECDED for 64 Byte line Unused

(ii) MECC for SECDED

(iii) MECC for ECC−6

64B Data Block 8B of ECC

(i) Conventional SECDED

ECC

1 ECC Byte protecting 8 Bytes of Data

Fig. 6. Morphable ECC Design on ECC memory (i) Conventional SECDED
operating at 8 byte granularity (ii) MECC storing the line with Weak ECC,
operating at 64 bytes (iii) MECC storing the line with ECC-6, operating at
64 bytes

D. Reducing Storage Overhead for MECC

Instead of strong SECDED on 8-byte granularity (which is
done for traditional reasons, owing its origins to when cache
lines were small), we propose to have both SECDED and ECC-
6 on a line size granularity (64 bytes). For SECDED, we would
need 11 bits, and for ECC-6 we would need 60 bits (61 bits if
we want to implement 6-bit Error Correction and 7-bit Error
Detection). Note that, we would not need storage for both
SECDED and ECC-6 at the same time, as the line can either
be using SECDED or ECC-6. Thus, we need 60 bits for ECC.
The traditionally used (72,64) code provides 8 ECC bits for
64 bits of data, which amounts to 64 bits of ECC for a 64 byte
cache line. We propose to use all the 64 bits in conjunction to
repair the entire line. The first four bits in this 64 bit ECC
space would indicate ECC-mode, implemented with 4-way
redundancy for fault tolerance. The remaining 60 bits are used
for either SECDED or ECC-6, as shown in Figure 6. Thus,
MECC can be implemented easily with a memory system that
supports the traditional (72,64) code, without the need of any
modification to existing storage array.

During idle mode, ECC-mode bits might flip at the raw
bit error rate 10−4.5, and later in active mode, the memory
controller would fail to identify the ECC-mode, causing an
unreliable system. To solve this, ECC-mode bit is duplicated
four times to tolerate errors. All the data bits and ECC-mode
bits are covered by the ECC-6. When there is a mismatch in the
replicated copies of ECC-mode bits, we try both SECDED and
ECC-6 decoder. The one which gives correct result indicates
the ECC-mode of the current data block. Therefore, the ECC-
mode bits are well-protected to ensure the correct identification
of ECC modes.
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E. Complexity of ECC Encoder and Decoder

MECC relies on ECC encoder and decoder to tolerate
different levels of bit error rate. SECDED is a widely adopted
code in industry, so we do not describe the details. Multi-bit
error correction takes longer to decode, and larger area than
SECDED. Typically, SECDED is based on Hamming Code ,
while ECC-6 uses BCH code [5].

BCH code is a class of cyclic error-correcting codes, which
is able to correct random multi-bit errors [16, 17]. Let’s assume
the input data d is a k-bit data. To correct t errors and detect
t+1 errors, BCH will require a code word of t*m+1 bits, where
d < 2m − 1.

ECC Encoder: To encode the data, BCH encoder generates
the code word r and concatenates r with data d by simply
multiplying d by the generator matrix G, which is a predefined
matrix, XORing the data to generate the code. Therefore, the
encoding latency for both SECDED and ECC-6 is a few XOR
gate delay, which can be completed in one 1.6GHz-processor
cycle [5].

ECC Decoder: The decoding logic can correct and detect
any errors in the concatenated data and code word. We
calculate the latency and area cost from [18], which gives that
both the decoder latency and area complexity in proportional
to t, when the data length remains the same. We estimate that
SECDED would incur a logic overhead of approximately 3K
XOR gates and 2 cycle latency. In general, one can trade-off
latency and area for decoding multi-bit ECC. Similar to [5],
we estimate that ECC-6 would incur a logic overhead of about
100K-200K gates, and latency of 30 cycles.

The latency of multi-bit error correction is dependent on
the number of errors encountered in the line. Fortunately, even
with a BER as high as 10−6, the likelihood of encountering
a line with two or more errors is less than 1 in a million, so
the performance impact of the slow error correction (ECC-2
or beyond) is negligibly small (< 0.001%). Our evaluations
assume an “average” latency of 30 cycles for ECC decoding
and correction. We conduct a sensitivity study on ECC latency
in Section V.

IV. EXPERIMENTAL METHODOLOGY

A. System Configuration

We use the memory system simulator USIMM [19]
from the recently conducted Memory Scheduling Champi-
onship [20]. USIMM models DRAM system in detail, en-
forcing the various timing constraints. We modify USIMM to
conduct a detailed study for error correction, including latency
and power issue. When the memory request is serviced by the
memory system, the latency depends on the error correction
scheme.

TABLE II. BASELINE SYSTEM CONFIGURATION

Processor in-order core, 2-wide retire, 6-stage depth
Cache 1MB, 64B cache line

Memory 1GB LPDDR, 200MHz bus speed, double
data rate, 1 channel, 1 rank, 4 banks, 16K
rows and 1K columns

We model a system consisting of an in-order core system
operating at 1.6GHz. The memory system is 1GB configured
operating at 200MHZ, as same as the LPDRAM provided by
Micron [21]. We assume when the memory system is idle, the
DRAM devices are in self refresh mode and the processor is
turned off. The parameters of system configuration are shown
in Table II. The baseline in our experiments uses aggressive
power down saving scheduling, in which the scheduler issues
a power-down command whenever it is possible. For ECC
decoder latency, SECDED takes 2 cycles, while ECC-6 takes
30 cycles.

B. Workloads

We use 28 benchmarks 1 from the SPEC2006 suite for
our study. Although SPEC2006 is not designed for mobile
platforms, it has several meaningful benchmarks, such as
image rendering (povray), speech recognition (sphinx3), com-
pression (bzip2), and video processing (h264). Furthermore,
for our studies we simply need memory access patterns to
determine the sensitivity of performance to different ECC
configurations. We assume that each workload is executed
for 4 billion instructions on a single-core processor, after
skipping 10 billion instructions. We classify the benchmarks
into three categories based on MPKI: (a) Low-MPKI (MPKI
< 1 (b) Med-MPKI (MPKI between 1 and 10) and (c) High-
MPKI (MPKI > 10). To provide insights in our analysis, we
will refer to this classification. Table III shows average key
characteristics of the workloads used in our study, including
Misses Per Kilo Instruction (MPKI), Baseline IPC (without
error correction latency), and memory footprint. Footprint is
calculated as the number of unique 4KB pages touched by the
workload slice. Note the average IPC is 0.72, which translates
into an execution time of approximately 5.5 seconds for the
active period of the running application.

TABLE III. BENCHMARK CHARACTERIZATION.

Name IPC MPKI Footprint(MB)
Low-MPKI 1.514 0.3 26
Med-MPKI 0.887 4.7 96.4
High-MPKI 0.359 23.5 259.1

C. Power Calculator

The power consumption of the memory devices are calcu-
lated based on the power parameters shown in Table IV. We
use the Micron DRAM power calculator to derive the power
statistics [22, 23]. We also calculate the energy dissipated by
the ECC decoders and encoders in the active mode. Compared
to the typical processor in mobile devices and memory access,
ECC decoder and encoders consume negligible power (ECC-6
decoder consumes approximately 40 pJ to decode a line, while
reading a line from memory requires 12 nJ).

1The footprint of mcf is 1.4GB, which makes it unusable for studying a
memory system of 1GB, therefore we do not include mcf in our studies. If
we ignore page fault latency, then MECC gets performance within 2% of
baseline with no ECC, so including mcf does not have any impact on the
average performance of our proposal.
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TABLE IV. POWER PARAMETERS FOR OUR MEMORY SYSTEM

Parameters Values Description
VDD 1.7 V Operating Voltage (Volts)
IDD0 95 mA 1 bank active precharge current

IDD2P 0.6 mA Precharge power-down standby
current

IDD3P 3 mA Active power-down standby cur-
rent

IDD4 135 mA Burst read/write: 1 bank active
IDD5 100 mA Auto refresh
IDD8 1.3 mA Self refresh

D. Figure of Merit

As we have dual objective of both high performance and
low power, we will use the following metrics as figure of merit
in the evaluation.

Performance: Performance is measured in terms of In-
struction Per Cycle (IPC) for each system and normalized
with respect to the baseline system that does not incur any
error correction latency. Thus, the difference in performance
is mainly from the latency overheads of error correction.

Power Savings in Idle Mode: The power consumption in
the idle mode is based on refresh power and background power,
shown in Equation 1[7]. For the energy evaluations in idle
mode, we assume that the activity of daemon processes (such
as Bluetooth, sync, etc.) is negligibly small and hence we do
not include the energy from these activities in both the baseline
as well as our proposal. While this assumption generally
holds true, it may not hold in extreme cases when there
is a pathological daemon process that continues to consume
significant energy even when the device is idle. Examples
of such undesirable daemon processes includes mm-qcamera-
daemon [24] and Unified-daemon (EUR) [25], which have been
known to quickly drain the battery even when the device is
idle. The software community has looked at averting such
daemons using OS patches. For unpatched systems that run
such pathological daemons, we can simply assume that the
devices is always active and thus offers no scope for idle power
reduction.

IdlePMECC = PMECCRefresh + POther

=
TOriginal

TMECC
· POrignialRefresh + POther

(1)

Note that a more precise evaluation of activity for such
daemon processes can be done using a hardware infrastructure
that can (a) measure the frequency of daemon processes during
idle period (b) measure the duration of each such daemon
process (c) generate the trace of memory access stream of
each such process. Furthermore, the study will need to be
done over several users as the daemon activity is typically
user dependent. Doing such an extensive study is out of the
scope of this paper.

Power and EDP in Active Mode: For active mode, we
must take into account both performance and power; otherwise,
a scheme that degrades performance may seen to be beneficial

from purely a power savings perspective. So, we use Energy
Delay Product (EDP) as a figure of merit and calculate it as
shown in Equation 2.

EnergyDelayProduct = DissipatedEnergy×ExecutionT ime
(2)

V. RESULTS AND ANALYSIS

A. Impact on Performance

The latency incurred in performing error correction in-
creases effective memory latency, and degrades performance.
We compare the performance of different error correction
schemes in active mode of operation. Figure 7 shows the IPC
of SECDED, ECC-6 and MECC, normalized with respect to
the baseline which does not incur any latency overheads from
error correction. The bar labeled ALL is the geometric mean
over all workloads.

The performance impact of SECDED is quite small across
all the workloads. On average SECDED has 0.5% slowdown
compared to no error correction. The performance impact of
ECC-6, however, depends on the memory behavior of work-
loads. For Low-MPKI benchmarks, the performance impact
compared to no error correction is quite small for ECC-6. For
MED-MPKI and High-MPKI, using ECC-6 causes significant
performance degradation. The slowdown for libquantum is
as high as 21%. On average, ECC-6 causes a slowdown
of 10%. In contrast, MECC bridges the performance gap
between SECDED and ECC-6, with performance very close
to SECDED. The average slowdown with MECC is only
1.2%. Thus, the performance of MECC is within 1% of
SECDED, whereas ECC-6 of 10% performance degradation
is significantly worse.

B. Power Saving in Idle Mode

We employ strong ECC in idle mode to reduce refresh
power. For both ECC-6 and MECC, we assume that the refresh
rate is reduced from 64ms (in baseline) to 1 second. This
translates to a linear reduction in refresh power. Figure 8(left)
shows the refresh power of ECC-6 and MECC, normalized
to the baseline system. Both ECC-6 and MECC reduce the
refresh power by 16x.

However, refresh power is only a portion of memory idle
power. When memory is idle it still consumes background
power. Figure 8 (right) shows the breakdown of idle power
in terms of refresh power and background power, normalized
to the baseline. Both ECC-6 and MECC reduce refresh power
by 16x, and the overall power reduction is about 43% given
that refresh power accounts for only half the idle power. Thus,
MECC and ECC-6 are effective at reducing idle power by
almost 2X.

C. Power and Energy in Active Mode

We also analyze the power characteristics of different
schemes when the system is active. Figure 9 shows the power,
energy consumption, and energy-delay product for baseline,
SECDED and MECC. MECC has approximately 1% higher
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power than baseline, which is because of the extra memory
traffic. ECC-6 seems to have lower power, but that is primarily
because it takes 10% more time to execute the workload. When
energy consumption is considered in active mode, all the three
schemes are similar. In terms of EnergyDelayProduct (EDP),
MECC is similar to baseline whereas ECC-6 is 10% higher.
Thus, MECC provides similar energy consumption as ECC-6
but a better energy-delay product.
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D. Impact on Overall Memory System Energy

The total energy consumption of the memory system is
determined by both the active power and idle power. Our
proposal reduces the idle power by 2X while having similar
active power. While the idle power of a typical system is
typically much lower than active power (20X or more lower),
the idle period lasts for a longer time. Therefore, the overall
battery drain from idle periods can still be significant. To do
the overall energy analysis, we assume that the idle period
accounts for 95% of the system time, which is in accordance
with the recent user studies on smartphone activity [3].

Figure 10 shows the total energy consumption for our
baseline, divided into energy from active use and from idle
periods. The energy spent in idle periods accounts for ap-
proximately one-third of the total system energy consumption.
MECC reduces the idle power by almost 2X, thus reducing
the overall memory system energy consumption by 15%.
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E. Sensitivity to ECC Decode Latency

We have used a latency of 30 cycles for ECC-6 decode.
In general, there is a design trade-off between area of decoder
and latency. We conduct sensitive study of the ECC decoder
latency, varying from 15 to 60 processor cycles. Figure 12
shows the performance impact of this latency variation on
ECC-6 and MECC. The performance impact of MECC is
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Fig. 11. Effectiveness of Memory Downgrade Tracking. The size of memory touched by the application, as estimated by MDT (1K regions). Note Y-axis is
in log scale.

not very sensitive to decoder latency. For example, even with
the decoder latency of 60 cycle, MECC is still able to limit
the slowdown to within 2% of the baseline with no error
correction. The main reason behind is that MECC only pays
the long decoder latency once; after the data block has been
accessed, it is no longer stored with the strong ECC but
weak ECC, reducing the latency overhead for future access.
However, the performance impact of ECC-6 is quite sensitive
to decode latency, becoming 18% when the decoder latency
is 60 cycles. Therefore, MECC can allow the designer to
implement multi-bit decoding with simpler hardware with low
area overhead, and still not have a significant slowdown.
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F. Transition Time for MECC

Our measurement of the performance is on the overall
slowdown for the 4 billion instruction slice for each bench-
marks. It is worthy of understanding how long it takes for
MECC to reach the performance of SECDED. Figure 13 shows
the normalized IPC with different instructions slices. The x-
axis are the number of executed instructions, which are 0.5
billion, 1billion, 2 billion, 3 billion, and 4 billion instructions.

Up to 1B instructions, MECC is slower than the baseline
by 2%; however, as the workload continues to execute, the
gap shrinks, and MECC reaches at 1.2% after 4B instructions.
Thus, the long latency of ECC-6 decode and additional writes
due to ECC-Upgrade happen primarily in the first 1 billion
instruction (first 1 second) of the application execution, and
after that the application executes mainly with SECDED.
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Fig. 13. Effectiveness of MECC for Different Program Length. The
performance impact of MECC becomes similar to SECDED after
approximately the first one second of program execution.

VI. ENHANCEMENTS FOR MECC

The MECC design described thus far is a simple one, in
that it always performs ECC-Downgrade on every access in
active mode, even if the application performance is not limited
by memory. Furthermore, when the system enters idle mode,
it performs ECC-Upgrade on the entire memory, even if the
majority of the memory was not accessed since the last idle
period, and hence was already protected with ECC-6. This
section describes simple and effective hardware techniques that
can further increase the efficacy of MECC.

A. Region-Based Memory Downgrade Tracking

When the system transits to idle mode, MECC needs to
ensure that all of the memory is converted to ECC-6, before
reducing the refresh rate to 1 second. So, MECC performs
ECC-Upgrade for the entire memory before reducing refresh
rate. Given the memory has 16 million lines, it will take 640
million cycles, or 400ms to perform ECC-Upgrade of entire
memory. While, this is short period given that the typical idle
period lasts for several minutes, we would still like to make
the ECC-Upgrade more efficient. The observation that makes
this possible is that not all memory gets accessed during the
active period, so if we can efficiently track the memory that
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was accessed (and hence went through ECC-Downgrade), then
we can do ECC-Upgrade for only those regions of memory. We
propose Memory Downgrade Tracking (MDT) to make ECC-
Upgrade more efficient. MDT is implemented with a table
where each entry is a single bit and corresponds to a memory
region, as shown in Figure 15.

underwent ECC−Downgrade

1

Region_ID

0

1 denotes some lines in region
underwent ECC−Downgrade

0 denotes NO lines in region

Fig. 15. Memory Downgrade Tracking (Region ID is obtained from top few
MSB bits of line address).

When a line undergoes ECC-Downgrade, the MDT entry
corresponding to this region gets set. When the memory
undergoes ECC-Upgrade, only the lines, for which the cor-
responding memory region is set to 1, goes through ECC-
Upgrade (otherwise the lines continue to retain their ECC-
Upgrade status from the past idle period). The MDT table
is reset after the ECC-Upgrade process finishes. We evaluate
a default MDT configuration that has 1K entries (128 bytes
storage), so each MDT entry tracks a memory region of 1MB,
given that our memory size is 1GB. Note that 128 byte storage
is not a huge overhead, and hence can be put in the memory
controller, since memory controller is the center of making
ECC-upgrade and ECC-downgrade operations.

In Section IV we provide the memory footprint of all the
benchmarks we use in our study. On average the memory
footprint of all the benchmarks is 128MB, which is 8x smaller
than the 1GB memory system. Although memory access may
not be continuous throughout the physical memory space, the
memory region that a program would use is still much smaller
than the entire memory. Figure 11 compares the memory
capacity tracked by MDT, if it has 1K entries. Note that Y-axis
is in log scale. With MDT, we can reduce the size of memory
that undergoes ECC-Upgrade by almost 8x, reducing the time

to perform ECC-Upgrade from 400ms to 50ms. Moreover, the
energy spent in the encoder is also 8x lower as a result of
reduced number of ECC coding. Thus, a hardware table of
128 bytes is sufficient for MDT.

B. Efficiently Handling Periodic Processes in Idle Mode

ECC-Downgrade avoids the long latency overheads of
decode operations for strong ECC. However, it is not necessary
to do ECC-Downgrade for all the applications. For example,
even when the mobile device is idle, it might still perform
periodic activities such as bluethooth check, network inerrupts
etc. Fortunately, such activities are short and have a very small
footprint. Furthermore, a small slowdown may be acceptable
for such non performance oriented workloads. For our pro-
posed MECC implementation though, such events can lead
to frequent transitions of ECC-Upgrade and ECC-Downgrade,
which may ruin the benefits from MECC. For such short, non-
memory intensive applications, we can tune MECC to avoid
ECC-Downgrade. As memory performance is not critical for
such tasks, MECC can still use a refresh rate of 1 second even
in active mode, and keep the entire memory protected with
ECC-6.

We propose to extend MECC to avoid ECC-Downgrade
during active mode, when memory performance is not critical
for overall system performance. We call this Selective Memory
Downgrade (SMD), as ECC-Downgrade decision is dependent
on the memory intensity of the workload. SMD is implemented
by periodically tracking the memory activity of the workload.
When the processor exits from idle state, ECC-downgrade is
disabled, and the refresh interval remains at 1s. Every 64ms
(approximately 100 Million cycles), we track the number of
memory accesses generated by the workload in the previous
time quanta of 64ms. If the memory traffic (measured as Miss
Per Kilo Cycle, or MPKC) is greater than a predefined thresh-
old, ECC-Downgrade gets enabled, and all subsequent accesses
to memory perform ECC-Downgrade. Thus, for memory inten-
sive workloads, SMD will enable ECC-Downgrade (to reduce
memory latency), whereas for not memory intensive workloads
SMD will disable ECC-Downgrade (and save power). The
proposed SMD implementation requires only two registers to
record the number of memory accesses and to track the time
since last check.
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To understand the effectiveness of SMD, we examine
the time at which ECC-Downgrade gets enabled during the
program execution. Figure 14 shows the fraction of execution
time for which ECC-Downgrade remains disabled for each
workload, given a threshold of MPKC equal to 2. Note, several
benchmarks, such as, povray, tonto, wrf , gamess, hmmer,
sjeng, and h264ref , do not enable ECC-Downgrade through
the entire duration, thus optimizing for refresh power even
during active mode. The average performance with SMD is
within 2% of a baseline that does not perform error correction.

VII. RELATED WORK

Several studies have looked into reducing the refresh
power. We describe the work that is most closely related to
ours, comparing and contrasting when appropriate.

A. Tolerating Refresh Errors in Software

A recent proposal, Flikker [7], describes a hardware-
software co-operative mechanism that trades-off data integrity
for refresh power saving. The memory is divided into critical-
region and non-critical region. The critical region is refreshed
at the normal rate, whereas the non-critical region is refreshed
at much lower rate. The software is modified to ensure that
data structures that influence correctness of program output
are kept in critical region and data structures that are resilient
to errors are kept in non-critical region.

There are three key differences between Flikker and
MECC. First, Flikker requires programmer to change the
source code, which may not always be possible, whereas
MECC is purely a hardware based technique that is useful
for existing programs as well. Second, a system with Flikker
is vulnerable to data errors and hence it is useful only for
class of applications that are inherently resilient to data errors,
whereas MECC does not have this restriction. Therefore,
MECC does not compromise program correctness to save
power. Third, Flikker still has a sizable region that is deemed
critical which ends up determining the effective refresh rate
(akin to Amdahl’s law). For example, if one-fourth of memory
is refreshed at a rate of 1 and three-fourth at a rate of 1/16, the
effective rate is still approximately 1/3. Whereas, MECC can
provide an effective refresh rate of 1/16 for entire memory in
idle mode. Thus, MECC is more effective at reducing refresh
power, and it obviates the programmer effort to partition data
into critical and non-critical regions.

B. Retention-Aware DRAM Optimizations

The power overheads associated with DRAM refresh can
be reduced by modulating the refresh rate depending on the
retention time of the memory row. This can avoid the worst-
case refresh rate for all the memory rows (or pages), when
only a very small fraction of memory bits have low retention
time. This is the idea behind three prior proposals: RAPID [13],
RAIDR [14], and SECRET [26].

RAPID is a software technique that allocates memory
pages depending on the retention characteristic of each page.
Pages with low retention are either disabled from OS pool,
or are given low priority of allocation. The refresh rate of
the system is thus determined by the allocated page with the
lowest retention time. RAIDR classifies memory rows into low

retention and high retention portions using runtime profiling.
It uses low refresh rate for rows with high retention time,
and normal refresh rate for the rows with low retention time.
SECRET uses error correction code to save refresh energy.
Their proposal requires an off-line investigation to identify
memory cells with retention errors given a target error rate,
and corrects the errors when lowering refresh rate. However,
to reduce the refresh rate significantly, it requires the use of
strong error correction, and thus always incurs the performance
overhead of strong error correction.

All three proposals rely on the premise that the re-
tention characteristics of a cell do not change. While this
may be true for most cells, a small fraction of cells are
known to exhibit a phenomenon called Variable Retention
Time (VRT) [11][27][28], whereby a cell with high retention
time can randomly turn into a cell with low retention time.
Therefore, such not retention-aware schemes are vulnerable to
data errors in practice [11]. MECC, on the other hand, does not
rely on explicit retention characteristics of each cell. Instead
it allows for a large number of cells to fail randomly in the
memory space and tolerates such failures with strong ECC
code. Nonetheless, the two concepts of multi-rate refresh and
MECC are orthogonal, and can be combined for more efficient
and effective solutions.

C. Multi-bit ECC for Tolerating Errors

MECC uses strong ECC (ECC-6) to tolerate refresh errors,
and changes the ECC strength depending on the activity rate
of the system. Alternative means of reducing the latency
penalties of multi-bit codes have been proposed. The most
closely related work is Hi-ECC [5]. To reduce cache leakage
power in a storage efficient manner Hi-ECC keeps the strong
ECC code over a granularity of 1KB lines. Thus, it suffers
from the problem of significant overfetch, and read-before-
write requirements. Furthermore, some of the techniques used
to optimize Hi-ECC, such as cache line disable, are not easily
applicable to main memories. Disabling an arbitrary cache line
would not alter software correctness; however having “holes”
in memory space necessitates special handling from OS to
ensure correctness.

Yoon et al. [29] proposed Virtual and Flexible ECC, which
allows flexibility in error correction level across memory space.
Rather than using uniform error correction across the entire
memory space, it allows the user to specify stronger levels of
ECC for high-priority applications, and weaker levels of ECC
for low-priority applications. However, unlike MECC, it does
not modulate the error correction level depending on system
activity. Furthermore, Virtualizing the ECC space has the
advantage that one can still use commodity Non-ECC DIMM
to support arbitrary error correction schemes; nevertheless, this
comes at the expense of two memory accesses - one for data
and the other for ECC. Nonetheless, MECC is compatible
with both Virtual and Flexible ECC, as these concepts are
orthogonal.

VIII. SUMMARY

The problem of reducing idle power has become important
for emerging computing platforms such as smartphones, as
it often dictates the usable duration for these “mostly idle
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but instantly active” devices. One of the significant sources
of energy consumption during idle periods is the refresh
power in memory system. We investigate strong multi-bit error
correction for reducing refresh operations. Unfortunately, the
high latency of multi-bit ECC results in increased memory
access latency and lower performance, making it less appealing
for practical implementations. We exploit the observation that
we can get high performance as well as refresh power savings
by modulating the ECC level depending on the level of activity
in the system. and make the following contributions:

1) We propose Morphable ECC (MECC) that uses
strong error correction (and slower refresh rate) in
idle mode to save power, and weak ECC (and normal
refresh rate) during active mode to optimize for
performance.

2) We propose Memory Downgrade Tracking (MDT) to
reduce the time taken to convert memory to strong
ECC, and also the energy spent in ECC coding.
MDT tracks the memory regions that get converted
from strong ECC to weak ECC during active mode,
and converts only these regions to strong ECC when
system enters idle mode.

3) We present an extension of MECC that makes it
possible to reduce refresh power even in active mode,
for applications that are not sensitive to the memory
system performance.

The access latency in common cases for MECC is dictated
mainly by the latency of weak ECC (SECDED for example),
which means the system can employ low-area high-latency
implementations for encoders/decoders for strong ECC. On
average, strong ECC causes a slowdown of 10% (as high as
21%); however, with MECC, the average slowdown is reduced
to 1.2%. MECC reduces refresh power in idle periods by 16X
and reduces idle power by 2X. While we have used ECC-6 as
strong ECC and SECDED for weak ECC in our evaluations,
the MECC scheme is useful for morphing between arbitrary
levels of ECC, which trades off robustness with performance
or power savings.
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