
SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories
Gururaj Saileshwar§, Prashant J. Nair†*, Prakash Ramrakhyani‡, Wendy Elsasser‡, Moinuddin K. Qureshi§

§Georgia Institute of Technology †IBM Research ‡ARM Research
{gururaj.s,moin}@gatech.edu Prashant.Nair.J@ibm.com {Prakash.Ramrakhyani,Wendy.Elsasser}@arm.com

Abstract—Building trusted data-centers requires resilient
memories which are protected from both adversarial attacks
and errors. Unfortunately, the state-of-the-art memory security
solutions incur considerable performance overheads due to
accesses for security metadata like Message Authentication
Codes (MACs). At the same time, commercial secure memory
solutions tend to be designed oblivious to the presence of
memory reliability mechanisms (such as ECC-DIMMs), that
provide tolerance to memory errors. Fortunately, ECC-DIMMs
possess an additional chip for providing error correction codes
(ECC), that is accessed in parallel with data, which can be
harnessed for security optimizations. If we can re-purpose
the ECC-chip to store some metadata useful for security and
reliability, it can prove beneficial to both.

To this end, this paper proposes Synergy, a reliability-
security co-design that improves performance of secure ex-
ecution while providing strong reliability for systems with
9-chip ECC-DIMMs. Synergy uses the insight that MACs
being capable of detecting data tampering are also useful for
detecting memory errors. Therefore, MACs are best suited for
being placed inside the ECC chip, to be accessed in parallel
with each data access. By co-locating MAC and Data, Synergy
is able to avoid a separate memory access for MAC and thereby
reduce the overall memory traffic for secure memory systems.
Furthermore, Synergy is able to tolerate 1 chip failure out of
9 chips by using a parity that is constructed over 9 chips (8
Data and 1 MAC), which is used for reconstructing the data
of the failed chip. For memory intensive workloads, Synergy
provides a speedup of 20% and reduces system Energy Delay
Product by 31% compared to a secure memory baseline with
ECC-DIMMs. At the same time, Synergy increases reliability
by 185x compared to ECC-DIMMs that provide Single-Error
Correction, Double-Error Detection (SECDED) capability. Syn-
ergy uses commercial ECC-DIMMs and does not incur any
additional hardware overheads or reduction of security.

Keywords-Memory Security; Reliability; ECC-DIMMs

I. INTRODUCTION

Memory security is a major concern today. Several recent

studies [1], [2], [3], [4], [5] have exposed vulnerabilities that

allow an adversary unauthorized access to sensitive regions

of the memory, given physical access to the system. These

vulnerabilities can be exploited by the adversary to gain

control of the system. Furthermore, the proliferation of cloud

computing and remote data-centers has made these security

concerns more important. To address some of these issues,

commercial products like Intel Software Guard Extensions

(SGX) provide security for regions of the main memory [6],

[7]. We envision that such mechanisms will be extended for

securing the entire memory for resilient memory systems.

*This work was performed when Prashant J. Nair was affiliated with
Georgia Institute of Technology.

Providing security for commodity off-chip memory sys-

tems results in significant performance overheads. This is

because secure memory systems are required to store and

provide metadata via additional off-chip accesses. These

security metadata include counters, message authentication

codes (MACs), and an integrity tree that is traversed on each

access. We observe that accessing this metadata increases the

off-chip memory traffic and causes upto 60% performance

reduction. If we can fetch some of the metadata concurrently

while accessing data, we can reduce the memory traffic and

improve performance. To this end, this paper investigates

secure memory organizations that can provide security meta-

data with low bandwidth overheads.

In addition to providing security, a resilient memory

system must be robust to naturally occurring failures. Several

field studies [8], [9] have highlighted the reliability problems

that plague DRAM chips. To make matters worse, DRAM

chips are projected to encounter higher rates of failure as

they scale. Systems requiring high reliability predominantly

use memory modules equipped with extra chips to support

ECC (ECC chips). However, commercial memory systems

tend to be designed for reliability while being oblivious

to security mechanisms. Therefore, such secure memory

designs do not exploit ECC chips optimally.

This paper advocates re-purposing ECC chips to store

security metadata. As ECC chips are accessed in parallel

with data, such an organization can reduce the number

of metadata accesses. Ideally, we would like to store a

metadata that benefits both security and reliability of the

memory system. MACs help the security apparatus detect

data tampering as they are cryptographic signatures of data.

At the same time, MACs can detect memory failures as they

result in data corruption [10]. Therefore, MACs are an ideal

choice for the metadata to be placed in ECC chips.

Leveraging these insights, we propose Synergy, a co-

design of reliability and security for systems using ECC-

Dual In-line Memory Modules (ECC-DIMMs). Synergy not

only improves the performance of secure memory systems,

but also provides strong memory reliability. The key in-

sight behind Synergy is the co-location of MAC and data.

Commercial x8 ECC-DIMMs tend to have 8 data chips and

one additional ECC-chip. Synergy stores the MAC in the

ECC-chip (9th chip) thereby enabling it to use the additional

bandwidth of the ECC-chip to provide the MAC in the same

access as data as shown in Figure 1(c). This avoids the

requirement for a separate memory access for MAC on each

data access as shown in Figure 1(a) and reduces memory

traffic when compared to conventional designs.

454

2018 IEEE International Symposium on High Performance Computer Architecture

DOI 10.1109/HPCA.2018.00046

������

���

����

���

���	 	 	 	 	 	 	 	

�
���
�����

����
�
���

�����	

� ���

�
���
�����

�
���
�����

	 	 	 	 	 	 	 	 �

	�
��
���
��
����������
�������

	�����
��
�

	�
��
���
��
�������������������
	�����
��
�

	�
��� �!"�
	#����
��

���	 	 	 	 	 	 	 	

�
���
�����

� ���

�
���
����� �
���
�����

�

����

Figure 1: Synergy reduces memory accesses for security metadata MACs. (a) Secure memory with SECDED requires separate

memory accesses for data and MAC (b) Secure memory with Chipkill needs dual-channel operation, thereby doubling the

number of memory accesses (c) Synergy co-locates data and MAC, thereby providing both in a single memory access.

Synergy re-uses MACs for error detection by exploiting

their ability to detect data modifications (with a very high

probability). In the rare event of a faulty chip as detected by

the MAC, an 8-byte Parity constructed over the contents of

the 9 chips (8 data chips and 1 MAC chip) is used to correct

errors. This mechanism allows Synergy to tolerate any chip

failure within a group of 9 chips (ECC-DIMM).
Typically the 9-chip ECC-DIMMs use Single Error Cor-

rection Double Error Detection (SECDED) codes which

can correct only single-bit-errors. By tolerating entire chip

failures, Synergy provides much stronger reliability than

secure memory designs that use SECDED-based ECC-

DIMMs. Traditional memory systems use costly techniques

like Chipkill [11] to achieve a similar level of reliability.

To fix a single chip failure, Chipkill requires accessing 18

chips (two x8 ECC-DIMMs) typically across two channels

as shown in Figure1(b) [12], [13]. As 2x more channels

are occupied on every access, Chipkill naturally reduces

channel-level parallelism and reduces memory bandwidth,

thereby causing a slowdown. On the other hand, Synergy

provides Chipkill-level reliability by accessing only a sin-

gle channel and unlocking higher channel-level parallelism.

Furthermore, Synergy improves the performance of secure

memory systems by co-locating MAC and data.
We compare Synergy to a baseline system that uses ECC-

DIMMs for providing SECDED reliability. Our evaluations

with 29 memory intensive SPEC2006 and graph workloads

show that Synergy improves performance by 20% and

reduces the System Energy-Delay-Product by 31%. By pro-

viding Chipkill-level reliability by using only a single ECC-

DIMM, Synergy reduces the probability of system failure by

185x as compared to the baseline system. Synergy achieves

these benefits without any additional hardware or reduction

in security. We also compare Synergy to prior work that

follows similar spirit of security and reliability co-design.

Our comparisons against IVEC [10], a design that combines

security and reliability for commodity (non-ECC) DIMMs,

show that Synergy provides 60% higher performance than

IVEC, while providing similar reliability to chip failures.

II. BACKGROUND AND MOTIVATION

A. Securing Commodity-DRAM
1) Attack Model: Secure memories provide protection

from adversaries with physical access to the system. Similar

to past works [14], [15], our attack model assumes the pro-

cessor as the trusted computing base. All off-chip resources

including the memory bus and physical memory are vul-

nerable to unauthorized reads or modifications by attackers.

Additionally, an adversary may perform a man-in-the-middle

attack by intercepting the memory bus and replaying stale

data values. In such a setting, securing commodity memories

involves ensuring data confidentiality with counter-mode

encryption, data integrity with MACs, and replay attack

protection using integrity-trees. These security metadata are

fetched from memory through additional memory accesses,

on each off-chip memory access for program data.

����
���

	
���
���
��

������ � 	����������

	
���
���
�	�������������

�������

�����
������� 	������

Figure 2: Counter-Mode Encryption

2) Confidentiality with Counter-Mode Encryption: To

prevent attackers from reading sensitive memory contents,

data is stored in memory using Counter Mode Encryption

[16], [17]. As shown in Figure 2, during encryption, a cipher-

text is generated from a plain-text cacheline through an XOR

with a One Time Pad (OTP). Decryption is performed by an

XOR of the cipher-text cacheline with the same OTP. The

OTP is a secret bit-string unknown to the adversary gener-

ated using a block cipher like Advanced Encryption Standard

(AES) and a secret key only known to the processor. A per-

line counter, that is incremented on each cacheline-write, is

used as an input to AES to ensure temporal variation in the

encrypted data. To avoid fetching the counter from memory

on each data access and allow for pre-computation of the

OTP, the counter is cached on-chip in a dedicated cache [6]

or in the last-level cache [18].

455

3) Integrity using Message Authentication Codes: To pre-

vent unauthorized modification of memory contents, cryp-

tographic signatures of cacheline contents called message

authentication codes (MACs) are stored in memory per

data-cacheline. As shown in Figure 3, MACs are created

using a cryptographic hash function (e.g. 64-bit AES-GCM

based GMAC [17]) with a secret key known only to the

processor. On every cacheline access, the memory controller

recomputes the MAC using the cacheline contents and the

corresponding counter and verifies it with the stored MAC.

Any modification to the cacheline results in a MAC mis-

match, causing the memory controller to declare an attack.����

�������	�

���
����
������
����
���

������ ������������

�
��
����
	�

Figure 3: Integrity Verification using MACs

4) Replay Attack Protection: An attacker with access to

the bus between the on-chip microprocessor and the off-

chip memory could replace an entire tuple of {Data, MAC,
Counter} with an older copy without detection. To prevent

such replay attacks, secure memories use an integrity tree

[6], [14], [19], a data-structure for ensuring integrity of a

large area of memory with a limited on-chip storage.

Integrity Tree

Ctr
 0

Ctr
 1

MAC
 00

Ctr
 2

Ctr
 3

MAC
 01

Ctr
 4

Ctr
 5

MAC
 02

Ctr
 6

Ctr
 7

MAC
 03 Counters

Ctr Ctr MAC
 10

Ctr Ctr MAC
 11

Ctr Ctr MAC
 20

MT00 MT01 MT02 MT03

MT10 MT11

Level 0

Level 1

Encryption

���� ���� ���� ����

���� ����

Figure 4: Integrity Tree for Replay Attack Protection

Figure 4 shows a 2-ary counter tree that protects the

encryption counters from replay. At each level, the counters

are equipped with a MAC for integrity, generated using a

higher level tree-counter (e.g., MAC00 for the contents of

Ctr0 and Ctr1 is generated using CtrMT 00 in Level-0). On

each memory access to the encryption counter (Ctr0), it’s

integrity can be verified by accessing the Level-0 counter

(CtrMT 00) and computing the MAC (MAC00). The integrity

of the Level-0 counter can in-turn be verified by accessing

the Level-1 counter and so on. As the number of counters

exponentially reduces at each level, the root is small enough

to be always stored on-chip, secure from tampering. Thus,

a replay of an encryption counter can be prevented by

traversing the integrity tree and verifying the integrity of

each level, until the trusted root is reached. While the

counter tree in Figure 4 only provides replay protection for

encryption counters in a Bonsai-style [14], that is sufficient

to prevent replay of the {Data, MAC, Counter} tuple.

Alternately, an integrity tree can be a tree of hashes, i.e.

MAC tree or Merkle tree [20], where each level is a series

of hashes based on its lower level. Typically, 8-ary counter

trees [6] or MAC trees [17] have been used in prior work.

5) Memory Security in Intel SGX: Intel Software Guard

Extensions (SGX) is a commercial product that provides

memory security [6] for enclaves (small regions) in memory.

It uses 56-bit counters for encryption and integrity, 56-bit

MACs based on Carter-Wegman MAC design [21] and an

8-ary counter tree based integrity tree. Additionally, the

counters (encryption and integrity-tree) are cached in a

dedicated cache on-chip. In this paper, we use an SGX-like

design extended to secure the entire memory. In addition, we

use an optimized baseline (SGX O) that caches counters in

the last-level cache [18] in addition to the dedicated counter-

cache. For consistency across designs, we assume 64-bit

GMAC based MACs for SGX and SGX O.

B. Strong Reliability in Secure Memory

In large-scale production grade clusters, memory related

errors have been reported as the leading cause of hardware

crashes [9], [22]. In the absence of any error correction

mechanism, a secure memory would flag memory errors

as an attack, as it has no means of distinguishing between

modifications to data due to errors and attacks. To prevent

such false positives, a secure memory system must be

equipped to tolerate memory errors.

Table I. DRAM failures per billion hours (FIT) [8]

Fault Rate (FIT)

DRAM Chip Failure Mode Transient Permanent

Single bit 14.2 18.6

Single word 1.4 0.3

Single column 1.4 5.6

Single row 0.2 8.2

Single bank 0.8 10

Multi-bank 0.3 1.4

Multi-rank 0.9 2.8

Table I shows real-world failure probabilities for DRAM

devices, as per Sridharan et.al [8]. Secure memory sys-

tems can use ECC-DIMMs that store single-error-correction,

double-error-detection (SECDED) [23], [24] codes to tol-

erate single-bit errors. Since they make up 50% of the

failures, SECDED provides a 2x improvement in probability

of system failure. ECC-DIMMs provide similar performance

as Commodity DIMMs, as they provision additional storage

and memory bus-width for SECDED codes. For protection

against multi-bit failures (failing rows, banks etc.), which

occur as often as single-bit failures, solutions like Chipkill

[11] use symbol-based error correction [25]. They provide

the ability to correct errors arising from the failure of one

entire DRAM chip out of 18 chips, reducing system failure

probability by 42x compared to a system with SECDED pro-

tection. However, Chipkill incurs a performance slowdown

456

Error
Occurs

Undetected
Error

MAC Mismatch

Data
Reconstruc�on

Error
Detected

Next Correc�on A�empt

MAC
Collision

Yes

(1 in 2�� Chance)

Miscorrec�on

No Error
Corrected

Detectable Uncorrectable
Error / A�ack

Single Chip Error

(c) Error Detection and Correction Flow

Yes MAC
Matches

No

Mul��Chip Error

MAC
Collision

Yes

No

(1 in 2�� Chance)

ECC-DIMM Channel A

C0 C1 C2 C3 C4 C5 C6 C7 C8 C1'

MAC PARITY

FAULTY CHIP

MAC
COMPUTATION

X
COMPUTED

MAC

(a) Error Detection Mechanism

DATA

RECONSTRUCTION
ENGINE

Correction
Attempt

MAC

MISMATCH

MATCH

C1

C2

C0

(b) Error Correction Mechanism

MISMATCHMISMATCH

ECC-DIMM Channel B

Figure 5: Synergy provides Chipkill-level reliability using MAC for Error Detection and 9-Chip Parity for Correction.1

when implemented with x8-DIMMs owing to over-fetch of

cachelines [13] and loss of channel-level parallelism [12]

due to its dual-channel lock-step operation.

C. Performance Problem in Secure Memory

Securing commodity DRAM requires storing security

metadata in memory and accessing it on each off-chip

memory access for program data. This leads to performance

slowdown during secure execution, especially for memory-

intensive workloads requiring frequent accesses to memory.

�
��
�
��
�	

�
�

�
��
��
��
�

Figure 6: Performance of SGX, SGX O and Non-Secure,

all normalized to SGX O.

Figure 6 compares performance of secure execution (SGX

and SGX O) against non-secure, for memory intensive

workloads from SPEC2006 and GAP [26]. Non-Secure is

112% faster than optimized baseline SGX O that caches

counters in last-level cache. SGX is 30% slower than

SGX O as it caches counters in a small dedicated cache.

Thus, there is a considerable performance gap between non-

secure and secure execution that needs to be bridged.

D. Insight: Security-Reliability Co-design

Modern server systems largely use memory modules pro-

visioned with additional storage for error correction (ECC-

DIMMs), as such systems have an indispensable need for

reliability. Current-generation x8 ECC-DIMMs possess an

additional ECC-chip providing 12.5% additional storage and

bandwidth dedicated for error correction codes. Additionally,

secure memories use MACs for data integrity, that can also

act as strong error detection codes given their ability to

detect data tampering with a high probability [10]. Us-

ing MACs for error detection can make the ECC fetched

from the ECC-Chip redundant in common-case error-free

accesses. This latent ECC-Chip bandwidth may be used

towards improving the performance of secure execution.

The goal of this paper is to combine memory security

and reliability using this insight and not only improve

performance but also provide better reliability.

III. SYNERGY DESIGN

Synergy enables a symbiotic relationship between reliabil-

ity and security, when used with a 9-chip ECC-DIMM. By

storing MAC (8-byte GMAC) in the 9th Chip of the ECC-

DIMM as shown in Figure 5, Synergy is able to co-locate

MAC and data. As this allows MAC to be fetched in the

same access as data avoiding a separate access for MAC,

Synergy reduces the overall application memory traffic and

improves the performance of secure execution.

In addition, Synergy also improves reliability by providing

tolerance to chip-level failures, compared to SGX O with an

ECC-DIMM storing SECDED code, that is only capable of

tolerating single-bit errors. As shown in Figure 5(a), Synergy

re-uses the MAC for error detection. In the event of an

error due to a faulty chip, there is a mismatch between the

computed MAC and the stored MAC. In this case, an 8-

byte Parity (C0 ⊕C1 ⊕C2 · · ·⊕C7 ⊕MAC) constructed over

9-Chips (8 data chips and 1 MAC chip) is used to reconstruct

the data (e.g. C2 = Parity⊕C0 ⊕C1 ⊕C3 · · · ⊕C7 ⊕MAC).

Since the identity of the erroneous chip is unknown, the

RAID-3 based Reconstruction Engine sequentially checks

for an error in each of the 9 chips, reconstructing the data

and verifying if the re-computed MAC matches, as shown

in Figure 5(b). As long as the error only impacts one chip

out of a set of 9 chips (8 Data, 1 MAC), Synergy is able to

reconstruct the entire data of the failed chip (assuming the

Parity is non-erroneous). Thus, Synergy can correct 1 chip

failure out of 9 chips and provide stronger reliability than

conventional Chipkill, that can only tolerate 1 chip failure

out of 18 chips.

Note that while the reconstruction is liable to suffer mis-

correction because of a MAC-collision, the probability of

this event is negligible (2−61 for 8 MAC re-computations).

Additionally, because the value corrected by the Parity is al-

ways verified with the MAC, Synergy maintains the security

of the underlying secure memory system. The subsequent

section describes how the error detection and correction

algorithm integrates with the integrity tree traversal, and the

handling of corner cases like error in counters or parities.

A. Memory Organization

Figure 7(a) shows the memory organization of Synergy,

implemented with a 9-chip ECC-DIMM. There exist four

types of cachelines, where a potential error might occur:

1Although Fig 5 depicts parity and data in separate channels, Synergy
design can accommodate both in the same channel as well.

457

���������	
��	

���������	
��	�

����

���
������

��

������

������
�

������
�

���

����

������
�

�� �� �� �� �� �� �	 �
 ���

���
��

�����
 ���
���

���

����

�����
 ������ ���
��

 �����	��

��� ��� ���
���

��� ��� ���
���

��

 ��
�

���
 ����

���
���������	
��	

�	�	
�

���	����������

���
��
�
����
�

����� �

Figure 7: Synergy design for improving performance by co-locating MAC with data, while providing Chipkill-level reliability

(a) Memory Organization (b) Potential Error Scenarios - Detection (c) Potential Error Scenarios - Correction

Data cacheline: Synergy co-locates data and MAC, with

the 64-byte data stored in 8 chips and the 8-byte MAC stored

in the 9th-ECC-chip. An error in either the data or the MAC

results in a mismatch during the MAC computations for data

integrity. E.g., In Figure 7(b), an error in Data Cacheline0

or MAC0 causes a mismatch in the MAC0 computation.

Parity cacheline: Since MACs are stored in the ECC-

chip, the parities are stored in a separate area in memory.

Synergy stores eight 8-byte parities in a cacheline, such that

each chip Ci supplies a single parity as shown in Figure 7(a).

An error in parity is critical only if the data cacheline

it protects is erroneous at the same time (e.g., a failed

chip contained Data and its Parity in separate cachelines).

To tolerate such scenarios, the ECC-chip stores a parity

of parities (ParityP = P0 ⊕ P1 ⊕ P2 · · · ⊕ P7) for the parity

cacheline. We cover the scenario of erroneous parity while

addressing error correction for data cachelines.

Encryption counter cacheline: The counter cacheline

structure in Synergy is similar to SGX and contains eight

56-bit counters and one 64-bit MAC organized such that

each chip provides a single 56-bit counter and 8-bits of the

MAC. As a result, a chip failure causes a single counter in

the cacheline to become erroneous along with a portion of

the MAC provided by the chip. This leads to a mismatch

during the MAC computation for the data cacheline (MAC0

in Figure 7(b)) using the erroneous counter (Ctr0) and a mis-

match in the MAC computed during the counter tree walk

(MAC00). To provide reliability in such scenarios, Synergy

stores 8-byte parities (ParityC =C0 ⊕C1 ⊕C2 · · ·⊕C7) con-

structed over 8 chips, in the ECC-chip for these cachelines.

Integrity tree counter cacheline: The integrity tree

counter cacheline is similar in structure to an encryption

counter cacheline. Each cacheline has eight 56-bit Integrity

Tree Counters (CtrMT) and one 64-bit MAC, with each chip

providing a single CtrMT and 8-bits of MAC. Additionally,

an 8-byte parity (ParityT) is stored in the ECC-chip.

Thus for error-handling purposes, there are two types of

cachelines - Data cachelines and Counter cachelines.

B. Error Detection and Correction
Figure 7(b) shows the operations performed as a part

of integrity-tree traversal, on a data-cacheline read. For

example, reading Data Cacheline0 from memory requires

a MAC computation (MAC0) and a counter tree traversal

involving a series of MAC computations (MAC00, MAC10,

MAC20). The tree traversal continues until a particular entry

hits in the on-chip cache (e.g. Level 1 entry). A memory

error can manifest as a mismatch in any of these MAC

computations. However, it is difficult to pin-point the cause

of a particular MAC mismatch as there are multiple potential

sources of errors (e.g. MAC0 mismatch can be due to an

error in MAC0, Ctr0 or Data0). To solve this problem,

Synergy uses an error detection and correction algorithm

that is integrated with the integrity tree traversal.
Upward tree traversal for integrity / error detection:

On every memory access, Synergy traverses the integrity tree

from the bottom to the top, as shown in Figure 7(b) to protect

against a replay attack. On any MAC mismatch, rather than

declaring an attack immediately, Synergy continues the walk

logging any mismatches as they occur. This process ends

when the tree-walk finds a CtrMT entry cached on-chip.

This entry is assumed to be free from errors since it is

found on-chip. For example, Level 1 CtrMT (shown as A
in Figure 7(b)) is found on-chip and does not require any

error correction (Scenario A in Figure 7(c)).
Downward tree traversal for error correction: Next,

the tree-traversal in the downward direction is performed

for error correction, from top to the bottom as shown in

Figure 7(b). At each level, forward progress is made if errors

at the previous level (higher in the tree) are corrected and

mismatches are cleared by using the parity to reconstruct the

data as shown in Figure 5. Therefore, at each level in case

of a mismatch, the root-cause could only be errors in the

same cacheline as the MAC. For example, in Figure 7(b),

a mismatch at B could only mean an error in the Level

0 integrity tree cacheline as the other input to MAC10 is

from a higher level in the tree (Level 1 CtrMT) and must

be correct since it was visited earlier by the algorithm. At

458

any level, if the error is not correctable, i.e. parity is unable

to convert the mismatch into a match, an attack is declared

ensuring the security of the memory contents.

As shown in Figure 7(c), there are two broad error

correction scenarios:

Error correction for counter cachelines: A mismatch of

the MAC in the counter or integrity tree cacheline is possible

only due to an error in the same cacheline. It can be corrected

using a parity-based data reconstruction technique similar to

Figure 5. Synergy tries to reconstruct the contents of each

of the 8 chips (C0 to C7) using the parity (ParityC or ParityT
as applicable). A match of the stored MAC in the cacheline

with the recomputed MAC indicates the success of each

reconstruction attempt (Scenarios B and C in Figure 7(c)).

In this case, the reconstruction engine makes a maximum of

8 MAC re-computations per cacheline.

Error correction for data cachelines: Mismatch in MAC

computation for the Data cacheline could be due to an

error in any of the 9 chips (8 data and 1 MAC). Synergy

sequentially tries to reconstruct the contents of each of the

9 chips using the parity (e.g. P0 as shown in Scenario D in

Figure 7(c)) and attempts to resolve the MAC mismatch.

First, Synergy attempts reconstruction of the MAC chip

contents. If unsuccessful, Synergy sequentially attempts re-

construction of other 8 data chips.

There is a chance that all the reconstruction attempts are

unsuccessful due to an erroneous parity. This is possible

when the Parity ends up in the same faulty chip as the

data, in separate cachelines. In this scenario, the parity of

parities (ParityP) stored in the ECC-Chip along-with the

parity cacheline, is used to reconstruct the erroneous parity.

The data reconstruction in this case is attempted with both

the original parity and the reconstructed parity. Thus, up

to 16 MAC re-computations may be required to correct an

erroneous data cacheline.

Detected Uncorrectable Errors or Attack: Synergy’s

error correction mechanism optimistically attempts to correct

errors under the assumption that no more than one out of 9

chips is erroneous at any given time. However, it is possible

that more than one chip suffers from errors at the same time

- although failure probabilities from Table I indicate that

this would be a rare occurrence. Furthermore, an adversary

could modify data in multiple chips at the same time. In such

scenarios, while the MAC would detect the modification to

data, the reconstruction engine would not be able to correct

it. In this scenario, Synergy declares an attack since it is

unable to identify the source of a data modification - a

naturally occurring error or a malicious attack. Thus any

malicious modification that cannot be corrected is flagged

as an attack, retaining the security of the system.

IV. DISCUSSION

A. Implications for Reliability

Reliability to Chip Failures: For counter cachelines,

Synergy uses the chip-level parity stored in the same line

constructed over 8 data chips to correct the counters in

those 8 chips. For Data+MAC cachelines, the parity is

constructed over 9 chips (8 data and 1 MAC chip) and

stored in a separate cacheline (potentially in a chip on a

different channel). Because the ParityP is available to fix

errors in the parity cacheline, Synergy is still able to correct

an overlapping error between any of 9 Data+MAC chips

and the Parity chip. As a result, in all cases, Synergy is

able to guarantee correction of all-bit errors as long they are

restricted to 1 chip out of a set of 9 chips.

Probability of Mis-correction or Silent Data Corrup-
tion: To correct each MAC mismatch, Synergy performs

a maximum of 16 MAC computations (in the case that

data and parity are simultaneously in error). Mis-correction

of data by the Reconstruction Engine can occur only if it

encounters a hash conflict during the sixteen reconstruction

attempts (event probability less than 10−20). Given that

reconstruction is triggered only on an error (assuming a

conservative rate of 100 failures per billion hours2), the

overall Silent Data Corruption (SDC) rate of Synergy is less

than once per 1014 billion years (or an SDC Failure In Time

(FIT) rate of 10−19), about thirteen orders of magnitude

lower than Chipkill-based non-secure memory systems.

Mitigating Correction Latency under Permanent Chip
Failures: Synergy can require up to 88 MAC computations 3

to correct errors from a single failed chip, depending on the

number of MAC mismatches on each data access. This can

result in an unacceptably large correction latency in case of

a permanent chip-failure causing frequent errors. A simple

way to mitigate this is to track the faulty chip for each error

corrected. After a sufficiently large number of errors have

been detected reporting the same faulty chip, Synergy can

preemptively correct the identified chip’s data with the parity

on each access before verifying the integrity with a MAC

computation. Thus the correction overhead on a chip failure

is reduced to 1 MAC computation, that is anyway required

in the baseline secure memory design for data integrity.

Storage Overheads: Synergy incurs a 12.5% storage

overhead for storing the Parity (8 bytes per 64-byte cache-

line), which is required for error correction. However, this is

equivalent to the 12.5% storage overhead for SECDED-ECC

in the baseline design with SGX using ECC-DIMMs (8 byte

ECC per 64-byte cacheline) or an SGX design with Chipkill

(2 ECC symbols per 16 data symbols). The reliability storage

overhead in each of these designs is in addition to the

storage overheads for security metadata (encryption counters

- 12.5%, MACs - 12.5% and integrity tree - 1.8%).

2Assumed rate of DRAM transient failures - 20 per billion hours. [8]
3For a 9-level Integrity Tree protecting a 16GB memory.

459

Design Integrity Tree Counter MAC Reliability Design
Design Caching Design Caching

SGX [6] Bonsai Counter-Tree Monolithic (56-bit) Dedicated Cache 64-bit GMAC None SECDED

SGX O Bonsai Counter-Tree Monolithic (56-bit) Dedicated and LLC 64-bit GMAC None SECDED

Synergy Bonsai Counter-Tree Monolithic (56-bit) Dedicated and LLC 64-bit GMAC None MAC+Parity Co-design

IVEC [10] non-Bonsai GMAC-Tree Split (64-bit Major, 7-bit Minor) Dedicated Cache 64-bit GMAC LLC MAC+Parity Co-design

Table II. Secure Memory Designs Evaluated

B. Implications for Security
Impact of repeated MAC computations: Successive

MAC computations for verifying error correction success

reduces the effective strength of the MAC. The reconstruc-

tion engine performs at-most 16 MAC re-computations for

a particular 64-bit MAC in the Data Cacheline, reducing

the effective strength of MAC to 60-bits. For a MAC in

the counter cacheline, the reconstruction engine performs at-

most 8 MAC recomputations, reducing the effective strength

of the MAC to 62-bits. However, this trade-off is acceptable

since Synergy still provides stronger protection than com-

mercial SGX, which only uses a 56-bit MAC [6].
Parity tampering by adversary: As parity is stored un-

protected in the memory, it can be modified by an adversary.

However, a tampered parity may only be used in the event

of a MAC mismatch. In the common case, a tampered parity

will be unable to correct the error behind the mismatch and

cause Synergy to declare an attack, retaining the security

of the system. The probability of a tampered parity causing

data mis-correction is negligible as this is equivalent to the

attacker committing MAC forgery (probability � 10−20).
Vulnerability to denial of service attacks: An adversary

might modify memory expressly with the intent of creat-

ing correctable errors, so that Synergy incurs the latency

of multiple MAC re-computations leading to a denial of

service. While this does not affect correctness, it impacts

performance. To allow for detection of such scenarios,

the memory controller may log all incidents of corrected

memory errors, with statistical analysis used to distinguish

artificially created errors from naturally occurring ones.
Resilience to bit-flip attacks: Attacks like Row Hammer

[3] try to gain privilege by flipping bits in sensitive areas

of memory. Since Synergy corrects all bit errors within a

single chip, it can not only detect these attempts, but also

correct them and be resilient to such attacks as long as they

are localized to a single chip. In case such attacks cause bits

in multiple chips to flip, then Synergy will detect it using

the MAC, but be unable to correct and declare an attack.

V. EXPERIMENTAL METHODOLOGY

Performance simulations: For evaluating performance

and memory power, we use USIMM [27], [28], a memory

system simulator. We compare the performance of different

configurations on the basis of IPC (Instructions per Cycle)

normalized to the baseline configuration. Additionally, we

evaluate the overheads in each configuration by quantifying

the bloat in memory traffic due to secure execution, i.e.

the additional memory accesses made by the application for

security metadata and the bloat in memory traffic incurred

for reliability, i.e. memory accesses for parity updates.

Reliability simulations: For evaluating reliability, we use

FAULTSIM [29] a memory reliability simulator. We use a

fault model based on real-world field studies from Sridharan

et.al. [8] shown in Table I. We evaluate the reliability of

the system by calculating the probability of system failure,

i.e. the probability of the system encountering an uncor-

rectable error. We measure this by performing Monte-Carlo

simulations on 1 billion devices over a 7 year lifetime and

calculating the fraction of failed systems.
System configuration: We evaluate Synergy with a se-

cure memory design using 56-bit counters for encryption,

64-bit MACs (AES-GCM based GMACs) and a Bonsai-

style counter tree [6], [14] using 56-bit counters and 64-

bit MACs (AES-GCM based GMACs). Our baseline secure

memory design SGX O using SECDED ECC-DIMM, is

an optimized version of SGX that caches counters in both

dedicated and last-level cache. We also compare against

SGX that only caches counters in the dedicated cache. For

consistency, we assume a 64-bit GMAC as the MAC design

for SGX O and SGX. We also separately compare against

IVEC, that uses a MAC-Parity co-design with a non-Bonsai

Merkle-Tree based integrity tree. Tables II and III provide

more details regarding the configurations we evaluate.

Table III. Baseline system configuration

Number of cores 4

Processor clock speed 3.2GHz

Processor ROB size 192

Processor fetch, retire width 4

Last Level Cache (Shared) 8MB, 8-Way, 64B lines

Metadata Cache (Shared) 128KB, 8-Way, 64B lines

Memory bus speed 800MHz

DDR3 Memory channels 2

Ranks per channel 2

Banks per rank 8

Rows per bank 64K

Columns (cache lines) per row 128

Workloads: We evaluate Synergy with workloads from

SPEC2006 [30] and GAP [26] benchmark suites. As Syn-

ergy is focused on reducing the application memory traffic,

we present evaluations only on memory-intensive workloads

from SPEC2006 (>1 memory access per 1000 instructions).

From GAP, we use 6 representative workloads (Page Rank,

Connected Components, Betweenness Centrality kernels

with Twitter and Web data-sets). For each benchmark, we

pick a representative slice of 1 billion instructions using Pin-

points. Our evaluations run the benchmarks in rate mode, i.e.

each of the four cores runs the same copy of the benchmark.

Additionally, we evaluate 6 mixed workloads generated by

choosing random combinations of 4 benchmarks.

460

���
� ���
� ���
� ���
� ��	
� ���
� ���

�
�

�

���

��
�

�

��
��
��
��

�

��
���

��
��
�� ��

�
���
���

��

�
�
!

��

��
"# �$

�

���
���
%
&
'��
�

�
�'
��	
#�
�
(
(

��

��
��

)
�

��

�
�	

�
�"

�
��

�
�*

�
��

�$
��
��

��
��
��

��
��
��

�$
��
�

��
��
�

��
��
�

+,
-. &(

/
�%
,

%0
0	
1

2
�$

�

�'
�#
�,
�$
��
$

��
��

+�/

+3��$�3
+�/45

+,-. &(/ �%, �&-%2

Figure 8: Performance (IPC) of SGX, SGX O and Synergy normalized to SGX O Baseline. Synergy improves the

performance of secure execution by 20% compared to SGX O. SGX has 30% lesser performance than SGX O.

VI. RESULTS

A. Impact on Performance

Figure 8 compares the performance of Synergy (using co-

design) with SGX and SGX O (without the co-design) all

normalized to SGX O’s IPC (Instructions Per Cycle), for

29 workloads from across SPECint, SPECfp, GAP suites.

Synergy improves the performance of secure execution by

20% compared to SGX O baseline, while SGX has a

performance slowdown of 30% compared to SGX O.

Secure memories consume considerable memory band-

width due to additional accesses for metadata (i.e. counters,

integrity tree entries and MACs). Therefore, secure memory

systems are more bandwidth-constrained than non-secure

systems. As Synergy places the MAC in the ECC-chip and

accesses it alongside data, it eliminates the bandwidth over-

head of accessing the MAC. As a result, Synergy reduces the

overall memory traffic and the corresponding queuing delay

for the memory accesses. This enables Synergy to improve

performance compared to SGX O across all workloads.

SGX shows a considerable slowdown primarily because

it uses a dedicated cache for the counters that are required

on each data access for decryption and integrity verification.

The small dedicated cache is unable to sustain the working

set of counters, leading to considerable memory accesses for

fetching counters and causing a considerable performance

slowdown. Our baseline SGX O caches counters in the last-

level-cache, in addition to the dedicated cache. This reduces

the memory traffic for counters and improves performance

for SGX O compared to SGX.

Graph workloads with the web dataset (pr-web, cc-web,

bc-web) are an exception showing a slowdown for SGX O

compared to SGX. For these workloads, counters aggres-

sively compete with data for last-level cache space, increas-

ing data evictions and overall memory traffic in SGX O.

However, Synergy still shows speedup compared to SGX O,

as it doesn’t require memory accesses for the MAC.

Synergy does not show any difference in performance

for non-memory intensive workloads from SPEC2006 as

they are bandwidth insensitive. As the memory traffic is

negligible in the baseline (<1 memory access per 1000

instructions), a reduction in memory traffic due to Synergy

does not have any perceptible impact on performance.

B. Analyzing Memory Access Bloat

���

� ���

� ���

� ���

� ���

� ���

� ���

	
 � 	
 � 	
 ��

�
�
��
��
��
��
��

�
��
��
��
���

��	� ����� !��	""

#���$�
�	�%
�
&'$��%
��$�

()�*�++,
(
)�*�++,-
(�)�*�+�'��.�

Figure 9: Memory traffic by type of access, normalized to

SGX O. Synergy reduces the accesses for MACs on reads

and writes, but incurs accesses for Parity updates on writes.

Figure 9 shows the memory traffic (number of memory

accesses per thousand instructions) for Synergy compared

against SGX and SGX O, normalized to baseline SGX O.

The memory traffic is split into four categories: (1) accesses

to program-related data, metadata for security like (2) coun-

ters and (3) MACs, and metadata for reliability like (4)

parity. We present this analysis for data reads, data writes

and overall, showing benefits of Synergy for reads.

The memory traffic in SGX and SGX O consists of

accesses to program data, in addition to accesses for counters

and MACs required for ensuring security (security bloat).

There are no additional accesses towards reliability as the 9

chips in ECC-DIMM (8 data and 1 ECC chip) are accessed

concurrently, providing ECC in the same access as Data.

SGX on average incurs additional accesses for counters

compared to SGX O. This is because SGX caches counters

in a small dedicated cache that is unable to store the

entire working set of counters, leading to increased memory

accesses. This effect is more pronounced for writes, as that

requires updates to multiple levels of counters (encryption

and integrity tree). SGX O allows caching counters in last-

level cache, reducing the accesses for counters, while retain-

ing the accesses for the MAC. As a result, MACs become

the dominant fraction of the security bloat in SGX O.

Synergy does not require separate accesses for the MAC

on Data reads and writes, due to its co-location of MAC and

data. This reduces the security-bloat compared to SGX O

on both reads and writes. On writes, Synergy incurs an

equivalent bloat for updates to parity, which is stored in a

separate region of the memory. This leads to similar memory

461

traffic compared to SGX O on writes. Overall, Synergy

reduces the memory accesses by 18%.

To avoid separate accesses for parity updates on data

writes, co-location of both MAC and parity with Data is pos-

sible with custom DIMMs that provide 16 bytes of additional

metadata per 64-byte cacheline. Such organizations may be

used for future standards on reliable and secure memories.

C. Impact on System Power and Energy

Synergy impacts system energy due to reduction of extra

memory accesses and change in the execution time com-

pared to SGX and SGX O. Figure 10 shows the power,

performance, energy, and Energy-Delay product (EDP) for

the different configurations, all normalized to SGX O.

�
��
�
��
�	

�
��

�
��
��

���
� �
������	

 �	
��
 �	
��
��
��
������
�
����

����

����

����

����

����
���
�����
�
	
��

Figure 10: Power, Performance, Energy and System-EDP of

SGX, SGX O and Synergy.

As power is dependent on both energy consumption and

execution time, it remains similar across the three configu-

rations. SGX needs extra accesses for counters, consuming

more energy per memory request (resulting in higher total

energy). However, it also has higher execution time (reduced

performance), leading to similar power as baseline SGX O.

On the other hand, Synergy reduces execution time and

has less energy per access (due to avoided MAC accesses).

Overall, Synergy reduces EDP by 31% compared to SGX O.

D. Impact on Reliability

����

����

����

����

����

� � � � � !

"#

�
��
���
��
�	

��
��
�

�
��
��
��
�

��
	�
��
��
�

�

�
���

����������������� � ��!��"�#��
�"�#$�����%&��"�#��

'()

*)

��+
�������!��"�#��

Figure 11: Reliability for secure memories with SECDED,

Chipkill and Synergy. Synergy reduces probability of system

failure by 185x compared to SECDED.

We compare reliability provided by Synergy against the

SECDED protection available to SGX O or SGX using

ECC-DIMM (9 chips) and Chipkill (implemented with 18

chips over two channels). Figure 11 shows the probabil-

ity of a system failure due to an error over a period

of 7 years. SGX O has a low level of reliability since

SECDED can tolerate only single-bit failures. As compared

to that, conventional Chipkill provides 37x reduction in

failure probability, since it can tolerate 1 chip failure out

of 18 chips. Synergy provides 5x reduction in probability of

system failure compared to Chipkill (and 185x compared to

SECDED), as it can correct 1 chip failure within 9 chips.

This is in line with the observation that the probability of

two chips being erroneous varies as the square of the number

of chips that could potentially be faulty.

E. Sensitivity to Memory Organization

�,�
� �,-
� �,�
� ���
� ���
� ���
� 	��
� 	�	
� 	�

� 	��
� 	��

������� �
������� �
�������

�
��
�
��
��
��
��
��
��
�� �������

��
�� !"

Figure 12: Performance benefits of Synergy as the number

of channels is varied from 2 to 8

Figure 12 shows the performance of SGX, SGX O and

Synergy all normalized to SGX O as the number of channels

is increased from 2 (default) to 8. With increasing channels,

the system becomes less bandwidth bound. This leads to

higher tolerance of the security bloat, reducing the slowdown

for SGX from 29% to 21%. Additionally, the MAC accesses

of secure memory have a lesser impact on performance in the

baseline, causing the performance improvement of Synergy

to reduce from 20% to 6%.

F. Sensitivity to Counter Organization

����

� ����

� ����

� ����

� ����

� ��	�

� ��
�

��
� ��� ��� �����

�
��
�
��
��
��
��
��
��
 �

��!���"#�$��� !"��%�&
'�(�"%)��!�*�
����"��� !"��%�&+�,�"%)��!�*

Figure 13: Speedup with Synergy vs SGX O, using Mono-

lithic Counters (default) and Split Counters.

We evaluate the benefits of using Synergy with an alter-

nate secure memory design that uses Split Counters [17].

Split Counter design proposes using smaller per-line coun-

ters (8 bits per line) to improve performance, as opposed

to monolithic 56-bit counter per line in our secure memory

design. Figure 13 shows the speedup of Synergy with both

monolithic counters (default) and Split Counters, compared

against SGX O using the same counter design. Synergy

with Split Counters provides 3% additional speedup than

monolithic counters, as this optimization further improves

the cache-ability of the counters, making MACs a larger

462

fraction of the security bloat in the baseline. Nonetheless,

Synergy is effective for both counter organizations.

G. Sensitivity to caching Counters in LLC

����

� ����

� ����

� ����

� ����

� ��	�

� ��
�

��
� ��� ��� �����

�
��
�
��
��
��
��
��
��
 �

���" ��������$#�
$���$�"�����$#�

Figure 14: Synergy speedup when counters use both dedi-

cated and last-level cache (default) vs only dedicated cache.

We evaluate the benefits of using Synergy with secure

memory designs that either use both dedicated and last-level

cache (LLC) for caching counters (like SGX O), or use only

dedicated cache for counters (like SGX). Figure 14 shows

the speedup of Synergy in both configurations, normalized to

SGX O and SGX respectively. Synergy using only dedicated

counter cache shows lesser performance benefits (13%)

compared to Synergy using LLC for caching counters (20%).

This is because counter accesses form a larger fraction of the

memory traffic in the dedicated cache configuration, leading

to MACs accesses forming a smaller portion of the mem-

ory traffic. As Synergy’s performance benefit stems from

reduction in MAC memory accesses, the configuration using

only dedicated counter cache, shows a smaller speedup.

Nevertheless, Synergy benefits both configurations.

VII. RELATED WORK

We quantitatively compare against prior work IVEC, a

proposal combining memory security and reliability that

is closest to our proposal. We also qualitatively compare

proposals for reliability-security co-design in other areas.

A. Co-design of Reliability and Security

1) Memory reliability-security co-design (IVEC): Prior

work IVEC [10] has proposed co-designing reliability and

security to provide Chipkill reliability for x4 Commodity

DIMMs without ECC-chips. It proposes using MACs as

error detection codes and using 4 bit - 4 byte parities per

cacheline to correct 1 chip failure out of 16 chips (50x

reliability compared to SECDED).

While IVEC is an excellent design providing strong

reliability and security, it does not optimize for performance,

which is a key impediment to adoption of secure memories.

Furthermore, with reliability being an absolute requirement,

ECC-DIMMs have become the de facto standard in datacen-

ters [31]. For reasons of economies of scale, it is simpler

even for secure datacenters to use ECC-DIMMs [32]. In

this context, while IVEC proposes eliminating ECC-chips,

Synergy re-purposes the ECC-chips for storing MACs and

improves performance and Energy-Delay Product. Thus

Synergy makes a stronger case for reliability-security co-

design in memory systems.

���������	
��	 ��
���

��
���

��������

	

�
��
�����
��
�

������

��
���

���
������������	
� ��
���

���������	
��	

�����
		�����	
��	

Figure 15: IVEC with x8 ECC-DIMM places parity in ECC-

chip, not using ECC-chip bandwidth optimally.

Using IVEC with an ECC-DIMM, forces the placement

of the parity in the ECC-chip. This results in sub-optimal

usage of the ECC-chip bandwidth as the parity is not used

in the common case (error-free) access, but only used for

correction in the rare case an error is detected by the MAC.

IVEC does not benefit from storing MACs in the ECC-

chip as it uses a MAC tree design as shown in Figure 15.

As the tree node is constructed by hashing multiple sibling

MACs together, storing them in ECC chips across separate

cachelines causes a forced over-fetch of subsequent cache-

lines during the tree traversal. Storing the counter associated

with the data cacheline in the ECC-chip does not provide

significant performance benefits either. This is because they

are cached on-chip for pre-computation of the decryption

pad with a high cache hit-rate [17]. Synergy is able to place

the MACs in the ECC-chip to speedup secure execution,

since it uses a Counter Tree based integrity tree where the

MACs of Data cachelines are not a part of the tree.

����
� ����
� ����
� ����
� ��	�
� ����
� ����
� ����

��

��
��
��
��
��
��
��
�

Performance Energy Delay Product

����
�������

Figure 16: Performance and EDP of IVEC and Synergy,

normalized to SGX O.

As shown in Figure 16, IVEC suffers from a performance

slowdown of 26% compared to SGX O. This is because

IVEC requires a sub-optimal non-Bonsai Merkle-tree as it

assumes every entity in memory has a MAC, by design.4.

A non-Bonsai tree design suffers from a slowdown due to

higher cache contention for counters [14]. Furthermore, as

IVEC needs to cache MACs in the LLC, it uses only a

4For replay attack protection, it is sufficient for the integrity tree to
protect only counters out of (Data, Counter, MAC) [14]

463

dedicated cache for the Counters. As Synergy fetches MACs

using ECC-bandwidth, it does not need to cache MACs

allowing counters to be cached in LLC – thus improving

performance compared to SGX O by 20% and IVEC by

63%. On similar lines, Synergy reduces system EDP by 31%

while IVEC increases it by 90% compared to SGX O.

2) Other areas of research: Stinson [33] first studied

Carter-Wegman MACs [21] in the context of error cor-

rection. Building on that, Dubrova et. al. [34] proposed a

Carter-Wegman MAC for 5G Communication, capable of

correcting 1-bit errors and avoiding retransmission power

overheads. However, such SECDED code is insufficient

for high reliability in memory systems. In contrast, our

proposal Synergy provides Chipkill-level reliability. Other

works [35], [36], [37], [38], [39] propose Approximate

MACs for authentication of error-tolerant data like images,

videos etc. However, they are restricted to enabling error-

tolerant authentication and not capable of correcting errors.

B. Prior Work on Secure Memories

Providing memory integrity with keyed hashes and in-

tegrity trees is a well-researched area. Prior proposals [14],

[17], [18], [19], [40], [41], [42] have optimized the integrity

verification process with alternate tree designs or caching

mechanisms. Synergy may be applied with these proposals

by placing the Nonce (e.g. TEC-Tree [41]) or MAC (e.g.

SGX Counter-Tree [6]) for the Data in the ECC-Chip, as

long as the construction of the Tree does not require them

to be stored in contiguous memory.

High-end Intel processors provide a feature called Soft-

ware Guard Extensions (SGX) [6], [7] that provides secure

memory enclaves for applications. While Synergy can im-

prove the performance of secure execution in this context,

it can also provide strong reliability for the region covered

by security (enclave or entire memory).

PoisonIvy [15] and Authenticate-then-Write [43] propose

mechanisms for speculative execution of unauthenticated

data, to avoid the latency penalty of authentication on the

critical path. However, these solutions still require memory

accesses for performing integrity verification off the critical

path. These designs would benefit from the bandwidth

savings provided by Synergy. As these proposals do not

possess a mechanism to recover architectural state on mis-

speculations (i.e. errors), using Synergy with these proposals

would prevent data-loss but still halt execution. If support for

roll-back of architectural state on mis-speculation is added,

Synergy can be completely integrated with these proposals.

Oblivious RAMs [44], [45], [46] or ORAMs address

the side-channel of unencrypted memory access pattern.

More recently, ObfusMem [47] and InvisiMem [48] have

proposed smart-memory solutions to enable low-overhead

ORAM guarantees. As long as these proposals use integrity

protection [49], [50], Synergy’s philosophy of symbiotic

co-design of reliability and security may be applicable.

C. Prior Work on Memory Reliability

Several recent proposals [51], [52], [53], [54], [55], [56],

[57], [58] have looked at providing memory reliability at

low-cost. We discuss two proposals that are most closely

related: Memguard [59] and LOT-ECC [12]. Memguard

uses non-ECC DIMMs and provides strong reliability by

storing hashes of data and check-pointing execution. Akin

to MACs in Synergy, Memguard uses these stored hashes

to detect errors. However, unlike Synergy which can simply

use parity to fix failures, Memguard incurs check-pointing

overheads to tolerate failures. LOT-ECC provides Chipkill

using x8 DRAM-chips by using local error detection per line

and a chip-level parity-based correction, similar to Synergy.

However, LOT-ECC, as proposed, does not leverage any

of the apparatus of secure memory to reduce area, power

and performance overheads. By reusing MAC as a detection

code, Synergy provides a much strong error detection than

LOT-ECC without incurring any additional cost for local-

error detection. Additionally, by avoiding additional accesses

for MACs, Synergy improves performance of secure mem-

ory systems. To highlight the performance benefits of co-

designing reliability and security, we compare LOT-ECC

implemented on a secure memory against Synergy. Figure 17

compares the performance and EDP of LOT-ECC (with

and without write coalescing) against Synergy. LOT-ECC

incurs 15%-20% slowdown, whereas Synergy provides 20%

speedup. Thus, Synergy has lower storage overhead, better

energy-efficiency, and higher performance than LOT-ECC.

����

� ��%�

� ����

� .���

� .�/�

� .���

� .�%�

� .���

��

��
��
��
��
��
��
��
�

���������
����������������� !
���������"�#���������������� !
$%��� %

Performance Energy Delay Product

Figure 17: Performance and EDP of Secure Memory with

LOT-ECC and Synergy, normalized to SGX O.

VIII. SUMMARY

Memory security and reliability are key requirements for

building trusted data-centers. While existing commercial

solutions design these two components independently, we

propose a co-design to leverage the Synergy between them.

This paper, called Synergy, has the following contributions:

1) A secure memory organization for a 9-chip ECC-

DIMM storing MACs in the ECC-chip, that improves

performance of secure execution by 20%.

2) A reliability-security co-design providing Chipkill-

level reliability, that reduces the probability of system

failure by 185x compared to SECDED.

We believe such designs can enable practical secure mem-

ories and facilitate their widespread commercial adoption.

464

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments

and constructive inputs. We are also thankful to José Joao

and Roberto Avanzi from ARM and members of our research

lab for their invaluable feedback. This work was supported

in part by NSF Grant 1526798 and a gift from Intel.

REFERENCES

[1] J.A. Halderman et al., “Lest we remember: cold-boot attacks on
encryption keys,” CACM, 2009.

[2] S.F. Yitbarek et al., “Cold boot attacks are still hot: Security analysis
of memory scramblers in modern processors,” in HPCA, 2017.

[3] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” in ISCA, 2017.

[4] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, 2015.

[5] M. Becher et al., “Firewire: all your memory are belong to us,”
CanSecWest, 2005.

[6] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptology ePrint Archive, 2016.

[7] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, 2016.

[8] V. Sridharan and D. Liberty, “A study of dram failures in the field,”
in SC, 2012.

[9] B. Schroeder et al., “Dram errors in the wild: a large-scale field
study,” in SIGMETRICS, 2009.

[10] R. Huang and G.E. Suh, “Ivec: Off-chip memory integrity protection
for both security and reliability,” in ISCA, 2010.

[11] T.J. Dell, “A white paper on the benefits of chipkill-correct ecc for
pc server main memory,” IBM Microelectronics Division 11, 1997.

[12] A.N. Udipi et al., “Lot-ecc: Localized and tiered reliability mecha-
nisms for commodity memory systems,” in ISCA, 2012.

[13] P.J. Nair et al., “Xed: exposing on-die error detection information for
strong memory reliability,” in ISCA, 2016.

[14] B. Rogers et al., “Using address independent seed encryption and
bonsai merkle trees to make secure processors os- and performance-
friendly,” in MICRO, 2007.

[15] T.S. Lehman et al., “Poisonivy: Safe speculation for secure memory,”
in MICRO, 2016.

[16] H. Lipmaa et al., “Comments to nist concerning aes modes of
operation: Ctr-mode encryption,” 2000.

[17] C. Yan et al., “Improving cost, performance, and security of memory
encryption and authentication,” in ISCA, 2006.

[18] B. Gassend et al., “Caches and hash trees for efficient memory
integrity verification,” in HPCA, 2003.

[19] G.E. Suh et al., “Efficient memory integrity verification and encryp-
tion for secure processors,” in MICRO, 2003.

[20] R.C. Merkle, “Protocols for public key cryptosystems,” in S&P
(Oakland), 1980.

[21] M.N. Wegman and J.L. Carter, “New classes and applications of hash
functions,” in FOCS, 1979.

[22] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Trans Dependable Secure
Comput., 2010.

[23] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor
memory applications: a state-of-the-art review,” IBM JRD, 1984.

[24] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information and Control, 1960.

[25] I.S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” SIAM J Appl Math, 1960.

[26] S. Beamer et al., “The gap benchmark suite,” arXiv, 2015.
[27] N. Chatterjee et al., “Usimm: the utah simulated memory module,”

University of Utah, Tech. Rep, 2012.
[28] (2012) Memory scheduling championship (msc).
[29] P.J. Nair et al., “Faultsim: A fast, configurable memory-reliability

simulator for conventional and 3d-stacked systems,” in ACM-TACO,
2015.

[30] “Spec cpu2006 benchmark suite,” in Standard Performance Evalua-
tion Corporation.

[31] J. Hamilton, “You really do need ecc memory - perspectives,”
http://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-
memory/.

[32] “Intel data center block for secure enclaves,” https://www.intel.com/
content/www/us/en/data-center-blocks/business/secure-enclaves-
blocks.html.

[33] D.R. Stinson, “On the connections between universal hashing, com-
binatorial designs and error-correcting codes,” Congressus Numeran-
tium, 1996.

[34] E. Dubrova et al., “Error-correcting message authentication for 5g,”
in MOBIMEDIA, 2016.

[35] R. Ge et al., “Approximate message authentication codes for n-ary
alphabets,” IEEE Trans. Inf. Forensic Secur., 2006.

[36] L. Xie et al., “Approximate image message authentication codes,”
IEEE Trans. Multimed, 2001.

[37] S. Xiao and C.G. Boncelet, “Efficient noise-tolerant message authen-
tication codes using direct sequence spread spectrum technique,” in
CISS, 2006.

[38] O. Ur-Rehman et al., “Error correcting and weighted noise tolerant
message authentication codes,” in ICSPCS, 2011.

[39] D. Tonien et al., “Unconditionally secure approximate message
authentication,” in IWCC, 2009.

[40] J. Lee et al., “Reducing the memory bandwidth overheads of
hardware security support for multi-core processors,” IEEE Trans.
Comput, 2016.

[41] R. Elbaz et al., “Tec-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks,” in CHES, 2007.

[42] W.E. Hall and C.S. Jutla, “Parallelizable authentication trees,” in SAC,
2005.

[43] W. Shi and H.H.S. Lee, “Authentication control point and its impli-
cations for secure processor design,” in MICRO, 2006.

[44] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” JACM, 1996.

[45] E. Stefanov et al., “Path oram: An extremely simple oblivious ram
protocol,” in CCS, 2013.

[46] M. Maas et al., “Phantom: Practical oblivious computation in a secure
processor,” in CCS, 2013.

[47] A. Awad et al., “Obfusmem: A low-overhead access obfuscation for
trusted memories,” in ISCA, 2017.

[48] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses
for memory bus side channel,” in ISCA, 2017.

[49] L. Ren et al., “Integrity verification for path oblivious-ram,” in HPEC,
2013.

[50] C.W. Fletcher et al., “Freecursive oram: [nearly] free recursion and
integrity verification for position-based oblivious ram,” in ASPLOS,
2015.

[51] D.J. Palframan et al., “Cop: To compress and protect main memory,”
in ISCA 2015.

[52] J. Kim et al., “Frugal ecc: Efficient and versatile memory error
protection through fine-grained compression,” in SC, 2015.

[53] D.H. Yoon and M. Erez, “Virtualized and flexible ecc for main
memory,” in ASPLOS, 2010.

[54] J. Kim et al., “Bamboo ecc: Strong, safe, and flexible codes for
reliable computer memory,” in HPCA, 2015.

[55] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (arcc),”
in HPCA, 2013.

[56] X. Jian et al., “Low-power, low-storage-overhead chipkill correct via
multi-line error correction,” in SC, 2013.

[57] P.J. Nair et al., “Citadel: Efficiently protecting stacked memory from
large granularity failures,” in MICRO, 2014.

[58] X. Jian et al., “Parity helix: Efficient protection for single-
dimensional faults in multi-dimensional memory systems,” in HPCA,
2016.

[59] L. Chen and Z. Zhang, “Memguard: A low cost and energy efficient
design to support and enhance memory system reliability,” in ISCA,

2014.

465

