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Abstract—The Rowhammer vulnerability is worsening, with
the Rowhammer Threshold (TRH ) reducing from 139K to 4.8K
activations over the last decade. As thresholds reduce further, the
number of possible aggressor rows increases inversely, making it
difficult to reliably track such rows in a storage-efficient manner
for typical Rowhammer defenses. To be secure at lower thresholds,
academic trackers like Graphene must dedicate prohibitively high
storage (hundreds of KBs to MBs) at the chip’s design time.
Recent in-DRAM trackers from the industry, such as DSAC-TRR,
perform approximate tracking and sacrifice guaranteed protection
for reduced storage overheads, leaving DRAM vulnerable to
Rowhammer attacks. Ideally, we seek a configurable tracker
that is secure and precise, incurs negligible dedicated storage
and performance overheads, and scales at deployment to track
arbitrarily low thresholds.

To that end, we propose START - a Scalable Tracker for Any
Rowhammer Threshold. Rather than relying on dedicated SRAM
structures, START dynamically repurposes a small fraction of
the Last-Level Cache (LLC) to store tracking metadata. START
leverages the observation that while the memory contains millions
of rows, typical workloads touch only a small subset of rows
within a refresh period of 64ms. Thus, allocating tracking entries
on demand reduces storage significantly. If the application does
not access many rows in memory, START does not reserve any
LLC capacity. Otherwise, START dynamically uses 1-way, 2-way,
or 8-way of the cache set based on demand. START consumes,
on average, 9.4% of the LLC capacity to store metadata, which
is 5× lower compared to dedicating a counter in LLC for each
row in memory. We also propose START-M, a memory-mapped
START for large-memory systems. Our designs require only 4KB
SRAM for newly added structures and perform within 1% of
idealized tracking even at TRHof less than 100.

I. INTRODUCTION

DRAM scaling enables large-capacity memory that powers
modern computing. DRAM cells become smaller and come
closer to each other with successive process nodes. Unfortu-
nately, such close packing leads to inter-cell interference. A
prominent mode of this interference is Rowhammer [23], [28],
wherein frequent activations to a DRAM row cause bit flips in
nearby rows. Rowhammer remains a severe security threat [4],
[11], [14], [17], [18], [20], [29], [29], [40], [42]. For example,
flipping bits in page tables leads to privilege escalation attacks.

Alarmingly, Rowhammer keeps getting worse with each tech-
nology generation. When the phenomenon was characterized
in 2014, the Rowhammer Threshold (TRH ), which denotes the
activations required to an aggressor row within a 64ms refresh
period to induce a bit-flip in a nearby row, was 139K (for
DDR3). As shown in Figure 1(a), TRH has steadily reduced,
and the most recent study from 2020 reported TRH of only
4.8K (for LPDDR4). The TRH for current generation (DDR5)

and future generation (DDR6) devices is expected to be much
lower. Between 2014 and 2020, the threshold reduced by 30X,
and if the trend continues, we can expect sub-100 thresholds
by the end of this decade. As systems remain deployed for
several years, effective Rowhamer solutions must handle not
only current but also future thresholds. Our goal is to develop a
practical and configurable Rowhammer defense that works for a
range of Rowhammer thresholds. In line with prior works [32],
[37], we focus on low future thresholds of less than 500.

The typical solution for mitigating Rowhammer consists of
(i) a tracking mechanism to identify an aggressor row (that is
estimated to reach TRH activations), and (ii) a mitigating action,
such as refreshing neighboring victim rows. In this paper, our
focus is the tracking mechanism. As the threshold reduces,
the number of rows that can become aggressors increases,
therefore the required tracking resources must increase in
inverse proportion to the threshold (doubling when the threshold
gets halved). Tracking aggressor rows with low storage and
performance overhead in a secure manner has been a key
subject of Rowhammer research, as shown in Figure 1(b).

At thresholds above 10K, tracking resources can be ob-
viated by issuing mitigations probabilistically, as is done in
PRA [23] and PARA [28]. However, probabilistic solutions
incur considerable performance overheads at lower thresholds
due to unnecessary mitigations. For a threshold of 10K and
lower, tracking and issuing mitigation selectively when a row
reaches TRH activations reduces performance overheads. An
Ideal Tracker provisions one SRAM counter for each memory
row. However, it incurs significant SRAM overheads. We note
that while the memory system contains millions of rows, the
fraction of rows that are likely to reach TRH is still fairly small.
Recent proposals dedicate SRAM tables to identify hot rows
by tracking only a small subset of rows, either at the memory
controller (e.g., Graphene [36]) or inside the DRAM-chip (e.g.,
Mithril [26]). To illustrate, Graphene, a storage-efficient tracker,
requires 170KB at TRH of 8K for 64GB DDR5 memory with
8 million rows. Unfortunately, as the thresholds reduce, the
number of rows that can reach TRH increases, so the number of
rows to track also increases. For example, for the same 64GB
memory, at TRH of 1K and 256, Graphene requires 1.4MB and
5.2MB, respectively.

Recent industrial solutions store the aggressor row counters
in-DRAM (e.g., TRR [14], DSAC-TRR [19]). Unfortunately,
the tracker deployed in DDR4 does not track all aggressors
and is vulnerable [14]. Recent white papers from JEDEC [21]
[22] clearly state that “in-DRAM mitigations cannot eliminate
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Fig. 1: (a) The trend of Rowhammer Threshold (TRH ) (b) The efficacy of various tracking mechanisms for our baseline 64GB
memory system. Current solutions are not scalable to TRH of sub-100. Our proposed design, START, efficiently tracks any TRH .

all forms of Rowhammer attacks”. Thus, the systems remain
vulnerable even in the presence of these in-DRAM TRR
mitigations. Furthermore, recent research from the industry
on developing trackers for newer versions of in-DRAM TRR
focuses mainly on doing so in an approximate manner to reduce
storage overheads while still suffering from significant escape
probability (for example, the recent DSAC-TRR [19] incurs
13.9% probability of aggressor escaping detection between two
mitigations), rendering such upcoming schemes insecure, and
leaving future systems still vulnerable to Rowhammer attacks.

It is possible to lower the storage overhead of tracking by
placing the tracking table (one counter for each row) within
the DRAM and caching the entries on demand [23]. The
small counter-cache is susceptible to thrashing, so the recently
proposed Hydra tracker [37] uses an SRAM filter to track rows
at a group level, eliminating unnecessary accesses to the cache
of per-row entries and minimizing the performance penalty.
Hydra incurs a modest SRAM overhead of 186KB at TRH of
256, but the slowdown increases to more than 10% at ultra-low
TRH of 64. Ideally, we need a solution which (1) precisely tracks
activation counts at an arbitrarily low Rowhammer threshold,
(2) is configurable to any Rowhammer threshold without being
restricted by the size of the dedicated structures provisioned at
design time, (3) incurs negligible SRAM overheads for newly
added structures, and (4) performs similar to idealized tracking.
We develop such a solution in this paper.

This paper proposes Scalable Tracking for Any Rowhammer
Threshold (START), which precisely tracks activations of each
row in memory and is well suited to thresholds of 256 and
lower. We leverage the observation that applications that utilize
the last-level cache (LLC) well typically do not access millions
of rows within 64ms, and applications that access a large
number of rows within 64ms tend to have poor locality and are
less sensitive to LLC capacity. Our key insight is to obviate the
dedicated SRAM storage of tracking by leveraging the LLC
to store the per-row counters dynamically. Typical workloads
access only a small fraction of the memory rows within a period
of 64ms, so the storage overhead is reduced significantly by
tracking only the accessed rows.

If the application does not access rows within 64ms,
START does not reserve any LLC capacity. Otherwise, START
dynamically allocates ways within a cache set when new rows
are accessed. A 64-byte line can store tracking metadata of
32 rows (including the row-tag). With 16MB of LLC capacity,
reserving just 1-way across all sets holds the tracking entries of

up to 512K rows, which is sufficient in the common case (our
system contains 64GB memory with 8 million rows). When
a set requires more than 32 tracking entries, the allocation of
that set is increased from 1-way to 2-way, and finally from
2-way to 8-way – sufficient to track all 512 rows that map
to the set with untagged counters. We require just 2 bits of
state per set (4KB of SRAM, 0.02% overhead) to track the
per-set allocation. On average, START requires just 9.4% of
the LLC capacity for counters, minimizing performance loss
and performing within 1% of an ideal per-row tracker.

The structures for tracking the state of aggressor rows must
be provisioned at the design time for prior works. The chip
designer must decide what would be the Rowhammer threshold
during the system’s lifetime, and this information may not be
available. It is, therefore, desirable for a solution to be config-
urable (say, at boot time) to the correct Rowhammer threshold,
without being constrained by the size of the dedicated structures.
Unlike prior schemes, START enables such reconfigurability, as
the tracking state is created dynamically based on need. START
uses a two-byte register, which is configured at boot time,
allowing START to track any threshold, while still performing
within 1% of an ideal tracker.

To support large-capacity memory systems and higher thresh-
olds, we further propose Memory-Mapped START (START-M),
where the tracking data for all memory rows is stored in
the DRAM and accessed only when the number of tracking
entries exceeds the dedicated fraction of LLC capacity (8-
ways per set). As START-M stores up to 2.75 million tagged
tracking entries in the 8-ways of LLC, the number of memory
accesses for obtaining tracking entries is negligible. We evaluate
START-M with 64GB of DRAM per core and observe that
START-M uses less than 12% of the LLC capacity for
tracking and performs within 1% of an idealized tracker.
Finally, our open-source simulation infrastructure is available
at https://github.com/Anish-Saxena/rowhammer champsim.

Overall, our paper makes the following contributions:

1) To the best of our knowledge, we are the first to propose
a configurable tracker which scales to sub-100 threshold.

2) We propose START, which obviates the dedicated SRAM
tracking overheads by leveraging the LLC.

3) We reduce the storage consumed for tracking by dynami-
cally allocating per-set space based on demand.

4) Our memory-mapped START design scales to large-
memory systems and supports higher thresholds.

https://github.com/Anish-Saxena/rowhammer_champsim


II. BACKGROUND AND MOTIVATION

A. DRAM Organization and Timing

Modern DRAM-based memory is organized logically into
channels, sub-channels, ranks, banks, and rows. In DDR5, each
64-bit channel consists of two independent sub-channels which
are 32-bit wide with a burst length of 16 to supply a 64B line.
Each sub-channel has 32 banks organized as a 2D array of
rows and columns with typical row size of 8KB. The bank
contains a row buffer that caches the most recently opened
row. To access data from DRAM, a row must be activated,
which brings the data into the row buffer. To access data in
another row, the bank clears the row buffer using the precharge
command, followed by activation of the given row. DRAM
cells also require periodic refresh operations (at 64ms).

An important DRAM timing parameter is tRC (Row Cy-
cle Time), which determines the time between consecutive
activations for a given bank. The TRC for DDR5 systems is
approximately 45ns, which means a bank can encounter up-to
1.36 million activations (ACTmax) in the refresh window of
64ms, after discounting the time spent in refresh.

B. Rowhammer and Security Threat

Rowhammer occurs when frequently activated rows cause
bit-flips in nearby rows. Rowhammer Threshold (TRH ) denotes
the number of activations required to any row, using any
access pattern, to induce bit-flips in the nearby row. When the
Rowhammer phenomenon was first discovered in 2014, TRH
was 139K, whereas it has reduced by 30X to 4.8K [24] in
2020. TRH is likely to reduce even further for future DRAM
technology. For example, if the trends hold, then a similar
reduction of 30X would render a TRH of less than 100 by the
end of the decade. Therefore, it is important that the solutions
for Rowhammer are designed to tolerate not just the current
TRH but also TRH for future nodes.

Rowhammer poses a serious threat to system security and
gives the attacker a powerful attack vector to flip bits in
Page-Tables for privilege escalation [46] or exploit the data-
dependence of Rowhammer to read confidential data [29].

C. Threat Model

We assume an unprivileged attacker that can run code
natively on the system that is vulnerable to Rowhammer.
The attacker can run process(es) under user privilege and
exploit Rowhammer to flip bits in the page-table or in another
program’s data to corrupt it [46]. We assume the Rowhammer
bit-flip occurs at the victim location when any row in memory
incurs more than TRH activations within the refresh interval of
64ms. Thus, the attack is successful if no mitigation is issued
when a row has encountered more than TRH activations.

D. Scaling Challenges for SRAM Trackers

The typical method to mitigate Rowhammer is to track the
activations and issue a victim refresh when a row reaches
TRH activations. Prior studies have developed sophisticated
algorithms to intelligently track aggressor rows by provisioning
the tracking entries for only a small subset of memory rows.

The minimum storage for tracking depends on the number
of rows that can encounter at-least TRH activations within
the refresh period. As TRH reduces, rows that can reach the
threshold increase and the storage for the tracking structures
increases proportionately. In this paper, our goal is to develop
a Rowhammer tracker that works at thresholds lower than 500.
Table I shows the storage requirement of recent state-of-the-art
trackers as TRH is reduced from 4K to 64, for a 64-GB memory.

TABLE I: SRAM/CAM storage required for 64 GB memory
(two 32-GB DIMM, 128-Banks, 8KB-Row, 8M Rows).

TRH
Graphene
(CAM)

DSAC-TRR
(CAM)

Ideal Tracker
(SRAM) Goal

64 >8 MB N/A 6 MB

4 KB256 (target) 5.2 MB N/A 8 MB
1K 1.4 MB 68 KB 10 MB

4K (current) 340KB 16 KB 12 MB
Secure? Yes No Yes Yes

Ideal Tracker (One-Counter-Per-Row) dedicates one SRAM
counter for each row. For a system with R rows and threshold
of TRH , it needs R entries, each of log2(TRH) bits. The storage
requirement of the ideal tracker ranges from 12MB to 6MB,
as the threshold is varied from 4K to 64 (lower storage due to
smaller counters). Ideal trackers are traditionally considered
impractical due to prohibitive storage requirements.
Graphene [36] is a state-of-the-art tracker. It uses the Misra-
Gries algorithm to identify top-N frequently accessed rows,
where N is based on TRH . While Graphene is effective at TRH
of 4K (requiring 340KB), its storage overhead grows to more
than 8MB at sub-100 threshold. For example, at TRH of 64, a
5-bit counter and 17-bit row-id for 40K potential aggressors
takes up more SRAM (109KB per bank) than storing 128K
5-bit untagged counters (80KB), making Graphene worse than
an ideal tracker. While more space-efficient Misra-Gries based
trackers have recently been proposed (like ABACuS [35]),
they still require high storage at TRH of 64 (800KB) and
use imprecise group-tracking, leading to excessive mitigations.
Finally, to remain secure, such trackers must provision worst-
case storage for lowest supported threshold at design-time,
dedicating hundreds of KBs to several MBs of SRAM, even if
such thresholds are never encountered by the system.
DSAC-TRR [19] is a recent tracker proposed by Samsung. It
combines space-efficient tracking with stochastic insertions to
minimize counters required to defend against known adversarial
access patterns that employ decoy rows. DSAC-TRR trades
off security for area efficiency with a 13.9% probability of
escape for aggressor between mitigations during an attack at
TRH of 10K. Moreover, since the effective threshold of DSAC
is TRH/2−ACTtREFI , where ACTtREFI can be as high as 255,
it does not scale to TRH below 500.

Key Takeaway: The storage requirements of intelligent track-
ers like Graphene balloon at ultra-low thresholds compared
to an idealized tracker. As trackers must provision worst-case
storage at design-time, we need to make ideal tracking viable
in this regmine for practical Rowhammer mitigation.



E. Scaling Challenges for Hybrid Tracker

The SRAM overheads of an ideal tracker can be reduced
by placing the counter table within the DRAM and caching
the entries on demand in a metadata cache, as proposed in
Counter-Based Row Activation (CRA) [23]. Unfortunately, even
in presence of large metadata-caches (64KB-256KB), CRA
experiences a significant number of extra accesses for fetching
counter lines because of poor spatial locality, causing drastic
slowdown (averaging 25% [37]), limiting practical adoption.

A recent proposal, Hydra [37], uses a hybrid design where an
SRAM filter reduces the DRAM accesses for per-row counters.
Hydra contains an SRAM structure that performs aggregated
tracking for a group of rows until a subset of the Rowhammer
threshold is reached. Per-row tracking is enabled only for
rows for which the group-level threshold is breached. Hydra at
TRH = 500 was shown to have low overheads and slowdown.

The SRAM overhead of Hydra depends on TRH and the
number of channels. For our baseline system with two DDR5
DIMMs, Hydra incurs an SRAM overhead of 186KB for a
threshold of 256. However, as the threshold reduces, the number
of entries in the Hydra SRAM structures must be increased in
direct proportion (that is, 4X more entries if the threshold is
reduced by 4X). So, at thresholds of 64 and 16, Hydra incurs
an SRAM overhead of 544KB and 1.3MB, respectively. If
the storage overheads are not increased, then Hydra incurs
significant slowdowns at lower thresholds.
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Fig. 2: Slowdown of Ideal Tracker, Hydra-C (186KB), Hydra-P
(proportional storage) for thresholds of 256 to 16. Hydra incurs
a slowdown due to both mitigation and tracking.

Figure 2 shows the slowdown of ideal tracker, Hydra-P
(proportional storage), and Hydra-C (constant 186KB) as TRH
is varied from 256 to 16. Ideal tracker incurs slowdown only
due to mitigation, whereas Hydra suffers from both mitigation
and metadata memory accesses. The overhead of ideal tracker
due to mitigation alone is relatively small, 0.2% at TRH = 256,
1.3% at TRH = 64 and 8% at TRH = 16, because modern memory
devices have a large number of banks and concurrency, hiding
the impact of victim refresh in a bank. The overhead of Hydra-P
is within 2% of the ideal tracker. However, if we do not provide
the proportional SRAM storage to Hydra, then the constant
storage configuration (Hydra-C) incurs significant slowdowns,
from 4.2% at TRH = 256 to 34% at TRH = 16. Thus, Hydra at
sub-100 thresholds incurs either significant SRAM overhead
or significant slowdown.

F. Our Goal

We observe that at ultra-low thresholds, existing proposals
either require prohibitive SRAM overheads, or performance
overhead, or both. Furthermore, for all prior proposals, the
SRAM structures are provisioned to target a particular Rowham-
mer threshold, and this decision is taken at design time.
Therefore, the system becomes incapable of handling a memory
module that is known to have a lower threshold.

Goal of Our Paper: We aim to develop a scalable tracking
mechanism with the following attributes: (1) Precise row
tracking at an arbitrarily low threshold (2) Configurable to a
given threshold without being restricted by the size of the
tracking structures (3) Incurs negligible SRAM overheads for
newly added structures, and (4) Incurs negligible slowdown
compared to an ideal tracker.

III. EVALUATION METHODOLOGY

A. Simulation Framework

We use ChampSim [15], a cycle-level multi-core simulator,
interfaced with DRAMSim3 [31], a detailed memory system
simulator. We modified DRAMSim3 to include the DDR5
configuration, wherein each DIMM supports two sub-channels
that can be operated independently and provides a 64-byte
line with a burst length of 16. We use the DRAM-based
power model provided by Micron [34]. Table II shows the
configuration for our baseline system.

TABLE II: Baseline System Configuration
Out-of-Order Cores 8 cores at 4GHz

ROB size 352
Fetch, Dispatch, Retire width 6, 6, 5

L1-I/D and L2 (Private) 32KB and 512KB, 8-way
Last Level Cache (Shared) 16MB, 16-Way, 64B lines, SRRIP

Memory size 64GB – DDR5
Memory bus speed 2.4 GHz (4800 MT/s)

tRCD-tCL-tRP-tRC 16.6 - 16.6 - 16.6 - 48.6 ns
Channels 2 (one 32GB DIMM per channel)

Banks x Ranks x Sub-Channels 32×1×2
Rows per bank 64K

Size of row 8KB
Sub-Channel width and BL 4B and 16

We evaluate performance using 8 out-of-order cores with
private L1 and L2 caches and shared L3 cache. The L3 is
non-inclusive, with 128 MSHRs/core, 32 entry/core read and
write queues, 4 read and write ports, 30-cycle hit-latency, no
prefetcher, and SRRIP replacement policy. Our memory system
contains two channels, each with a 32GB DDR5 DIMM (total
of 64GB containing 8 million 8KB rows).

For evaluating prior Rowhammer mitigation schemes, all
SRAM structures associated with tracking are incorporated into
the memory controller. For the mitigating action, without loss
of generality, we assume victim refresh of one neighboring
row on each side using Directed Refresh Management (DRFM)
command, where the memory controller supplies the aggressor
row address to the memory, and the memory internally refreshes
the victims rows. Unless specified otherwise, we assume a
default Rowhammer threshold of 256.



B. Workload Characterization

We evaluate our design using the publicly available Champ-
Sim traces, which includes 10 from SPEC2017 [1], 13 from
LIGRA [41] (graph processing), and 5 from PARSEC [8]. These
traces have been collected after fast-forwarding the workload
to a region-of-interest. We perform a warm-up period of 50
million instructions for each workload. Eight copies of the
same workload runs on 8 cores and continue executing until
all 8 cores complete 200 million instructions each1.

Table III shows workload characteristics, including the
average per-core IPC, LLC-Misses Per 1000 Instructions
(MPKI), workload footprint (number of unique 4KB pages
touched), and Unique-Rows touched within a period of 64ms,
on average. The last row of table captures the geometric mean
of IPC and arithmetic mean of other values across all 28 traces.

TABLE III: Workload Characteristics: IPC, MPKI, footprint,
and Unique Rows Touched (average within 64ms).

Workload IPC MPKI Footprint Unique Rows
(per-core) (LLC) (8-core) Touched (64ms)

fotonik3D 0.49 19.7 16.1 GB 2,126K
mcf 1.1 14.4 4.7 GB 1,170K
gcc 0.31 17.8 1.9 GB 184K

omnetpp 0.53 10.9 1.6 GB 396K
bwaves 0.67 14.4 1.2 GB 260K
roms 0.89 6.2 511 MB 130K

cactuBSSN 1.59 7.8 473 MB 121K
wrf 0.83 11.7 277 MB 71K

pop2 1.92 3.5 219 MB 56K
xalancbmk 1.12 2.1 157 MB 40K

CF 1.08 9.6 2.7 GB 677K
BC 0.47 31 2.2 GB 438K

PR-Delta 0.41 24.6 2.1 GB 389K
BFSCC 0.71 23.4 2 GB 471K

BFS 0.67 19.5 1.9 GB 431K
Radii 0.59 26.7 1.2 GB 220K

Triangle 0.79 16.5 1 GB 258K
Components 0.59 40.8 920 MB 162K

Comp-SC 0.57 40 915 MB 162K
PageRank 0.47 54.7 878 MB 151K
BFS-BV 1.1 12.6 763 MB 194K

BellmanFord 1.09 8.4 751 MB 191K
MIS 1.47 7.1 700 MB 178K

canneal 0.33 15 1.3 GB 301K
fluida 0.88 6.7 789 MB 201K

raytrace 1.11 5.7 453 MB 116K
facesim 0.83 6.4 182 MB 46K
streamc 1.04 13.6 69 MB 18K
Average 0.76 16.8 1.7 GB 327K

C. Figure of Merit

Our primary figure of merit is the normalized performance
compared to an unprotected baseline. We estimate performance
by measuring the IPC averaged across all 8 cores. As all cores
run the same workload, the IPC variation across cores is small.

We also consider secondary metrics such as (a) SRAM
overhead for newly added structures, (b) loss in LLC capacity,
(c) change in LLC misses, (d) impact on system power
consumption of DRAM and the LLC, (e) sensitivity to LLC
capacity, and (f) the blast radius of the mitigation.

1Appendices A to C provide results for multi-programmed workloads and
additional multi-threaded CloudSuite [13] workload evaluations.

IV. SCALABLE ROWHAMMER TRACKING

To enable practical Rowhammer mitigation at ultra-low
thresholds, we propose Scalable Tracking for Any Rowhammer
Threshold (START). START performs precise tracking of row
activations of memory rows without requiring dedicated SRAM
structure for storing the tracking entries. The key insight of
START is to obviate the dedicated SRAM storage of tracking,
by leveraging the last-level cache (LLC) to store the per-row
counters. For our baseline system with 64 GB memory (8
million rows), even with a 1-byte counter per row, we would
need 8MB of space to store the counters.

A naive design of START, which we call START-Static
or START-S, simply reserves 8 ways of the 16MB 16-way
LLC to provision the counters. However, doing so reduces the
LLC capacity considerably, causing a significant slowdown.
Therefore, we develop a dynamic scheme, which we call START-
Dynamic or START-D, which adaptively allocates tracking
entries only for the rows that get accessed within 64ms. We
observe that only a small fraction of memory rows (about 4%
on average) are touched within 64ms, so START-D consumes
significantly less storage. In this section, we provide an
overview of START, using START-S as a simplified example,
then describe START-D, and provide results and analysis.

A. START-S: The Naive Design

Figure 3 shows an overview of START-Static (START-S)
design. Even though START-S is inefficient, we use it to
provide an overview of START owing to its simplicity. START-
S reserves 8 ways of the 16-way LLC to store the counters
for the 8 million rows. Let the ways reserved for storing the
counters be ways 0 through 7. Then, on an LLC miss, these
ways do not participate in the LLC replacement algorithm, so
these lines cannot be removed from the cache.

With 1-byte counter per row, each cache line of 64 bytes
stores the tracking entries for 64 rows. As each row has a
dedicated tracking entry, these entries are untagged. To obtain
a tracking entry for a given row, we hash the row address to
the cache set, then use 3-bits of the row address to select one
of the reserved ways, and then use 6 bits of the row address
to identify the byte-in-line that stores the tracking information.

When a demand access probes the LLC and encounters an
LLC miss, it gets routed to the memory controller to perform
DRAM access. If this access results in row activation, the
memory controller provides the row address to the cache
controller, so that the controller can obtain the tracking entry
and increment the counter. If the counter reaches the threshold,
the counter is reset and a signal for performing mitigation for
the given row is provided to the memory controller.

START-S consumes half of the LLC for Rowhammer
tracking, therefore, it incurs significant performance overheads
(on average 7.4% in our evaluations). We observe that while
the memory system contains 8 million rows, a workload would
typically not touch all these rows within the refresh period
of 64ms. In fact, based on the workload characterization in
Table III, we observe that on average about 300K rows get
touched within 64ms (4% of the total memory rows) and only
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3 out of the 28 workloads touch more than 500K rows. If we
could provide the space only to the rows that get touched at
least once during the 64 ms period, then we can greatly reduce
the storage consumption of tracking. Our dynamic design,
START-D, achieves this goal.

B. START-D: The Optimized Design

START-Dynamic (or START-D) varies the number of ways
reserved for the tracking entries based on demand. Figure 4
shows the overview of START-D. At the start of every 64ms
period, START-D reserves no ways in the LLC and if the
application does not access memory within this period (as
the working set might already be cached), no LLC capacity is
consumed. Otherwise, tracking entries get allocated on demand,
and initially we use a tagged entry that identifies the row and
the counter value. For our memory system with 8 million rows
(23-bit row-id) and a cache with 16K sets (14-bit set index),
the row-tag is 9-bits. Without loss of generality, we use a 7-bit
counter, to form a 2-bye tracking entry. Thus, a 64-byte line
can store up to 32 tracking entries.

Tag Ctr Tag Ctr

64-Byte way: 32 entries 

16-way LLC
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11

00

10

00

10

00

SAC
Set-A

Set-F
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Fig. 4: Dynamic allocation of START-D. The number of ways
reserved for each set varies based on demand.

When a set in LLC receives the first request to update a row-
counter mapped to it, the way-allocation is increased (from 0)
to 1-way, thereby enabling storage of up-to 32 tagged counters.
If all sets in LLC transition to this state, START-D can hold
up-to 512K tracking entries. As only 3 workloads (fotonik3D,
mcf, and CF) out of 30 touch more than 500K rows within a
period of 64ms, this state is sufficient for most workloads in the
common case, reducing the storage consumption of tracking
by 8X (from 8-ways reserved to 1-way reserved).

If the LLC encounters a request for updating the counter for
a given row, and all the tracking entries of the given set are
in use, the allocation for that set is increased from 1-way to

2-way. The entries already stored in the first way are rehashed
such that the even entries are retained in the first way and the
odd tag entries are placed in the second way. The incoming
entry is then allocated into one of the two ways depending on
the row address (even tag or odd tag). Finally, in rare cases,
if two ways are insufficient, then the allocation is increased
to 8-way. Note that 8-ways are sufficient to hold all tracking
entries for the 512 rows that map to the given set, and all the
tracking entries of the set are read and restored in an untagged
format (each row has a designated byte for its tracking entry).
Such reorganizations are also rare and not in the critical path.

1) The Newly Added SAC Table: While START-D obviates
dedicated SRAM for precise tracking information, it does
require the state to indicate the number of ways that are reserved
in each set to store tracking information. Given that we have
four possible allocations, we need two bits per set, which we
call the Set Allocation Counter (SAC). If SAC is 00, the set
has the default reservation of 0-way (no capacity reserved). If
SAC is 01, the set has 1-way reserved (with 32 tagged entries).
Similarly, if SAC is 10, the set has 2-ways of 32-entries each
reserved (with each containing 32 tagged entries). Finally, if
SAC is 11, the set has reserved 8 ways, and it would have
8 lines each storing 64 untagged entries, for a total of 512
entries. Figure 5 shows the transitions of SAC entries from 00
state to different states. Every 64ms, the SAC entry of each
set is reset to 00, so the allocation of a set remains valid only
within the current refresh period. As each set requires a 2-bit
SAC, and we have 16K sets, the table storing SAC entries
(SAC Table) requires 4KB of SRAM.

11

8-ways
01

1-way

00

0-way

10

4-ways

No entries stored

32 entries

64 entries

512 entries
(Untagged)

Reset
(64ms) Way-increase

Way-increaseWay-increase

Fig. 5: SAC transitions and the resulting allocation to a set.

2) Operations: When the memory controller issues a row
activation, it sends an update for that row to the LLC. The
LLC uses the top 14-bits of the 23-bit row-tag to identify
the cache set that stores the given row’s tracking entry. The
cache controller checks the SAC entry for the set to find the
number of ways reserved for the set. If the SAC entry is 00, a
way is allocated for tracking entries, and a tracking entry is
allocated with the designated row-tag and counter value of 1.
The SAC value is increased to 01. For subsequent row-updates
to this set, the incoming row tag is compared with the row
tag of all entries (for which the counter is nonzero). If the
entry is found, the counter is updated. If the counter reaches
the Rowhammer threshold, the counter is reset, and a signal
is sent to the memory controller for issuing mitigation for the
given row. If the entry is not found, then a new tracking entry
is allocated, unless all 32 entries are allocated. In this case,
SAC transition occurs, followed by tracking entry allocation
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Fig. 6: Performance of ideal tracker, START-Static, and START-Dynamic normalized to unprotected baseline. START-D performs
within 1% of an ideal tracker: slowdown of 1.1% vs. 0.2% at TRH of 256 (top), and 2.2% vs. 1.3% at TRH of 64 (bottom).

in the appropriate way. To obtain the way-index, the-row-tag
is hashed (1-bit, 3-bit for 2-way, 8-way respectively) and the
process remains same as SAC value of 01.

While START-D requires changes to the lookup and replace-
ment policy of the cache, row-counter lookups are outside
the critical path of demand accesses. On an LLC access or
miss, the SAC of the given set is consulted, and depending
on the SAC values, between 1 to 8 ways are removed from
consideration of lookup or replacement. This also ensures that
valid tracking entries do not get evicted from the LLC.

3) Periodic Reset and Impact on Threshold: We want to
track the activation counts within 64ms, so, every 64ms, we
reset the SAC table and the ways allocated in sets are released.
This allows all ways to participate in cache replacement policy.

After SAC reset, the implicit row counts of all the rows
are zero. As the reset of START-D may not be synchronized
with refresh operations, the attacker could potentially perform
(T − 1) activations to the row before the reset and (T − 1)
activations after reset and still not encounter any mitigation
with a Rowhammer threshold set to T . Thus, resetting causes
the actual threshold tolerated by START to be (2 · T − 1).
Therefore, to tolerate a threshold of 256, we set the effective T
to be 128. The phenomenon of halving of effective threshold
due to reset is common in prior trackers [36], [37].
C. Impact on Performance

Fig. 6 shows the performance of START-S, START-D and
Ideal Tracker normalized to the unprotected baseline. Ideal
Tracker incurs only mitigation overheads and no tracking
overhead. START-S suffers from considerable slowdown due to
50% LLC capacity loss. In contrast, START-D closely follows
the performance of ideal tracker for all workloads. The average
slowdown of START-D is 1% compared to 0.2% for ideal
tracker (TRH of 256, top). At TRH of 64 (bottom), START-D
incurs 2.2% average slowdown compared to 1.3% with the
ideal tracker (within 1%). START-D scales to arbitrarily low
threshold, and performs within 1% of an ideal tracker.

D. Analysis on LLC Capacity Loss

While START-S incurs constant 50% capacity loss, the space
consumed by START-D is proportional to the unique rows
activated by the workload within 64ms (see Table III), as
shown Fig. 7. On average, START-D only incurs 9.4% capacity
loss (5x lower than START-S), with 25 out of 28 workloads
consuming less than 10% of LLC capacity.
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Fig. 7: START-D requires 9.4% of LLC capacity on average.
E. Impact on Cache Misses

Fig. 8 shows the increase in LLC misses due to START at
TRH of 256. START-S significantly increases cache misses by
21% on average. In contrast, START-D only incurs a negligible
2.3% additional misses compared to the baseline.
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Fig. 8: START-D increases Last Level Cache misses by just
2.3% compared to the baseline, almost one-tenth of START-S.



F. Sensitivity to Cache Size
Fig. 9 shows the performance of ideal and START-Dynamic

trackers at different cache sizes compared to our default
configuration (16MB, 16-way). In the non-default cache
configurations, START-D dynamically reserves up-to 8-ways
for 12MB 12-way LLC and up-to 4 ways for 24MB 12-way
LLC. START-D incurs similar performance overheads, even at
reduced cache sizes, because reservation of more than 1-way
within a set remains exceedingly rare.

T=256
T=64

T=256
T=64

T=256
T=64
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3%

S
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do
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12MB LLC 16MB LLC 24MB LLC
Ideal Tracker START-D

Fig. 9: Impact on slowdown as LLC size is varied. START-D
performs similar to ideal tracker at different cache sizes.

G. Impact of Blast Radius
Non-adjacent rows may also be impacted by activations to

an aggressor row [2]. Recent proposals, therefore, increase
the blast radius of the mitigation by refreshing two or four
adjacent rows on either side of the aggressor. We evaluate
ideal and START-D with blast-radii from 1 to 4 in Fig. 10.
While the overheads of mitigation increase considerably with
blast-radius, especially at TRH of 64, START-D maintains a
slowdown similar to the ideal tracker with 11.2% average
slowdown compared to 10.2% with the ideal tracker at BR=4.
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Fig. 10: Slowdown with varying Blast Radius. START-D
continues to perform within 1% of ideal tracker.

H. Storage and Power Overheads
START-D requires 4KB SRAM for the SAC table (2 bits

per set). The size of SAC depends only on the LLC capacity
and not on the Rowhammer threshold. We also need two-bytes
to store the Rowhammer threshold.

We use Micron’s power calculator tool [33] to compute the
DRAM power requirement. START-D increases DRAM power
by 105mW at a negligible 0.3% overhead. START incurs a LLC
read and write for the row-counter on every DRAM activation.
We compute SRAM power overheads using CACTI 7.0 [5] with
22nm technology. START-D incurs a dynamic cache power
overhead of 93mW, an 11.5% increase over baseline. However,
taking the LLC leakage power into account, the overall cache
power increases by only 0.9%.

I. Security Analysis

For successful Rowhammer mitigation, START must ensure
that it issues a mitigation before a row receives a threshold
(TRH ) number of activations. We define TRH as the minimum
number of per-row activations to at-least one row that are
sufficient to cause a bit-flip via any attack pattern. To prove
that START is secure, we make one assumption:

A successful row hammer attack requires activating at-least
one row more than TRH times within a refresh period.

START is reset every 64ms. We call the period between
consecutive reset as the tracking window. As DRAM refresh is
uncoordinated, a given DRAM row can experience two tracking
windows within a single refresh period of 64ms. So, START
provides a stronger security guarantee, as follows:

Theorem-1: START issues mitigation for a row (a) at TRH/2
activations and (b) at each TRH/2 activations since its past
mitigation, in a tracking window.

1) Proof of Security for Tracking by START: Let Ttrue be the
exact or true count of a row’s activations. We prove Theorem-1
analyzing two phases. Phase-1 is from reset to issuing the first
mitigation. Phase-2 is between each consecutive mitigations.

In Phase-1, the activation counter entry associated with a
given row is incremented whenever the row has an activation.
So in Phase-1, the value of the counter is always equal to Ttrue
of any row. Therefore, if the first mitigation for an aggressor
row in a tracking-window is performed at TRH/2, the activation
count of the row (Ttrue) must reach TRH/2. This proves part
(a) of Theorem-1. In Phase-2, the counter is reset to 0 upon a
mitigation, and subsequently the tracking continues to be exact.
The counter reaches TRH/2 again only after performing TRH/2
activations for the row after the mitigation. Therefore, the
aggressor row is mitigated before receiving TRH/2 activations
(threshold is set to TRH/2). This proves part (b) of Theorem-1.

2) Adaptive Attacks on START: The attacker may try to
dislodge the cache lines that store the tracking entry. However,
this approach is not viable as the ways reserved for the tracking
entries do not participate in the replacement algorithm. As LLC
accesses due for tracking are outside the critical path of demand
accesses, START does not introduce new timing side channels.

The mitigative action of performing refreshes of neighboring
victims rows itself causes activations on victim rows. Recent
Half-Double [2] attack exploits activations arising from re-
freshes of distance-1 neighbors to cause bit-flips in distance-2
neighbors. To be resilient to such attacks, START also includes
any activation encountered due to victim refresh as part of the
overall activation counts of the row. Note that we assume either
the DRAM mapping is available to the memory controller, or
DRFM is modified to provide victim row-IDs. Finally, START
is simply a tracking mechanism and can be used with any
mitigating action. We evaluate with victim-refresh and default
blast radius of 1 and assume that the mitigating action would
be configured appropriately for the DRAM module in use.



V. MEMORY-MAPPED START (START-M)
Thus far, we have considered baseline system with 8GB of

memory-per-core (64GB for 8-cores), 2MB of LLC-per-core
(total of 16MB), and TRH of 256 and below. The tracking
metadata for our system fits within a subset of the LLC (8MB)
because each tracking entry is 2-bytes (9-bit row-tag and 7-bit
counter) and the 512 untagged counters mapping to a set fit
within 8-ways. However, modern systems might have much
larger memory capacity, or might work with current and old
memory, which has a higher threshold than 256. For example,
an 8-core system with 512GB memory (64 GB-per-core) at
threshold of 256 needs tracking metadata of 60MB, much larger
than our 16MB LLC. Similarly, if such a system operates at
threshold of 4K (12-bit row-tag and 11-bit counter) would
need more than 5X the LLC capacity of metadata. START-D
would be unable to handle such systems. For such systems, we
propose Memory-Mapped START (START-M), which maintains
a counter table in memory and uses tracking entries in the LLC
to virtually eliminate all of the memory accesses for tracking2.

A. Overview
Consider a large-memory system with 512GB of memory and

8 cores (64GB of memory-per-core), operating at a threshold of
4K. We maintain the other parameters similar to the previous
baseline (16MB LLC, 2 DDR5 channels). As our baseline
contains 64 million rows and 11-bit tracking entry for each row,
it would require 82MB storage, well beyond LLC’s capacity.

Memory
Controller

Mitigate?

Is ACT?

16-way LLC

Core 8

Core 1

Counter 
Miss?

Mem-
Mapped
Tracking 

Table

Fig. 11: Overview of START-M. The dotted red arrows denote
the rare case of metadata accesses to the DRAM.

Figure 11 provides an overview of START-M. START-M
reserves the required memory for untagged counters (82MB) in
the addressable space of the main memory to store the Memory-
Mapped Tracking Table (MTT). But accessing the MTT to
obtain the tracking metadata would require memory access and
hence cause slowdowns. Rather than using a dedicated metadata
cache (as done in CRA [23]) or a filter (as done in Hydra [37]),
START-M simply uses the LLC as the expandable area to store
the tracking entries. Similar to START-D, by default, START-M
starts with no LLC capacity reserved (SAC of the set is set to
00). If a set requires entries, then the allocation is increased to
1-way, and then 2-ways, and finally 8-ways, on-demand, which
is the maximum allocation allowed by our design.

2Multi-socket and disaggregated memory systems can be supported by
provisioning tracking-entries in memory controller’s parent socket.

B. Cache Changes: START-D to START-M
The two key changes in START-M, compared to START-D

are: (1) larger tracking entries, as memory capacity increases by
8x and counter size by 16x (12-bit row-tag and 11-bit counter),
so each tracking entry in the LLC is 3 bytes (the changes
from 1-way to 2-way now happens when there are 21 entries
mapped to the set), and (2) always using tagged organization,
as 8-ways (maximum allocation) are insufficient to hold the
tracking entries for all the rows mapping to a set. As shown
in Figure 12, even with 8-ways we use a tagged organization.

START-reserved way

Data way

16-way LLC

01

SAC168 3-Byte tagged entries

11

64-Byte way: 21 3-Byte entries 12-b Tag 11-b Ctr1-b Valid

Fig. 12: Set organization of START-M. Each tracking entry
needs 3 bytes, and all allocations use tagged entries.

If all sets are in state-1 (1-way reserved), START-M provides
344K tracking entries, which can increase to 2.75 million
tracking entries at 8-ways. As workloads typically do not
access these many unique rows within 64ms, virtually all of the
memory accesses for obtaining tracking entries for START-M
are cold misses (after the cache state is reset). Next, we develop
an optimization that avoids cold misses for the counters.

C. Avoiding Cold Misses in START-M
Every 64ms, the allocation of START-M reverts to 0-way

reserved (SAC value of 00), similar to START-D. Thus, any
unique row that gets accessed after the reset will not find the
tracking entry in the LLC, and will access the memory.

We leverage the observation that if there is space for the entry
(e.g. allocation is less than 8-way or invalid tracking entries
are present in the indexed way), then the given row is being
accessed for the first time during the 64ms period. Otherwise,
either the entry will be present, or the entry was evicted to
accommodate another entry due to limited capacity. Therefore,
we do not access the MTT on such first-time accesses and
simply install the row in the LLC with a counter value of 1. At
reset, START-M also requires resetting the MTT in memory.
We do this lazily by resetting all row-counters mapping to a
set only when that set encounters its first-row eviction. As
each entry contains a valid-bit, the information to conduct
this per-set reset is available without any extra overhead. The
episode of MTT accesses are also extremely rare, and we avoid
the MTT reset overheads in the common case.

With this optimization, START-M accesses the MTT only
when there is no space for the tracking entry even with 8-ways,
which cumulatively store approximately 2.75 million tracking
entries in the LLC. As our workloads touch less than 2.2
million unique rows within 64ms, we observe negligible (less
than 0.1%) memory accesses for the MTT in our evaluations.
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Fig. 13: Performance of ideal tracker and START-M normalized to an unprotected baseline. START-M performs within 1% of
an ideal tracker: slowdown of 1.3% vs. 0.2% at TRH of 256 (top), and 2.3% vs. 1.3% at TRH of 64 (bottom).

D. Impact on Performance

Figure 13 shows the performance of ideal tracker and START-
M at thresholds of 256 and 64. At TRH of 256, START-M incurs
slowdown of 1.3%, similar to 0.2% for ideal tracker. At TRH of
64, START-M incurs an average slowdown of 2.3% (within 1%
of the ideal tracker). START-M performs virtually identically
to START-D while supporting a much larger memory capacity.

E. Analysis of Cache Capacity Loss

Fig. 14 shows the loss in LLC capacity by START-M at
TRH of 256. As START-M utilizes 3-Byte tagged counters
and can store up-to 168 tagged counters within 8-ways, the
cache capacity loss is 11.4% compared to 9.4% for START-D.
All workloads, except fotonik3D and mcf (both access >1
million rows in 64ms), avoid memory accesses for tracking.
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Fig. 14: START-M requires just 11.4% of the LLC capacity
on average even with 1TB of memory provisioned per core.

F. Sensitivity to Rowhammer Threshold

START’s seamlessly scale to lower thresholds within a
system’s lifetime. Fig. 15 plots the overheads of START and
ideal tracker as threshold is varied from 4K to 16. START-M is
used for thresholds of 1K and 4K. START incurs 1% overhead
at TRH of 4K (ideal incurs negligible overhead). Even at the
extremely low threshold of 16, START is within 1% of ideal
tracker with 9% overhead compared to 8% for ideal.
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Fig. 15: START scales from current threshold of 4K to extreme
threshold of 16, remaining within 1% of ideal tracker.

G. Security Considerations

START-M maintains accurate row-counts as the memory-
mapped tracking table (MTT) simply provides a larger backing
store for entries. Thus, Theorem-1 is applicable to START-M.
To eliminate threat of bit flips in the MTT itself, activation
counts for rows storing the MTT are maintained in START
and mitigations are issued when it reaches TRH/2 (just like
data rows). An adversary can also access several million rows
randomly to trash the tracking entries in LLC and cause 2X
extra activations for each activation in the baseline, causing
bandwidth overheads. As the adversary can cause performance
degradation attacks even in the baseline by flooding the memory
with requests, memory system isolation solutions for such
problems are also applicable to START-M.

VI. DISCUSSION

A. Reduction of Rowhammer Threshold

Over the past decade, the Rowhammer threshold has been
characterized over thousands of DRAM devices [25], with a
clear trend of significant threshold reduction over successive
process nodes, as discussed in Section II-B. It is likely that
TRH will continue to reduce, which has triggered recent works
to develop solutions for sub-500 threshold [32], [35], [37].
Per this trend, sub-100 threshold will be reached in the next
few years (or within the next decade) unless the DRAM
organization changes fundamentally or DRAM vendors mitigate



Rowhammer. Unfortunately, after a decade of efforts, neither
option has materialized, as stated by JEDEC [21], [22] and
recent industry papers [19], [27]. Systems designed today must
deploy defenses that work several years in the future on devices
with unknown characteristics. To this end, START protects
against arbitrary Rowhammer thresholds at low overheads,
irrespective of when such thresholds arrive.

B. Pitfalls of Hybrid Tracking with Hydra
Hydra tracks at a group-level until a group-threshold is

reached, followed by row-level tracking by caching recently
used row-counters in a dedicated cache. Unfortunately, the
SRAM the filter and counter-cache must scale proportionately
with increase in aggressors. Moreover, the dedicated SRAM
structures must be provisioned at design-time. Hydra’s structure
sizes depend on the range of thresholds (row-counter bits)
and maximum memory supported (row-tag bits) [37]. For
example, Hydra-544KB provisions 5-bit counters at threshold
of 64, while 7-bit counters are needed support thresholds
ranging from 64 to 256, requiring 700KB SRAM. Hydra
is also not an exact tracker, as all row-group entries are
initialized to the group-threshold when it is reached, even
if many rows in the group encounter no activations, leading to
spurious mitigations. Limited configurability, dedicated SRAM
structures, and imprecise tracking limit Hydra’s feasibility.
Table IV compares Hydra with START-D at TRH of 64.
TABLE IV: Comparison of Hydra with START at TRH of 64.

Attribute Hydra-544KB START-D
Dedicated SRAM 544KB 4KB

Memory-mapped Storage 5MB 0
Performance Overhead 3.2% 1.9%

SRAM Provisioned Dynamically ✗ ✓

Scales to Arbitrary TRH ✗ ✓

Precise Tracking ✗ ✓

C. A Case for Configurability via START
Hydra incurs low performance overhead only if hundreds

of KBs of SRAM is provisioned at design time, requiring
additional chip area, power, and higher cost. As systems remain
deployed for several years, designers must provision worst-case
SRAM today for thresholds of the future. The dedicated storage
can be rendered wasteful if lower thresholds are not reached
within the system lifetime. Whereas, if ultra-low thresholds
arrive in the absence of adequate dedicated storage, the system
would experience a significant slowdown.

Our design solves the dichotomy with negligible dedicated
SRAM overhead (4KB), while integrating with existing cache
hierarchy, at negligible performance loss. Unlike Hydra, START
can be configured for different use-cases at deployment, for
example, precise tracking within the LLC without a memory-
mapped table with START-D or large-memory systems with
higher thresholds up-to 4K with START-M (Section-V).

In Appendices A to C, we extend evaluations to include
multi-programmed and multi-threaded workloads for START,
Hydra, and Ideal tracker, and present a new START policy that
limits the LLC consumption to at-most 1 way.

VII. RELATED WORKS

A. New Mitigating Actions for Rowhammer

Our paper focuses on tracking activations; an orthogonal
problem is the mitigative action. We evaluate the victim refresh
mitigative action. Recently, alternative mitigative actions have
emerged, such as row migration (Randomized Row-Swap [38],
AQUA [39], Scalable Row-Swap (SRS) [16], SHADOW [43])
and rate control (Blockhammer [45]). Of these, SRS caches
heavily swapped rows (containing data), while we use LLC to
store metadata (row-counters). Moreover, these solutions still
need a tracker and can use START as a practical and scalable
tracker, as START is compatible with any mitigative action.

B. Modifying DRAM to Reduce Rowhammer

Several recent proposals modify the DRAM substrate to
mitigate or reduce Rowhammer. For example, REGA [32]
changes the DRAM substrate to generate extra refresh op-
erations when a row is activated. SHADOW [43] modifies
the DRAM microarchitecture with an extra row per sub-array
to perform row swaps (although it does not scale to ultra-
low thresholds due to limited randomization). Panopticon [6]
proposes to redesign DRAM sub-array to store the counter
alongside the DRAM row and increments this counter on
each activation. Our goal is to mitigate Rowhammer without
needing to redesign DRAM arrays. HiRA [44], can hide the
refresh operations latency by refreshing a row concurrently
with another access or refresh to the given bank. While HiRA
may help with the mitigative action (such as victim refresh),
it still needs a mechanism to identify aggressor rows.

C. Virtualizing Predictors and Metadata

Virtualizing a hardware structure by placing it in the cache
space is a powerful paradigm [30] and has been used in
prior academic and industrial proposals. Such techniques have
previously been applied to virtualize the prefetcher state [10]
and the Branch Target Buffer (BTB) [9]. AMD Magny-Cours
processor uses part of the L3-Cache to store a probe filter [12].
However, our proposal (START-D) not only virtualizes tracking
to the LLC, but also dynamically allocates the storage required,
to reduce the space required by almost 5X compared to a design
that stores the full tracking table within the LLC (START-S).

VIII. CONCLUSION

As Rowhammer thresholds continue to reduce with each
technology generation, we seek solutions effective over a
range of current and future thresholds. Tracking activation
counts is critical to mitigate Rowhammer. At ultra-low sub-
100 thresholds, all prior tracking techniques incur either
significant SRAM overheads, or performance overheads, or
both. In this paper, we propose Scalable Tracking for Any
Rowhammer Threshold (START), which enables practical and
precise tracking of row activations. START obviates dedicated
SRAM overheads by placing tracking metadata in the LLC
using dynamic mechanism to reserve ways on-demand. START
requires only 4KB SRAM and performs within 1% of an
idealized tracker, even for thresholds of less than 100.
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APPENDICES

APPENDIX-A: ADDITIONAL WORKLOADS

In addition to 28 SPEC, LIGRA, and PARSEC workloads
(details in Section III-B), we evaluate multi-threaded, multi-
programmed, and cache-sensitive workloads:

Multi-programmed Workloads: We generate 14 workload
mixes by randomly selecting sets of 8 workloads from 28
SPEC, LIGRA, and PARSEC traces to run on 8 cores. We
label them as mix1 to mix14.

Multi-threaded CloudSuite Workloads: We evaluate 4 Cloud-
Suite workloads [13] using two copies of the workload (4
unique traces per workload) running on 8 cores. Table V shows
characterisitics of the workloads, which are cache-sensitive
(average LLC MPKI of 3.7 compared 16.8 for workloads in
Table III). We also generate 5 mixes of CloudSuite, SPEC,
LIGRA, and PARSEC workloads by randomly selecting 8
workloads from the 44 traces (labeled as cs mix1 to cs mix5).

TABLE V: CloudSuite Workload Characteristics.

Multi-Threaded Weighted MPKI Footprint Unique Rows
Workload Speedup (LLC) (8-core) Touched (64ms)
cassandra 4.21 6.9 1.4 GB 365K

classification 4.4 2.8 373 MB 95K
nutch 5.42 3.1 203 MB 52K

cloud9 4.65 2.2 110 MB 28K
Average 4.65 3.7 528 MB 135K

APPENDIX-B: START-LITE: LIMITING LLC USAGE

START-D can dynamically allocate up-to 8-ways (50% of
LLC capacity) for tracking entries. Each LLC access consults
the Set Allocation Counter (SAC), so START’s maximum
allocation can be lowered by limiting the maximum SAC value.
This is especially useful if START is co-running with other
optimizations that require LLC resources, like way-partitioning

https://doi.org/10.1145/2442516.2442530


or Data Direct I/O [3]. As all tracking entries cannot fit in the
LLC (in the worst-case), memory-mapped START can be used
to store counters for each row in the memory and access them
on-demand, while avoiding cold counter misses (Section V).

We evaluate such a design, termed START-LITE, where
maximum SAC value is 01 (1-way reserved), requiring just
6.25% of LLC capacity in the worst case. START-LITE
accesses the memory for metadata only when there is no
space in the allocated way (32 tracking entries). Despite 8x
lower LLC allocation than START-D in the worst case, the
overhead is low because the evaluated workloads activate about
330K rows within 64ms on average (cf. Table III) and 1-way
allocation in the LLC (Set Allocation Counter value of state-
1) accommodates up-to 512K row-counters, making metadata
memory accesses infrequent, as we show next.

APPENDIX-C: SLOWDOWN OF START-D AND START-LITE

Figure 16 shows the weighted speedup of START-D, START-
LITE, Hydra and Ideal tracker normalized to an unprotected
baseline at TRH of 64. Hydra with 186KB of SRAM incurs
a significant slowdown (8.6%) that reduces to 3.2% by
provisioning 3x more dedicated SRAM (Hydra-544KB).

START-LITE requires only 4KB of dedicated SRAM and
incurs only a 2.7% slowdown. START-D further reduces
the slowdown to 1.9% (within 1% of ideal) and does not
require a memory-mapped tracking table. START-D increases
cache misses by just 2.2% while START-LITE increases them
by 2.6% (including counter-misses). Across 51 single and
mixed workloads, START-D’s maximum slowdown is just
6.7%, compared to 18.6% for Hydra-544KB. Thus, START
provides low-overhead protection for memory-intensive, cache-
intensive, multi-programmed and multi-threaded workloads
while avoiding significant dedicated storage structures.

APPENDIX-D: ARTIFACT

A. Abstract

This artifact presents the code and methodology to repro-
duce evaluation results for START, a Scalable Tracker for
Any Rowhammer Threshold. START and other Rowhammer
defenses are implemented in ChampSim, a cycle-level multi-
core simulator, interfaced with DRAMSim3, a detailed memory
system simulator. We provide the complete code-base for our
experiments. All traces used in our paper are publicly available
and accessible. The code-base includes documentation and
scripts to compile ChampSim and DRAMSim3, download
traces, launch experiments (for unprotected baseline, START,
Hydra, and ideal tracker), parse results, and plot graphs. Most of
the simulator code is in C++, scripts for launching experiments
are in Bash, meta-scripts for creating job-files and collecting
stats are in Perl, and plotting scripts are in Python. This artifact
enables recreation of Figures 2, 6, 7, 8, 9, 10, 13, 14, 15, and
16. If compute resources are limited, representative figures are
6, 7, 8, 13, 14, and 16, while the rest are sensitivity studies.

B. Artifact check-list (meta-information)
• Algorithm: START, Hydra, and Ideal Rowhammer trackers.
• Program: ChampSim multi-core simulator interfaced with

DRAMSIm3 memory-system simulator and 44 publicly avail-
able execution traces from SPEC2017, LIGRA, PARSEC, and
CloudSuite workloads.

• Compilation: Tested with cmake v3.23.1 and gcc v10.3.0.
• Binary: ChampSim simulator binary and DRAMSim3 simulator

as a dynamically loaded library.
• Data set: 44 publicly accessible dynamic execution traces

from 10 SPEC2017, 13 LIGRA, 5 PARSEC, and 4 CloudSuite
workloads.

• Run-time environment: All experiments were run on RHEL
Server 7.9 running Linux kernel v3.10.0 on x86 64 processors.
Additionally tested on ARM-based server running CentOS 8
with Linux kernel 4.18.0.

• Hardware: Requires many-core server with atleast 4GB
memory per core. We used a scale-out HPC cluster with hundreds
of cores and TBs of memory.

• Run-time state: 4GB of memory per core required to store
the dynamic execution state of simulations.

• Execution: One processor core required per workload simula-
tion experiment. All workloads and configurations run indepen-
dently of each other and can be fully parallelized. The paper
includes 48 configurations with 28 workloads each (some with
51 workloads), for a total of 1528 experiments. If compute is
limited, there are 609 representative experiments.

• Metrics: Most graphs use normalized IPC (for same-workload
experiments) or weighted speedup (for Mix and CloudSuite
workload experiments) as the performance metric. Analysis
graphs use LLC capacity loss or cache misses as key metric.

• Output: Recreating Figures 2, 6, 7, 8, 9, 10, 13, 14, 15, and
16. For limited resources, representative figures are 6, 7, 8, 13,
14, and 16.

• Experiments: Instructions to set-up and run experiments, parse
results, and plot graphs are available in the README file.

• How much disk space required (approximately)?: 10GB for
the traces and less than 100MB for the simulators and scripts.

• How much time is needed to prepare workflow (approxi-
mately)?: Downloading traces might take a few hours (depends
on network bandwidth). Compiling the simulators takes less than
a minute per configuration, and there 48 configurations (so less
than an hour).

• How much time is needed to complete experiments (approx-
imately)?: Each experiment runs for about 6 hours on average,
so recreating all 1528 experiments require 9,000 core-hours
(approximately 1-2 days on four 64-core servers). Recreating the
334 representative experiments require about 3,600 core-hours
(approximately 1-2 day on a single 64-core server). Note that
some experiments can take up to 12 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache License 2.0.
• Data licenses (if publicly available)?: MIT License.
• Workflow framework used?: We extend run-scripts, stat-

collection scripts, and trace download utility of Pythia [7], which
is a prefetching framework that used ChampSim as the simulator.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
10247141.

C. Description

1) How to access: The ChampSim simulator code and
instructions on how to evaluate the artifact are available at
publicly at https://doi.org/10.5281/zenodo.10247141. They are
also present on GitHub at https://github.com/Anish-Saxena/
rowhammer champsim.

https://doi.org/10.5281/zenodo.10247141
https://doi.org/10.5281/zenodo.10247141
 https://doi.org/10.5281/zenodo.10247141
https://github.com/Anish-Saxena/rowhammer_champsim
https://github.com/Anish-Saxena/rowhammer_champsim


2) Hardware dependencies: The artifact requires many-core
server(s) to run all configurations and workloads. There are
1528 workload simulations stemming from 48 configurations
with 28 workloads (51 workloads in some cases). As all
workloads can run in parallel, it would take about about 1-2
days of runtime on four 64-core servers. If compute is limited,
the 609 representative simulations require about 1-2 days of
runtime on a single 64-core server (the rest are sensitivity
studies). Atleast 4GB of memory per core is required.

3) Software dependencies: Compilation requires gcc/ g++,
cmake, and make. Launch scripts use Bash. Job creation scripts
require Perl, although we supply default job-files (for slurm
cluster manager) that can be easily adapted to the experimental
system. Trace download is streamlined using Megatools utility,
although they can also be downloaded using wget. The plotting
scripts use Python (specifically, matplotlib library) and Jupyter
Notebook.

4) Data sets: SPEC2017, LIGRA, PARSEC, and CloudSuite
workload dynamic execution traces that are publicly accessible
online.

D. Installation

Please clone the GitHub repository (or download from
the Zenodo archive) and follow the step-by-step instructions
available in the README file.

E. Experiment workflow

The workflow setup includes downloading the 44 execution
traces, cloning simulator repositories, compiling simulator
binaries, and making changes to run-scripts (either using helper-
scripts or manually) as required. Once set up, experiments are
launched in parallel (depending on compute resources). Finally,
the simulation results are parsed and graphs are plotted to
recreate relevant figures.

F. Evaluation and expected results

The artifact provides scripts to parse the simulation results
to derive the normalized IPC, weighted speedup, cache miss-
rate, or cache capacity loss metrics, as required. The relevant
commands are provided in the README. The Python scripts,
available within the Jupyter Notebook, plot the relevant graphs.
This artifact enables recreation of Figures 2, 6, 7, 8, 9, 10, 13,
14, 15, and 16.

G. Experiment customization

Running all configurations discussed in the paper (includ-
ing sensitivity studies) require significant compute resources
(about 9,000 core-hours). The artifact provides instructions on
prioritizing the representative figures, which reduce compute
resources significantly (about 3,600 core-hours). Although
further customization is not expected, the experiments can be
sped up by reducing the simulated instructions or by running
a sub-set of workloads. This requires changing the run-scripts
(or job-creation scripts).

H. Notes

Please reach out to the authors in case of any questions or
issues.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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