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Abstract 

Die stacking memory technology can enable gigascale 

DRAM caches that can operate at 4x-8x higher bandwidth 

than commodity DRAM. Such caches can improve system per­

formance by servicing data at a faster rate when the requested 

data is found in the cache, potentially increasing the memory 

bandwidth of the system by 4x-8x. Unfortunately, a DRAM 

cache uses the available memory bandwidth not only for data 

transfer on cache hits, but also for other secondary operations 

such as cache miss detection, fill on cache miss, and write back 

lookup and content update on dirty evictions from the last-level 

on-chip cache. Ideally, we want the bandwidth consumed for 

such secondary operations to be negligible, and have almost 

all the bandwidth be available for transfer of useful data from 

the DRAM cache to the processor. 

We evaluate a 1 GB DRAM cache, architected as Alloy 

Cache, and show that even the most bandwidth-efficient pro­

posal for DRAM cache consumes 3.8x bandwidth compared 

to an idealized DRAM cache that does not consume any band­

width for secondary operations. We also show that redesign­

ing the DRAM cache to minimize the bandwidth consumed by 

secondary operations can potentially improve system perfor­

mance by 22%. To that end, this paper proposes Bandwidth 

Efficient ARchitecture (BEAR) for DRAM caches. BEAR inte­

grates three components, one each for reducing the bandwidth 

consumed by miss detection, miss fill, and writeback probes. 

BEAR reduces the bandwidth consumption of DRAM cache by 

32%, which reduces cache hit latency by 24% and increases 

overall system peiformance by 10%. BEAR, with negligible 

overhead, outpeiforms an idealized SRAM Tag-Store design 

that incurs an unacceptable overhead of 64 megabytes, as well 

as Sector Cache designs that incur an SRAM storage overhead 

of 6 megabytes. 
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1. Introduction 

Recent advancements in on-chip packaging and 3D intercon­

nect technology have enabled interconnecting several DRAM 

modules to offer significantly higher bandwidth than conven­

tional DIMM-based DDR memories. Examples of such mem­

ory technology includes Hybrid Memory Cube (HMC), High 

Bandwidth Memory (HBM), Wide 110 (WIO), and Graphic 

Double Data Rate (GDDR) memory [1, 2, 3, 4, 5]. These mem­

ory technologies offer high memory bandwidth, even though 

their access latency may be similar to existing DDR memo­

ries. Furthermore, modules from these technology may not 

have enough capacity to fully replace conventional DIMMs, 

so future memory systems are likely to consist of heteroge­

neous memory technologies. One attractive design to use these 

high bandwidth DRAM technologies is to architect them as 

a DRAM cache [6, 7, 8, 9, 10, 11], as an intermediate level 

between on-die caches and the DDR-based main memory. 

Architecting gigascale DRAM as a hardware managed 

cache faces several challenges, including designing a tag stor­

age of several tens of megabytes. For example, a 1GB cache 

contains 16 million lines (of 64 bytes each), which means 

that if each tag store entry requires four bytes, we would need 

64MB of storage for the tag store. Provisioning such a large 

tag store on-chip is impractical. Architecting the DRAM cache 

as a Sector Cache [12, 10] reduce the SRAM overheads to 

6MB, which is still quite large. Thus, SRAM based tag store 

suffers from both high storage overhead as well as tag access 

latency overheads, as shown in Figure lea). 

6MB-64MB DRAM 
SRAM 

DATA 
STORE 

'----_----' OAT A 

(a) Tags-in-SRAM 

� 

DRAM 

TAG AND 
DATA 

� STORE 
TAG,DATA 

(b) Tags-in-DRAM 

Figure 1 :  Organizations for 1GB DRAM cache (a) Storing tags in 

SRAM incurs overhead of 64MB (6MB with sector cache) (b) Tags-in­

DRAM approach is more scalable and avoids the SRAM overheads. 

The more practical approach for architecting large DRAM 

cache is to place tags in DRAM and uses intelligent placement 

of tags and data to reduce the lookup latency, as shown in 

Figure l(b). For example, Loh and Hill propose (Loh-Hill 

Cache) [6] a design that organizes 29-way in a single DRAM 

row buffer to leverage row buffer hit. For each request, Loh-



Hill Cache transfers 4 cache lines (3 lines for tags and one 

for data). Another design, Alloy Cache [9] organizes tag and 

data together to form a Tag And Data (TAD) entry in a direct­

mapped cache, and transfers only one TAD per request. Thus, 

Alloy Cache optimizes for hit latency and bandwidth instead of 

hit rate. As Alloy Cache is more bandwidth efficient compared 

to the Loh-Hill design, we use the Alloy Cache as our baseline 

to study the problem of bandwidth inefficiency in gigascale 

DRAM caches. 

Stacked memory has 4x-8x higher bandwidth than DRAM 

memory. If the requested cache line is found in the DRAM 

cache, it can be serviced at a faster rate. For an idealized 

scenario, we can expect all of the DRAM cache bandwidth to 

get consumed only by transfers of data lines from the DRAM 

cache to the processor chip. However, a cache design also 

needs to perform several secondary operations that consume 

cache bandwidth. Unlike SRAM cache that is well customized 

in terms of accessing points (e.g., tag/data ports, read/write 

ports), any operations to DRAM cache shares the same DRAM 

interface. These secondary operations includes Miss Probe (to 

detect a miss, we need to look up the tag store in the DRAM 

cache), Miss Fill (on a cache miss the missed line is obtained 

from memory and filled in the cache), Write back Probe (on a 

dirty eviction from the on-chip LLC identifying if that line is 

present in the DRAM cache), Writeback Update (if writeback 

probe gives a hit, updating the content of the line in DRAM 

cache), and Writeback Fill (filling the writeback data in the 

cache, if a writeback probe gives a miss). We would like 

the bandwidth consumed by such secondary operations to be 

negligibly small, and have almost all the bandwidth available 

dedicated to critical data transfers. 

To measure the consumption of bandwidth due to secondary 

operations we define a metric called Bloat Factor, which is the 

ratio of the total bandwidth consumed by the DRAM cache to 

the bandwidth required for transferring only the data lines to 

the processor chip. For an idealized cache that does not spend 

any bandwidth for secondary operations, Bloat Factor equals 

1. Our study with a 1GB DRAM cache shows that Loh-Hill 

Cache and Alloy Cache have a Bloat Factor of 7.3X and 3.8X, 

respectively. Thus, recent designs for DRAM cache do not 

use bandwidth efficiently. 

For a DRAM cache, the cache hit latency comprises two 

parts: the DRAM array access latency and the queuing delay. 

When bandwidth is sufficient, the queuing delay is negligible 

compared to DRAM array latency. However, when bandwidth 

is a scarce resource, queuing delay becomes significant in the 

cache hit latency. We show that 2.8X bandwidth bloat more 

than doubles the DRAM cache hit latency, due to an increase 

in the queuing delay. Thus, if we can redesign the cache to 

have a Bloat Factor close to 1, we can reduce cache hit latency 

and potentially improve performance by 22%. To this end, 

this paper makes following contributions. 

1. To the best of our knowledge, this is the first paper that iden­

tifies and quantifies the bandwidth bloat in DRAM caches 
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due to secondary operations. We show that secondary op­

erations cause even the most bandwidth-efficient DRAM­

cache design to consume 3.8x the bandwidth, thereby re­

ducing the bandwidth available for the critical operations. 

2. We propose Bandwidth Efficient ARchitecture (BEAR) for 

DRAM caches. BEAR consists of three component tech­

niques, each aimed at making one of the secondary opera­

tions bandwidth efficient, namely: 

(a) Bandwidth Efficient Cache Fills. Inserting missed 

lines in the cache consumes cache bandwidth, but 

many of the inserted lines do not get reused while 

resident in the cache. Bypassing some of the Miss Fills 

can reduce bandwidth bloat, but naive bypassing can 

reduce the hit rate of the DRAM cache significantly 

for some workloads and degrade performance. We 

propose Bandwidth Aware Bypass (BA B) to reduce the 

bandwidth consumed by fill operations while limiting 

the loss in cache hit rate to a desired level. 

(b) Bandwidth Efficient Writeback Probe The second com­

ponent scheme, DRAM Cache Presence (DCP), re­

duces Writeback Probe by introducing state informa­

tion in the on-chip Last Level Cache (LLC) to track if 

the line exists in the DRAM cache. 1 DCP associates 

each cache line in the LLC with one bit, which keeps 

track of the line's presence state information in the 

DRAM cache; when a dirty line is evicted from the 

LLC, this bit guides to issue a Writeback Probe. 

(c) Bandwidth Efficient Miss Probe. We reduce the band­

width consumed by Miss Probe by leveraging the prop­

erty of DRAM caches to streams multiple tags on each 

access. We buffer the tags of recently accessed adja­

cent cache line's tags in the Neighboring Tag Cache 

(NTC). On a LLC miss, the request first looks up the 

NTC. If the tag for the requested cache location is 

found in the NTC, it avoids the Miss Probe. 

Overall, the three component schemes of BEAR can be 

implemented with a storage overhead of only 4KB (and one 

bit per line in the L3 cache). BEAR can be implemented 

without any changes to the architecture of the DRAM array. 

BEAR reduces the bandwidth consumption of DRAM cache 

by 32%, which reduces the cache hit latency by 24%. Even 

though BEAR degrades the cache hit rate by 2% (due to BAB), 

it increases overall system performance by 10.1 %. 

While we focus on tags-in-DRAM designs in our studies, 

we show that BEAR outperforms an idealized design that 

stores the tags on-chip using 64MB SRAM, as well as the 

sector cache design that has an 6MB SRAM overhead. 

1 If the DRAM cache is designed to be inclusive of Last Level Cache 
(LLC) then a Writeback Probe is not necessary. Unfortunately, inclusive 
DRAM caches do not support bypassing, as all the lines in the LLC must be 
present in the DRAM cache and bypassing breaks this requirement. Ideally, 
we want to avoid the bandwidth of Writeback Probe, while still being able to 

do bypassing. Our solution can obtain both benefits, while inclusive DRAM 

caches cannot. We compare our proposal to inclusive cache in Section 7. 



2. Background and Motivation 

Processor architects face a key design decision on how to 

utilize high bandwidth memory in a heterogeneous memory 

system. Using high bandwidth memory as a cache, which we 

refer to as DRAM cache, is attractive as it is transparent to the 

software, and allows hardware vendors to use stacked memory 

without relying on support from the software companies. In 

this paper, we focus on efficient management of such hardware­

managed gigascale DRAM caches. 

2.1. Recent Designs for DRAM Cache 

Architecting high performance DRAM cache have received 

significant attention over the past few years. These proposals 

have mostly focused on managing tag storage overhead, cache 

hit rate, and/or cache access latency. We show two recent 

designs for DRAM cache in Figure 2. 

LLC Miss 

MEM in Parallel 

Em DRAM Array 

B 

29 Tags (3 Lines) 29 Data Lines 
Data 

TAG(192B) DATA(64B) 
(a) Loh-Hill Cache 

28 Tag and Data (TAD) 
- - - - - - Data 

TAG+DATA (SOB) 

(b) Alloy Cache 
Figure 2: Recent Designs for DRAM Cache: (a) Loh-HiII Cache trans­

fers 3 lines for tag and 1 line for data on each hit (256 bytes), and (b) 

Alloy Cache transfers 1.25 cache line for each hit. 

The tag storage overhead problem arises because gigascale 

DRAM caches hold millions of cache lines. For example, a 

1GB DRAM cache holds 16 million 64B cache lines which 

requires 64MB of tag storage overhead (assuming four bytes 

per tag). Since it is impractical to accommodate such a large 

tag structure on chip, most proposals suggest storing the tag 

and data in the high bandwidth memory itself. 

For example, Loh and Hill propose a set-associative DRAM 

cache by implementing a 29-way cache stored in a single 

DRAM row buffer, as shown in Figure 2(a) [6]. This proposal 

stores the tags for the 29 cache ways in the first three cache 

lines of the 2KB row buffer. Servicing a cache hit requires first 

reading (and checking) the tags from the DRAM row buffer 

and then reading the data from the DRAM row buffer (on a tag 

match). This proposal targets improving cache hit rate using 

higher associativity at the expense of increased access latency 

and higher read bandwidth. 

More recently, Qureshi and Loh tackled the latency and 

bandwidth problem with the direct-mapped Alloy Cache pro-
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posal, shown in Figure 2(b). Alloy Cache targets both cache 

access latency and bandwidth, organizing the tag and data 

together to form a Tag And Data (TAD) entry [9]. Servicing 

a cache hit requires a single read of the TAD entry from the 

DRAM row butler and then checking for a tag match. If the 

tag matches, the associated data entry within the TAD is for­

warded to the requesting core. Doing so, the Alloy Cache 

improves cache access latency and bandwidth at the expense 

of a slight reduction in hit-rate. 

2.2. Bandwidth Bloat in DRAM Caches 

The conventional approach of using DRAM to architect main 

memory follows a simple request response protocol. When 

an address misses in the on-chip Last-Level Cache (LLC), the 

memory controller fetches the data from the DRAM devices. 

With DRAM configured as main memory, the effective raw 

DRAM bandwidth is the total number of bytes transferred on 

the data bus (i.e., #LLC_misses * LLC_Line_Size). 

Architecting DRAM as a cache, on the other hand, requires 

additional bandwidth to implement cache functionality (e.g., 

cache fills, cache probes). We propose a metric termed Bloat 

Factor, which is defined as the total bytes transferred on the 

DRAM cache data bus divided by the total bytes required to 

satisfy all LLC misses, as shown in Equation 1. 

L Total Bytes Transferred 
BloatFactor = (1) 

L Useful Bytes Transferred 

Ideally, the Bloat Factor value should be 1, meaning that 

the entire DRAM cache bandwidth contributes to servicing 

LLC misses. However, as Figure 3(a) illustrates, Bloat Factors 

are 7.3X and 3.8X for Loh-Hill and Alloy caches, respectively. 

DRAM cache hit latency comprises two parts: DRAM array 

access latency and queuing delay. Bandwidth bloat increases 

DRAM service time due to increasing queuing delay. Shown 

in Figure 3(b), DRAM cache hit latency is 409 cycles and 239 

cycles with respect to Loh-Hill and Alloy cache, while an ideal 

case (termed Bandwidth-Optimized cache (BW-Opt)) that all 

secondary operations are free has DRAM cache hit latency of 

only 97 cycles. BW-Opt reduces L4 hit latency significantly, 

and thus BW-Opt outperforms both Loh-Hill and Alloy cache, 

as shown in Figure 3(c). Detailed experimental methodology 

is in Section 3. 

In the rest of the paper, we use Alloy cache as our baseline 

DRAM cache model (comparison to LH-cache in Section 7). 

Although Alloy cache is more efficient, it still has room to 

improve (3.8X in Bloat Factor, and 22% in performance). 

2.3. Breakdown: Where Does the Bandwidth Go? 

Bandwidth bloat in DRAM caches corresponds to the steps in 

implementing cache functionality. Unlike memory which only 

holds data, DRAM caches hold both tag and data. Typically, 

on read requests, a tag is used to determine if an address exists 

in the cache. Thus, every cache lookup requires both tag and 

data to be fetched from the DRAM cache. If the cache lookup 
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Figure 3: Comparison of Loh-HiII (LH), Alloy (AL), and Bandwidth­

Optimized (OPT) cache: (a) Bloat Factor, (b) Hit Latency, and (c) 

Speed up with respect to no DRAM cache. 

results in a hit, the first source of bandwidth bloat (referred to 

as Hit Probe) can be attributed to tag fetch (the data is critical 

and hence not a bandwidth bloat). If the cache lookup results 

in a miss, the second source of bandwidth bloat (referred to as 

Miss Probe) can be attributed to the fetching of both tag and 

data.2 Typically, a cache miss requires inserting a line into the 

cache; thus, the third source of bandwidth bloat (referred to as 

Miss Fill) is to fill the new tag and data into the cache.3 

In addition to read requests, the processor can return dirty 

data from the on-chip LLC by issuing writeback requests. On 

a writeback request, the DRAM cache must be consulted to 

determine whether the corresponding line already exists in the 

DRAM cache. Should the line exist in the DRAM cache, the 

DRAM cache contents must be updated for correctness. Thus, 

the fourth source of bandwidth bloat (referred to as Write back 

Probe) can be attributed to fetching the tag to detect whether 

or not to update the DRAM cache contents. If the Writeback 

Probe results in a cache hit the new data and existing tag are 

written back to the DRAM cache.4 Thus, the fifth source 

of bandwidth bloat (referred to as Writeback Update) can be 

attributed to re-writing the tag (not data). On the other hand, 

if the Writeback Probe results in a cache miss there are two 

possibilities. If a writeback no-allocate policy is used, the 

data is sent to main memory. However, if a writeback allocate 

policy is used, the new data and new tag are written to the 

DRAM cache replacing the existing data. Thus, the sixth 

source of bandwidth bloat (referred to as Writeback Fill) can 

be attributed to updating tag and data on writeback requests. 

Figure 4 shows the bandwidth breakdown for the Alloy 

cache. In a BW-Opt cache, the Bloat Factor is 1, and all 

the bandwidth is dedicated to Hit: The cache performs all 

the secondary cache operations logically, without using any 

of the physical resources. On the other hand, Alloy Cache 

2Note that bandwidth bloat is only due to Miss Probes that fetch clean 

lines. If a dirty line is fetched, the Miss Probe is necessary for correctness 
to write the dirty data to main memory. Most Miss Probes cause bandwidth 
bloat since the majority of DRAM cache lines tend to be clean. 

3 As Alloy Cache is direct-mapped, it does not require replacement up­
dates on cache hits. For Loh-HiII cache, replacement update on cache hit is 
another source of bandwidth bloat (if LRUIDIP replacement is used). 

4In the Alloy Cache, if a writeback allocate policy is used, Writeback 
Fills must be preceded with a Writeback Probe to determine if a dirty line is 

being evicted and a writeback to memory is necessary. 

201 

4.0 1.4 -
1.3 -

.9 3.0 
u g. 1.2 
'" "t:I u... 2.0 � 1.1 
i;j (j; 1.0 sa 
III 1.0 

0.9 
0.0 0.8 

Alloy BW-Opt Performance 

Figure 4: Comparison of Bloat Factor and Potential Performance. 

requires five 12S-bit bus transfers (SO bytes) to transfer the tag 

and data (72 bytes). This is a Bloat Factor of 1.25X for Hit 

compared to BW-Opt cache. Miss Probe and Miss Fill each 

take about 0.67X. Writeback Probe and Writeback Update 

each take about 0.57X. Note that we use write-allocate policy 

for DRAM cache, and hence do not have Writeback Fill in the 

baseline. Overall, the Bloat Factor for Alloy cache is 3.SX. 

Note that the cache operations corresponding to bandwidth 

bloat are common to both SRAM and DRAM cache designs. 

However, these cache operations do not degrade performance 

in SRAM caches primarily because of SRAM cache imple­

mentation. Unlike DRAM caches that share a single narrow 

data bus for all read and write operations, SRAM caches typi­

cally consist of separate read and write ports that match the 

width of the corresponding tag and data. Furthermore, SRAM 

caches have much higher read/write bandwidth because of 

separate banked tag and data arrays each with their own read 

and write port. Therefore, the bandwidth utilized by these 

secondary operations has not been a critical concern for the 

on-chip SRAM caches. Unfortunately, for DRAM caches 

bandwidth is a scarce resources, so the performance overhead 

of these secondary operations becomes significant, and there 

is an opportunity to improve performance by reducing the 

number of cache operations that result in bandwidth bloat. 

2.4. Goal: !!andwidth �fficient ARchitecture (BEAR) 

DRAM cache bandwidth bloat is attributed to six different 

cache operations: Hit Probe, Miss Probe, Miss Fill, Write­

back Probe, Writeback Update, and Writeback Fill. Among 

these operations, only the Hit Probe contributes towards useful 

bandwidth to service the LLC miss request. All other cache op­

erations are either targeted for improving performance (Miss 

Fill, and Writeback Fill), or for ensuring correctness (Miss 

Probe and Writeback Probe). 

Since bandwidth bloat increases DRAM cache access la­

tency, we investigate opportunities to reduce bandwidth bloat. 

In this paper, we target three sources of following bandwidth 

bloat: 

1. Bandwidth-Efficient Miss Fill. Miss Fill consumes signif­

icant DRAM cache bandwidth. A typical cache design 

inserts all cache lines on a miss, with the assumption that 

such lines will later provide cache hits. However, a signifi­

cant percentage of lines are not referenced again [13, 14]. 

Consequently, we can use cache bypassing to reduce the 



bandwidth consumed by Miss Fills, even if it degrades 

cache hit rate by a marginal amount. 

2. Bandwidth-Efficient Writeback Probe. Typically, a Write­

back Probe is issued before a Writeback Update to deter­

mine whether the line already exists in the DRAM cache. 

If the architecture provides guarantees on whether or not 

a line already exists in the DRAM cache, the majority of 

Writeback Probes can be eliminated. We propose enhance­

ments to the on-chip LLC to avoid Writeback Probes. 

3. Bandwidth-Efficient Miss Probe. Miss Probes waste band­

width when the requesting line misses in the cache. We 

leverage DRAM cache design to buffer recently accessed 

neigh boring tags to reduce the bandwidth of Miss Probes. 

We discuss our experimental methodology before describ-

ing each of our solutions in detail. 

3. Experimental Methodology 

3.1. System Configuration 

We use a x86 simulator with a detailed memory system model. 

Table 1 shows the configuration used in our study. We assume 

a four-level cache hierarchy (Ll, L2, L3 being on-chip SRAM 

caches and L4 being the off-chip DRAM cache). All cache 

hierarchy uses 64B line size. We use Alloy Cache as the 

baseline L4 cache, and the results are normalized to Alloy 

Cache unless stated otherwise. Cache misses fill all levels of 

the hierarchy. We equip the Alloy Cache with a the MAP­

I miss predictor [9] to overcome the tag lookup latency for 

cache misses. 

Our baseline assumes that L4 is non-inclusive of L3 cache. 

(L3 cache can be either inclusive or non-inclusive of LlIL2 

caches, although we model non-inclusive L3 cache for sim­

plicity). Also, we assume the DRAM cache is a memory-side 

cache, and hence we do not consider coherence traffic. Write­

back misses do not allocate and instead send data to the next 

cache level. We model a virtual memory system to perform 

virtual to physical address translations. 

We assume a heterogeneous memory system with the 

DRAM cache using HBM technology [2] and main memory 

using conventional DIMM technology [4]. In accordance with 

the specification for stacked memory, we assume the same 

access latency in both DRAM technologies. However, the 

bandwidth of DRAM cache is much higher than main memory. 

In our baseline system, DRAM cache has 8x bandwidth of 

main memory (2X channel, 2X bus width, 2X bus frequency). 

A DRAM cache bandwidth sensitivity study is presented in 

Section 8. We model DRAM timing based on USIMM[15]. 

For both the stacked DRAM and off-chip DRAM, we equip 

each memory channel with separate read queue and write 

queue, and the scheduler prioritizes read requests over write 

requests, and writes are issued in batches. 
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Table 1 :  Baseline System Configuration 

Processors 

Number of Cores 8 

Frequency 3.2GHz 

Core Width 2 wide out-of-order 

Last Level Cache 

Shared L3 Cache 8MB , 1 6-way, 24 cycles 

DRAM Cache 

Capacity 1 GB 

Bus Frequency l.6GHz (DDR 3.2GHz) 

Channels 4 

Banks 16 Banks per rank 

Bus Width 1 28 bits per channel 

tCAS-tRCD-tRP-tRAS 36-36-36-1 44 CPU cycles 

Main Memory (Conventional DRAM) 

Capacity 1 6GB 

Bus Frequency 800MHz (DDR l.6GHz) 

Channels 2 

Banks 8 Banks per rank 

Bus Width 64 bits per channel 

tCAS-tRCD-tRP-tRAS 36-36-36-1 44 CPU cycles 

3.2. Workloads 

We use a representative region of I-billion instructions from 

the SPEC CPU2006 benchmark suite, captured by Sim­

Points [16]. We present our study using workloads that have 

Miss Per Thousand Instruction (MPKI) greater than 1, as 

shown in Table 2. We group the workloads into two categories: 

High Intensive (MPKI greater than 12) and Medium Intensive 

(MPKI between 2 and 12). We evaluate our study by executing 

benchmarks in rate mode, where all eight cores execute the 

same benchmark, as shown below. 

Table 2: Workload Characteristics for Rate Mode. 

Category Name L3 MPKI Footprint 

mcf 74.6 1 0.2 GB 

Ibm 32.7 3.1 GB 

soplex 27.1 l.9 GB 

High Intensive 
mile 26.1 4.5 GB 

1ibquantum 25.5 256 MB 

omnetpp 21 .1 1 .1 GB 

bwaves 1 8.7 l.5 GB 

gcc 1 8.6 680 MB 

sphinx3 1 2.4 l36 MB 

GemsFDTD 9.9 5.3 GB 

leslie3d 7.6 61 6 MB 

Medium Intensive 
wrf 6.8 488 MB 

cactusADM 5.5 l.2 GB 

zeusmp 4.8 l.5 GB 

bzip2 3.7 2.4 GB 

xa1ancbmk 2.3 1 .3 GB 

We also evaluate 38 mixed workloads that are selected from 

the above 16 benchmarks. Table 3 shows the workloads for 

which we will show detailed results. The virtual-to-physical 

page mapping ensures that two benchmarks do not map to the 

same address. 



Table 3: Workload Characteristics for Mixed Workloads. 

Name Workloads Class 

MIX] libq-mcf-soplex-milc-bwaves-lbm-omnetp-gcc 8H 

MIX2 libq-mcf-soplex-milc-lbm-omnetpp-Gems-sphinx 6H+2M 

MIX3 mcf-soplex-milc-bwave-gcc-lbm-leslie-cactus 6H+2M 

MIX4 libq-mcf-soplex-milc-Gems-leslie-wrf-zeusmp 4H+4M 

MIXS bwave-lbm-omnetp-gcc-cactus-xalanc-bzip-sphinx 4H+4M 

MIX6 libq-gcc-Gems-leslie-wrf-zeusmp-cactus-xalanc 2H+6M 

MIX7 mcf-omnetp-Gems-leslie-wrf-xalanc-bzip-sphinx 2H+6M 

MIX8 Gems-leslie-wrf-zeusmp-cactus-xalanc-bzip-sphinx 8M 

3.3. Figure of Merit: Performance 

For rate mode workloads, we use the total execution time as 

the performance metric. The reported normalized speed up 

is the normalized execution time with respect to the baseline 

system. For mixed workloads, we use weighted speedup as the 

performance metric, and the reported normalized speed up is 

the normalized weighted speed up with respect to the baseline 

system. The weighted speed up is given by Equation 2. 

L' I Pc�hared 
WeightedSpeedup = 

1 I . I '"'.[PCmge '--I 1 

(2) 

To report performance, we use geometric mean to report 

the average speedup for the 16 rate-mode runs (RATE), 8 

mix-mode runs (MIX), and all 54 workloads (ALL). 

3.4. Measuring Bandwidth Efficiency 

Another important aspect of our study is the bandwidth con­

sumption of the DRAM cache. We define Bloat Factor as 

the amount of total bytes transferred divided by the useful 

bytes transferred on the bus, as shown in Equation 1. The 

denominator also means the total cache lines transferred to the 

processor multiplied by cache line size (i.e., 64 bytes). Note 

that bandwidth efficiency is the inverse of the Bloat Factor. 

4. Bandwidth-Efficient Miss Fill 

Among secondary operations, our first target is Miss Fill. Miss 

Fill takes 17% DRAM cache bandwidth (Bloat Factor 0.67 of 

3.8). If all inserted cache lines are accessed again, the future 

access will be served by DRAM cache, and have lower latency. 

However, not all inserted cache lines will be re-referenced 

again [13, 14], which gives us an opportunity to bypass some 

Miss Fills without impacting hit rate significantly. In this 

section, we first examine a naive approach which bypasses 

a fixed fraction of the cache fills randomly. We show that 

while such a scheme can improve hit latency of the cache, in 

some cases it can cause severe degradation in both the hit rate 

and overall system performance. We propose a Bandwidth 

Aware Bypass (BAB) scheme that tries to free up the bandwidth 

consumed by Miss Fills while limiting the degradation in hit 

rate to a predetermined amount. 
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4.1. Probabilistic Bypass: A Simple and Naive Scheme 

A fairly simple and straight forward way to reduce the band­

width consumed by Miss Fill is to not perform Miss Fill for a 

given percentage of cache misses. Let the Bypass Probability 

(P) denote the fraction of total cache misses for which we 

decide to skip the Miss Fill and instead bypass the cache. On 

a cache miss, we could make the decision of install of bypass 

by consulting a random number generator. If the value of the 

random number generator is less than P, perform bypass, other­

wise fill the line in the cache. We call this scheme Probabilistic 

Bypass (PB). The parameter P regulates the effectiveness of 

PB at reducing the bandwidth consumed by Miss Fills. At 

high value of P, we would expect a larger number of lines 

to be bypassed, which reduces the bandwidth consumption 

of Miss Fills, and therefore improves the cache hit latency. 

Unfortunately, bypassing a larger number of cache lines can 

have adverse impact on hit rate too, and thus harm overall 

system performance. To analyze this phenomenon, we study 

two values of bypass probability: P=50% and P=90%. Note, 

PB with P=O% is the same as the baseline design which does 

not perform bypass. 

(c) Speedup (w.r.t. Alloy Cache) 

Figure 5: Comparison of Probabilistic Bypass with P=50% and 

P=90% in terms of impact on (a) Cache Hit Latency (b) Cache Hit Rate 

(c) Speed up. All numbers are with respect to the baseline. 

Figure 5 shows the reduction in cache hit latency (higher 

is better), increase in cache hit rate (higher is better) and 

speed up (higher is better) with PB for P=50% and P=90%. 

As expected, aggressive bypassing can reduce hit latency sig-



nificantly, on average by 12% for P=90%. Unfortunately, 

probabilistic bypassing can also degrade hit rate significantly 

for several workloads (such as Gems and Zeusmp), which can 

reduce performance. Overall, the speed up from probabilistic 

bypass is negligible, and we may deem PB to be ineffective at 

improving performance. 

4.2. Bandwidth Aware Bypass: Limiting Hit-Rate Loss 

Ideally, we desire the benefits from cache hit latency reduction 

using PB, without significantly impacting the DRAM cache 

hit rate. For the DRAM cache to be high performing, PB 

should not degrade cache hit rate significantly with respect 

to the baseline. This suggests a dynamic mechanism that 

measures the differential in hi t rate (or miss rate) between 

the baseline and PB. If the differential is lower than some 

threshold then it should use PB, otherwise the baseline. We 

call this mechanism as Bandwidth Aware Bypass (BAB) as it 

tries to continue to bypass (in order to free up the bandwidth) 

even if such bypassing causes a minor degradation in cache hit 

rate. This is unlike prior schemes on cache replacement that 

aim to do bypassing solely with the aim of maximizing cache 

hit rate, and would try to disable the bypassing mechanism if 

there is any loss of hit rate. 

DRAM Cache 

Baseline Policy 

IMiss Rate X I l 
X-V< 

Prob Bypass (PB) t ~ 
Do Not U" PB 

True Use PB 
Set V IMiss Rate vi 

DSet using PB • Set for Baseline Policy D Follower Sets 

Figure 6: Design of Bandwidth Aware Bypass. 

We use Set Dueling [13] to dynamically select between PB 

and the baseline. Of the 16M sets in the DRAM cache, we 

create two sampling monitors of 512K sets each for PB and 

baseline policy, and the remaining ISM sets are the follower 

sets. We use two 16-bit counters for each sampling monitor: 

one counts misses, and the other counts accesses. Misses and 

accesses to the sampled sets increment the corresponding 16-

bit counters. When any of the access counters saturates, all 

the counters are shifted right by 1 bit. We compute the miss 

rates of the baseline and PB sampled sets and then compare 

the difference in the two miss rates to a threshold, Ll. If the 

difference is smaller than the threshold, then PB and baseline 

have similar miss rates Therefore, we can be bandwidth effi­

cient and set the mode-bit to enable the follower sets to use 

PB. Whereas, if the difference is greater than or equal to the 

threshold, then baseline has better miss rate and we unset the 

mode-bit to enable the follower sets to use the baseline policy. 

Note that there is a single mode-bit for the entire cache and it 

changes only when one of the access-bit counter saturates. 
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We conduct a sensitivity study using 90% probability to 

determine the best threshold for the differential in miss rate 

for the mechanism to select between PB and the baseline, and 

found that using Ll = k gave the best overall performance. 

Which means that PB must provide a hit rate of at least 15116th 

of the baseline hit rate for the bypassing to continue, otherwise 

PB get disabled. 

4.3. Effectiveness of BAB 

Figure 7 shows the speed up of BAB, in which the component 

PB policy uses a bypass probability of 90%. On average, BAB 

improves performance by 5.1 % (and as much as 15%) over the 

baseline, without causing degradation in any of the workloads. 

The cache hit rate with and without BAB are 61 % and 63%, 

respectively. Thus, BAB sacrifices a small amount of cache hit 

rate to free the Miss Fill bandwidth, which reduces hit latency 

and improves performance. 
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Figure 7: Speedup from Bandwidth Aware Bypass. 

5. Bandwidth-Efficient Writeback Probe 

Cache writebacks update main memory with new data modi­

fied by the processor core. On a writeback request, the DRAM 

cache must be consulted using a WriteBack Probe to determine 

whether the line already exists in the DRAM cache. The probe 

is necessary for correctness to update the DRAM cache data. 

Updates enable the DRAM cache to service future requests 

with the most recent data value. 

In general, a Writeback Probe is wasteful if the line evicted 

from the on-chip LLC (i.e., dirty line) already exists in the 

DRAM cache. Since DRAM caches are generally much larger 

than on-chip LLCs, the probability that a writeback request 

misses in the DRAM cache tends to be very low « 1 % in our 

studies). This suggests that the majority of Writeback Probes 

are useless and cause unnecesary bandwidth bloat. Hence, it 

is highly desirable if the cache architecture can provide some 

guarantees on whether (or not) a dirty line evicted from the 

on-chip LLC exists in the DRAM cache. 

5.1. Limitation of Inclusive Caches 

One approach is to enforce the inclusion property [17] for the 

DRAM cache. Enforcing inclusion mandates that all lines 

resident in the small on-chip caches must also be resident in 

the DRAM cache. When evicting lines from the DRAM cache, 

inclusion is enforced by sending a back-invalidate request to 

also evict the line from all on-chip caches (should the line 

be present). Consequently, enforcing inclusion property for 



DRAM caches eliminates the need for Writeback Probes since 

writebacks are guaranteed to hit in the DRAM cache. 

While an inclusive DRAM cache eliminates the bandwidth 

bloat due to Writeback Probes, inclusion prevents bypassing of 

cache lines on misses. Consequently, inclusion eliminates the 

5-15% performance benefits from our bandwidth conscious 

Adaptive Fill policy. Ideally, we want to eliminate both Miss 

Fill and Writeback Probe, but inclusive cache can avoid only 

Writeback Probe. Therefore, we desire a mechanism that not 

only reduces Writeback Probes, but also is able to bypass 

Miss Fills.s We show that our proposed design outperforms 

inclusive cache in Section 7. 

5.2. Tracking Residency of Line in DRAM Cache 

Writeback Probes can be avoided if there exists some state in­

formation in the memory hierarchy that specifies which cache 

lines are resident in the DRAM cache. Note that this state 

information need not be for every line in the DRAM cache, 

but only those lines that are dirty in the on-chip caches. Thus, 

the state information can be reduced from tracking millions of 

lines in the DRAM cache to only a few thousand lines present 

in the on-chip caches. 

o 

WritebackUpdate 

DATA 

WritebackProbe + 

WritebackUpdate 

Figure 8: Design of DRAM Cache Presence Bit. 

The state information is a one-bit field that tracks whether 

or not a line is present in the DRAM cache. We refer to this 

one-bit field as DRAM Cache Presence (DCP) and propose 

adding DCP to each line in the LLC, as in Figure S. DCP 

is modified on LLC fills and DRAM cache evictions. On 

LLC fills, DCP is set to one if the line was serviced from 

the DRAM cache, zero otherwise. DCP is kept up-to-date 

on DRAM cache evictions. When a line is evicted from the 

DRAM cache, the LLC is conveyed this information (similar 

to the flow of an inclusive DRAM cache). If the line is present 

in the LLC, DCP is updated to zero (instead of invalidating 

the line as in inclusive cache). Consequently, the LLC knows 

that the line is no longer present in the DRAM cache. 

DCP enables writeback requests to have full knowledge 

on whether or not the line is present in the DRAM cache. 

On writeback requests from the LLC, if the DCP value is 

one, bandwidth bloat due to Writeback Probes can be avoided 

SInclusion is commonly used to simplify cache coherence. Since DRAM 

caches are usuaUy implemented as memory side caches. they do not participate 
in coherence. Hence, relaxing/enforcing inclusion guarantees for DRAM 
caches have no impact on cache coherence. 
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altogethor and only a Writeback Update is necessary to update 

the line in the DRAM cache. 

A DCP value of zero implies a writeback miss since the 

dirty line is no longer present in the DRAM cache. With 

the writeback-miss allocate policy, to ensure correctness, a 

Writeback Probe is required before performing a Writeback 

Fill. This is to determine whether the writeback allocate is 

replacing a dirty line from the DRAM cache. 

5.3. Effectiveness of DRAM Cache Presence 

Figure 9 illustrates the performance improvement of DCP in 

the presence of BAB. We observe that DCP improves per­

formance by an additional 4%, with maximum of 12.S% in 

omnetpp, and 11.3% in gcc, both of which have very high hit 

rate for writebacks. 

_BAB _ BAB+DRAM Cache Presence 
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Figure 9: Performance for DRAM Cache Presence (DCP) over the 

baseline system that implements Bandwidth-Aware Bypass. 

6. Bandwidth-Efficient Miss Probe 

DRAM cache lookups can either result in a cache hit or a cache 

miss. Cache hits result in useful bandwidth whereas cache 

misses unnecessarily waste bandwidth by needless fetching 

clean data that is not utilized. We refer to the bandwidth 

bloat due to cache misses as Miss Probe. If the DRAM cache 

architecture can provide some guarantees on whether (or not) 

a line is present in the DRAM cache, Miss Probe bandwidth 

bloat can be minimized. We observe that current DRAM cache 

designs, including both Loh-Hill, and Alloy cache, enables 

us to develop simple mechanisms to provide such guarantees; 

these designs locate tag and data together in the same DRAM 

row buffer, and hence accessing one cache line also reads 

tags of other adjacent lines, making additional information 

available. We use Alloy cache as an example, but the idea can 

also be easily extended to Loh-Hill cache. 

6.1. Neighboring Tag Cache 

The Alloy Cache organizes the tag and data together to form a 

single Tag and Data (TAD) entry. Each TAD entry is 72 bytes 

long (S bytes for tag and 64 bytes for the data). Alloy Cache 

organizes consecutive cache sets into the same row buffer as 

illustrated in Figure 10. With a 12S-bit (l6-byte) DRAM data 

bus, a cache lookup transfers a TAD entry in five bursts (total 

of SO bytes are transferred). In doing so, any cache lookup 

also transfers the neighboring tag of the line present in the 



next cache set. This spatial locality can be exploited by storing 

the neigh boring tag in a small fully associative structure called 

the Neighboring Tag Cache (NTC). Each NTC entry contains 

two fields: tag and DRAM cache set index. 

ADDR Alloy Cache 

I I I .. �r:::rr:::::J"""'-o:::::::J 
TAG+DATA+ IillJ. (8+64+8=80Bytes) 

Demand / " 
Neighbor 

Figure 1 0: Alloy Cache brings in two tag entries with each access 

by default (due to bus being 16 bytes and tag being 8 bytes). 

A miss in the LLC first consults the NTC by performing a 

set index match and tag match. If there is no set index match, 

the NTC can not provide any guarantees on the existence of 

the line in the DRAM cache. Therefore, a Miss Probe must be 

issued to to determine DRAM cache hit or miss. If there is a 

set index match and a tag match, the NTC guarantees that the 

request is present in the DRAM cache. Finally, if there is a set 

index match but a tag mismatch, the NTC gurantees that the 

request is not present in the DRAM cache. In this situation, 

the NTC can reduce the bandwith bloat due to Miss Probes. 

However, note that if the tag suggests that the DRAM cache 

entry is dirty, a Miss Probe is still necessary for correctness to 

read the dirty line and write it back to main memory. 

6.2. Effectiveness of NT C 

We assume an 8-entry NTC for every DRAM bank. For a 

DRAM cache with four channels and 16 banks per channel, 

the overall NTC size is 512 entries. However, note that only 

the eight NTC entries that correspond to the DRAM cache 

bank are accessed on an LLC miss. Finally, we assume single­

cycle acces to the NTC and also ensure that the NTC is kept 

up-to-date on DRAM cache evictions. 
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Figure 1 1 :  Performance for Neighboring Tag Cache for a baseline 

with BAB and DCP. 

Figure 11 shows that NTC improves performance of the 

Alloy Cache by an additional 2%. Detailed analysis reveals 

that the NTC provides performance benefits by reducing two 

sources of wasteful bandwidth. First, by design NTC reduces 
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bloat bandwidth due to Miss Probes.6 Second, as a side benefit, 

the DRAM cache miss predictor takes advantage of the NTC 

to verify parallel memory access predictions. If a given entry is 

present in the NTC, the DRAM cache miss predictor squashes 

the wasteful parallel access to main memory. 

7. Tying-it-AIl-Together: BEAR 

BEAR consists of three schemes to reduce bandwidth bloat in 

the DRAM cache. This section compares the performance of 

BEAR to an idealized cache, shows the impact of BEAR on 

Bloat Factor, and asseses the storage overheads of BEAR. 

7.1. Overall Performance Results 

Figure 12 shows the perfonnance of between the baseline 

Alloy Cache, BEAR DRAM, and an ideal Bandwith Opti­

mized (BW-Optimized) DRAM cache. Note that RATE and 

MIX are referred to as the geometric mean of rate and mix 

workloads, while ALL54 is the geometric mean of all of our 

54 workloads. On average, BEAR improves perfonnance 

over the Alloy Cache by 10.1 %. BEAR outperforms the BW­

Optimized DRAM cache in some workloads: soplex, mile, and 

libq. This is because Adaptive Fill increases the hit rate for 

these benchmarks, which reduces overall memory latency and 

hence provides better performance than BW-Optimized cache. 

This is not the typical case, however, as Adaptive Fill causes a 

hit rate degradation of 2%, on average. 

Table 4: Comparison of DRAM Cache Hit-Rate and Latency_ 

Design Hit Rate 
Latency (cycles) 

Hit Miss AVG 

Alloy 63.2% 239 391 326 

BEAR 61.0% 182 356 282 

Table 4 shows the hit rate and latency of DRAM cache. On 

average, BEAR is able to reduce DRAM cache hit latency 

from 239 to 182 cycles (24% improvement), while only sacri­

ficing 2% hit rate. Also, the miss latency reduces, because of 

Neighboring Tag Cache's side effect that reduces unnecessary 

parallel access to off-chip memory. 

7.2. Impact on Bloat Factor 

Figure 13 illustrates the effectiveness of our proposals in re­

ducing bandwidth bloat. We illustrate a bandwidth breakdown 

for every bandwidth factor, including Hit, Miss Probe, Miss 

Fill, Writeback Probe, Writeback Update, and Writeback Fill 

normalized to the Bloat Factor of a BW-Optimized DRAM 

cache. The BW-Optimized case only consumes Hit bandwidth, 

and transfers 64 bytes for every request. For other configura­

tions, the basic unit of data transfer is 80 bytes. In the baseline 

Alloy cache, the Bloat Factor on average is 3.8, in which only 

1.25 is critical to service the LLC miss requests. 

6NTC does not consume any extra bandwidth for prefetching the neigh­

boring tag. The extra tag is anyways fetched even in the baseline design 
because the width of the DRAM bus (16 bytes) is greater than the tag (8B). 
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Figure 1 2: Performance Improvement for Alloy, BEAR, and ideal case. Note that RATE and MIX are for 16 rate mode workloads, and 8 mixed 

workloads, respectively ; ALL54 means the geometric mean across all 54 workloads. 
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Figure 1 3: Bloat Factor for Different Schemes. 

To review, Adaptive Fill targets reduction in Miss Fills, 

DRAM Cache Presence (DCP) targets reduction in Write 

Probes, and Neighboring Tag Cache (NTC) targets reduction 

in Miss Probe. Overall, BEAR is able to reduce the Bloat 

Factor by 32%. 

7.3. Sensitivity to DRAM Cache Bandwidth and Capacity 

We have assumed that the bandwidth of DRAM cache is 8X 

of the off-chip DRAM. We conduct a sensitivity study by 

studying DRAM caches with 4X, 8X and 16X bandiwdth (by 

varying the number of channels) while keeping the cache size 

constant. Figure 14(a) shows the performance improvement 

when the DRAM cache bandwidth varies. BEAR continues to 

provide performance improvements of more than 10% for all 

the bandwidth configurations. 

_ Alloy _ BEAR 
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Figure 1 4: Sensitivity to DRAM Cache: (a) Bandwidth (b) Capacity. 

Note that all numbers are normalized to Alloy cache with respect to 

each configuration. 

We also conduct a sensitivity study by varying the size 

of the DRAM cache while keeping the bandwidth constant. 
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Figure 14(b) shows the performance improvement when the 

DRAM cache size changes from 512 MB to 2 GB. BEAR 

consistently improves performance by more than 10% across 

all DRAM cache capacity. 

7.4. Sensitivity to DRAM Banks 

We also conduct a study varying the number of banks to un­

derstand the delay contributed by bank conflict, and bus con­

tention. Figure 15 shows the performance of BEAR, when the 

number of banks increases from 64 to 2048. Note the speed up 

is normalize to the baseline, with respect to each configuration. 
_ Al loy _ BEAR 

1 . 20 '---�----------------------�-----' 

1 . 1 5  r---------------------------------1 
g. 1 . 1 0  r----rl---------------------------1 

D 3l 1 05 
c% 1 . 00 

0 . 95 
0 . 90 �------"----

64 1 28 256 5 1 2  1 024 2048 
Number of Banks 

Figure 1 5: Sensitivity to DRAM Banks. Note that all numbers are 

normalized to Alloy cache with respect to each configuration. 

BEAR consistently outperforms Alloy from 11 % at 64 

banks, to 6% at 2048 banks. The speed up remains constant at 

6%, when the number of banks is 512, or more. As the number 

of banks increases, the row buffer conflict reduces. This sug­

gests that the performance improvement provided by BEAR 

comes from two parts. The first is contributed by the reduction 

of bank conflicts, which is the speedup difference between 64 

banks, and 2048 banks, or 5%. Second, the speedup saturation 

indicates that the remaining 6% performance improvement 

results from the reduction of bus contention. 

7.5. Comparison to Alternative DRAM Cache Designs 

We also compare our proposal to various implementation 

of DRAM cache, including Loh-Hill cache (LH-cache) [6], 

Mostly-Clean cache (MC-Cache) [8], and Inclusive Alloy 

cache (Incl-Alloy) [9], using default parameters (8X band­

width, 1GB capacity). For LH-cache, we assume the MissMap 

has the same latency of LLC, which is 24 cycles in our study. 

MC-cache is an extension of LH-cache, which tries to reduce 

the Miss Probe bandwidth, and deploys memory requests to 
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Figure 1 6: Comparison to Tags-In-SRAM (TIS) Cache and Sector Cache (SC): (a) L4 Hit Rate, (b) L4 Hit Latency, (c) L4 Miss Latency, (d) Bloat 

Factor, and (e) Speedup (w.r.t. Alloy). Note that TIS requires 64MB SRAM storage and SC requires 6MB SRAM storage. 

off-chipe memory. For MC-cache, we assume a perfect predic­

tor for hits and misses, and if the outcome of the predictor is a 

miss, the request will be serviced by the off-chip memory. For 

Incl-Alloy cache, we apply the inclusive property to DRAM 

cache with respect to the on-chip LLC. 

LH-cache has 27% performance improvement across all 

the workloads, while MC-cache has 30%. LH-cache is a 

implementation that uses a MissMap structure to avoid Miss 

Probe bandwidth to DRAM cache as a trade-off an additional 

latency of 24 cycles for all the requests. MC-cache uses a 

predictor and removes the additional latency. However, both 

of them do not reduce Miss Fills or Writeback Probes. 
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Figure 1 7: Speed up from different implementations of DRAM cache, 

normalized to a system without DRAM caches. 

Inclusive Alloy cache is also a valid design. Incl-Alloy 

cache improves performance by 55% on average, which is 

9% more than baseline non-inclusive Alloy Cache, while our 

proposal provides 66% performance improvement. Inclusive­

ness can avoid the Writeback Probe bandwidth, because it 

enforces every cache line in the LLC must be in the DRAM 

cache. However, inclusive DRAM cache loses the opportunity 

for other bandwidth optimization, such as Miss Fill, whereas, 

our proposal reduces both bandwidth bloat. 

7.6. Storage Overhead of BEAR 

Table 5 show the hardware overhead of each proposal. Overall, 

BEAR incurs negligible hardware overhead of 19.2 KB, the 

majority of which is due to the DCP-bit in the LLC. 

8. Analysis of Tags-In-SRAM Designs 

Thus far, we have only analyzed the Tags-in-DRAM designs, 

as such designs are scalable to large cache sizes. We now 

20S 

Table 5: Storage Overhead of BEAR 

Design Cost 

Bandwidth-Aware Bypass 8 bytes per thread, total 64 bytes 

DRAM Cache Presence One bit per line in LLC, total 16K bytes 

Neighboring Tag Cache 44 bytes per bank, total 3.2K bytes 

Total 1 9.2K bytes. 

make a comparison of alternative designs that store Tags in 

SRAM. An unconstrained version of such a design, which 

we call Tags In SRAM (T1S) stores all the tags on-chip in 

an SRAM structure, and would incur a prohibitive storage of 

64MB (at four byte of tag storage per line). The SRAM storage 

can be reduced to 6MB by architecting the cache as a Sector 

Cache (SC), as has been considered in recent designs such as 

the Footprint Cache [12, 10]. The advantage of these SRAM 

based designs is that they can support high set associativity and 

avoid some probe operations (e.g. Miss Probe and Writeback 

Probe). Unfortunately, these advantages come at a high storage 

overhead and also high latency overheads of accessing the tag 

store, before accessing the data store. 

We compare TIS and SC with BEAR. For both TIS and 

SC we provision the appropriate SRAM structure for tag store 

without penalizing either design for the added storage or the 

extra latency of tag access. Both caches are architected 32-

way set associative. SC uses 4KB as an sector, which has 64 

blocks (64B). We show statistics related to the DRAM cache 

(L4), including L4 hit rate, L4 hit latency, L4 miss latency, 

and Bloat Factor as well as the speedup in Figure 16. 

BEAR outperforms tags-in-SRAM cache designs for the 

following reasons. (1) Hit Rate: For a gigascale DRAM 

cache, set-associativity contributes only to a limited improve­

ment in hit rate (from 63% to 68%, consistent with prior 

studies [9].) (2) Bloat Factor: Both TIS and SC still incur 

bandwidth bloat from Miss Fill, Writeback Update, and Dirty 

Evictions. BEAR has very similar Bloat Factor as TIS and 

SC, because the amount BEAR saves is close to the amount 

of Miss Probe TIS and SC save. One can use the principles 

of BEAR to reduce the bandwidth Bloat of TIS and SC also. 

(c) Latency: We found latency is the decisive reason for the 

performance difference. Although SRAM caches do not need 

to look up tags in DRAM to detect cache misses, they do incur 



the penalty of dirty replacement, which gets exacerbated in 

SC as an evicted page can have a large number of dirty lines. 

Overall, BEAR has 10.1 % performance improvement, 

which exceeds the 7.5% speed up with TIS and 18% slow­

down with Se. BEAR requires an SRAM overhead of only 

20KB, whereas TIS and SC incur respective 64MB and 6MB 

SRAM storage overhead, which may be prohibitive. 

9. Other Related Work 

9.1. DRAM Cache 

An extension of Loh-Hill DRAM cache is Mostly-Clean 

DRAM cache, which uses a miss predictor to save the 

MissMap storage overhead, and use parallel access to avoid 

serialization penalty. However, their proposal did not consider 

other bandwidth bloat factors [8]. 

Footprint cache is also another DRAM cache design, which 

is a sector cache design with prefetcher [10]. It uses SRAM 

storage to store the tag arrays; however, this is not a scalable 

solution, since the tag storage of 1GB DRAM cache can be as 

large as 6 megabytes. Also, enabling prefetch requests might 

exacerbate the bandwidth bloat problem in DRAM cache due 

to the extra bandwidth consumed by inaccurate prefetches. 

9.2. Adaptive Fill 

There are several studies that have focused on cache line install 

or bypass policy, which is related to Adaptive Fill. Most of 

the work are trying to identify cache blocks that are never 

reused after being installed in the cache[18, 19, 20, 21]. These 

cache lines are also referred to as Dead Blocks. One example 

is to sample dead block prediction, which was proposed to 

identify dead blocks in the last-level cache, and the fill process 

is skipped, if predicted dead[20]. However, most of the work 

requires a status update, leading to an additional access in the 

case of DRAM cache. Also, the goal to identify dead blocks 

is to improve hit rate of the cache, not improve DRAM cache 

bandwidth efficiency. 

9.3. Cache Optimization 

Cache inclusiveness is referred to as the property of the big­

ger cache with respect to smaller cache. Inclusive or exclu­

sive cache are valid design choices that could be adopted 

by different chip vendors [22, 23, 17]. Recent study shows 

non-inclusive cache has better performance improvement than 

inclusive cache, because it avoids the Back-Invalidate oper­

ation, and provide higher hit rate than the inclusive cache. 

However, in the case of DRAM cache, the capacity is huge, 

but inclusive cache limits the scope of further optimization. 

Other cache optimization, including replacement policy 

[13, 14, 24, 25, 26, 27], and write-allocation policy [28] , 

has been an active research area for the past decade. These 

optimization improves cache hit rate and therefore improve 

off-chip DRAM bandwidth. In contrast, our proposal aims at 

reducing DRAM cache bandwidth to improve performance. 
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9.4. Tag Cache 

Separate structure to keep recently used tag has been proposed 

to avoid the tag look-up latency[29], when the last level cache 

is off-chip, and the latency for off-chip access is very high. 

Neighboring Tag Cache is storing the tag that has not been 

referenced (i.e., adjacent cache lines), but is highly likely to 

be referenced in the future. Unlike prior Tag Cache proposals 

which exploit temporal locality, Neighboring Tag Cache only 

exploits the spatial locality of the neighboring lines. How­

ever, these two schemes are orthogonal, and can be adopted 

simultaneously. 

10. Summary 

This paper aims at making DRAM caches bandwidth-efficient. 

We identify and classify DRAM cache operations into six cat­

egories: Hit Probe, Miss Probe, Miss Fill, Writeback Probe, 

and Writeback update, and Writeback Fill. Among those oper­

ations, only Hit Probe contributes to satisfy the miss request 

from L3 cache. Secondary bandwidth factor are either for 

performance or for correctness. 

We define a metric termed Bloat Factor to understand how 

these secondary operations use DRAM cache bandwidth. We 

found only 33% of the DRAM cache bandwidth is used to sat­

isfy L3 miss requests. Other secondary operations increase the 

queuing delay and thus DRAM cache hit latency. If bandwidth 

bloats are eliminated, hits can be serviced quickly. 

We propose Bandwidth-Efficient ARchitecture (BEAR) 

DRAM cache to mitigate the bandwidth bottleneck in DRAM 

cache. BEAR has three different schemes, each of which tar­

gets its own bandwidth component: Bandwidth Aware Bypass 

for Miss Fill, DRAM Cache Presence bit for Writeback Probe 

and Neighboring Tag Cache for Miss Probe. 
' 

Overall, the three component schemes of BEAR can be im­

plemented with a storage overhead of only 4KB (and one bit 

per line in the L3 cache). BEAR can be implemented without 

any changes to the architecture of the DRAM array. Our eval­

uations show that BEAR reduces the bandwidth consumption 

of DRAM cache by 32% and improves system performance 

by 10.1 %. BEAR achieves half the performance possible from 

an idealized bandwidth-optimized design that consumes no 

bandwidth for any of the secondary operations. 

While we focus on tags-in-DRAM designs in our studies, 

we show that Bandwidth Bloat is a problem for Tags-in-SRAM 

designs too. BEAR outperforms an idealized design that stores 

the tags on-chip using 64MB SRAM, as well as the sector 

cache design that incurs an SRAM overhead of 6MB. 
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