
BEAR: Techniques for Mitigating Bandwidth Bloat in Gigascale DRAM Caches

Chiachen Chout Aamer Jaleel:j: Moinuddin K. Qureshi t

tSchool of Electrical and Computer Engineering

Georgia Institute of Technology

{cc.chou, moin}@ece.gatech.edu

:j: NVIDIA

ajaleel@nvidia.com

Abstract

Die stacking memory technology can enable gigascale

DRAM caches that can operate at 4x-8x higher bandwidth

than commodity DRAM. Such caches can improve system per­

formance by servicing data at a faster rate when the requested

data is found in the cache, potentially increasing the memory

bandwidth of the system by 4x-8x. Unfortunately, a DRAM

cache uses the available memory bandwidth not only for data

transfer on cache hits, but also for other secondary operations

such as cache miss detection, fill on cache miss, and write back

lookup and content update on dirty evictions from the last-level

on-chip cache. Ideally, we want the bandwidth consumed for

such secondary operations to be negligible, and have almost

all the bandwidth be available for transfer of useful data from

the DRAM cache to the processor.

We evaluate a 1 GB DRAM cache, architected as Alloy

Cache, and show that even the most bandwidth-efficient pro­

posal for DRAM cache consumes 3.8x bandwidth compared

to an idealized DRAM cache that does not consume any band­

width for secondary operations. We also show that redesign­

ing the DRAM cache to minimize the bandwidth consumed by

secondary operations can potentially improve system perfor­

mance by 22%. To that end, this paper proposes Bandwidth

Efficient ARchitecture (BEAR) for DRAM caches. BEAR inte­

grates three components, one each for reducing the bandwidth

consumed by miss detection, miss fill, and writeback probes.

BEAR reduces the bandwidth consumption of DRAM cache by

32%, which reduces cache hit latency by 24% and increases

overall system peiformance by 10%. BEAR, with negligible

overhead, outpeiforms an idealized SRAM Tag-Store design

that incurs an unacceptable overhead of 64 megabytes, as well

as Sector Cache designs that incur an SRAM storage overhead

of 6 megabytes.

tAamer laleel contributed to this work while at Inte!.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists. requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.
1SCA '15, June 13 - 17, 2015, Portland, OR, USA
© 2015 ACM. ISBN 978-1-4503-3402-0/15/06$15.00
DOI:http://dx.doi.org/10.1145/2749469.2750387

198

1. Introduction

Recent advancements in on-chip packaging and 3D intercon­

nect technology have enabled interconnecting several DRAM

modules to offer significantly higher bandwidth than conven­

tional DIMM-based DDR memories. Examples of such mem­

ory technology includes Hybrid Memory Cube (HMC), High

Bandwidth Memory (HBM), Wide 110 (WIO), and Graphic

Double Data Rate (GDDR) memory [1, 2, 3, 4, 5]. These mem­

ory technologies offer high memory bandwidth, even though

their access latency may be similar to existing DDR memo­

ries. Furthermore, modules from these technology may not

have enough capacity to fully replace conventional DIMMs,

so future memory systems are likely to consist of heteroge­

neous memory technologies. One attractive design to use these

high bandwidth DRAM technologies is to architect them as

a DRAM cache [6, 7, 8, 9, 10, 11], as an intermediate level

between on-die caches and the DDR-based main memory.

Architecting gigascale DRAM as a hardware managed

cache faces several challenges, including designing a tag stor­

age of several tens of megabytes. For example, a 1GB cache

contains 16 million lines (of 64 bytes each), which means

that if each tag store entry requires four bytes, we would need

64MB of storage for the tag store. Provisioning such a large

tag store on-chip is impractical. Architecting the DRAM cache

as a Sector Cache [12, 10] reduce the SRAM overheads to

6MB, which is still quite large. Thus, SRAM based tag store

suffers from both high storage overhead as well as tag access

latency overheads, as shown in Figure lea).

6MB-64MB DRAM
SRAM

DATA
STORE

'----_----' OAT A

(a) Tags-in-SRAM

�

DRAM

TAG AND
DATA

� STORE
TAG,DATA

(b) Tags-in-DRAM

Figure 1 : Organizations for 1GB DRAM cache (a) Storing tags in

SRAM incurs overhead of 64MB (6MB with sector cache) (b) Tags-in­

DRAM approach is more scalable and avoids the SRAM overheads.

The more practical approach for architecting large DRAM

cache is to place tags in DRAM and uses intelligent placement

of tags and data to reduce the lookup latency, as shown in

Figure l(b). For example, Loh and Hill propose (Loh-Hill

Cache) [6] a design that organizes 29-way in a single DRAM

row buffer to leverage row buffer hit. For each request, Loh-

Hill Cache transfers 4 cache lines (3 lines for tags and one

for data). Another design, Alloy Cache [9] organizes tag and

data together to form a Tag And Data (TAD) entry in a direct­

mapped cache, and transfers only one TAD per request. Thus,

Alloy Cache optimizes for hit latency and bandwidth instead of

hit rate. As Alloy Cache is more bandwidth efficient compared

to the Loh-Hill design, we use the Alloy Cache as our baseline

to study the problem of bandwidth inefficiency in gigascale

DRAM caches.

Stacked memory has 4x-8x higher bandwidth than DRAM

memory. If the requested cache line is found in the DRAM

cache, it can be serviced at a faster rate. For an idealized

scenario, we can expect all of the DRAM cache bandwidth to

get consumed only by transfers of data lines from the DRAM

cache to the processor chip. However, a cache design also

needs to perform several secondary operations that consume

cache bandwidth. Unlike SRAM cache that is well customized

in terms of accessing points (e.g., tag/data ports, read/write

ports), any operations to DRAM cache shares the same DRAM

interface. These secondary operations includes Miss Probe (to

detect a miss, we need to look up the tag store in the DRAM

cache), Miss Fill (on a cache miss the missed line is obtained

from memory and filled in the cache), Write back Probe (on a

dirty eviction from the on-chip LLC identifying if that line is

present in the DRAM cache), Writeback Update (if writeback

probe gives a hit, updating the content of the line in DRAM

cache), and Writeback Fill (filling the writeback data in the

cache, if a writeback probe gives a miss). We would like

the bandwidth consumed by such secondary operations to be

negligibly small, and have almost all the bandwidth available

dedicated to critical data transfers.

To measure the consumption of bandwidth due to secondary

operations we define a metric called Bloat Factor, which is the

ratio of the total bandwidth consumed by the DRAM cache to

the bandwidth required for transferring only the data lines to

the processor chip. For an idealized cache that does not spend

any bandwidth for secondary operations, Bloat Factor equals

1. Our study with a 1GB DRAM cache shows that Loh-Hill

Cache and Alloy Cache have a Bloat Factor of 7.3X and 3.8X,

respectively. Thus, recent designs for DRAM cache do not

use bandwidth efficiently.

For a DRAM cache, the cache hit latency comprises two

parts: the DRAM array access latency and the queuing delay.

When bandwidth is sufficient, the queuing delay is negligible

compared to DRAM array latency. However, when bandwidth

is a scarce resource, queuing delay becomes significant in the

cache hit latency. We show that 2.8X bandwidth bloat more

than doubles the DRAM cache hit latency, due to an increase

in the queuing delay. Thus, if we can redesign the cache to

have a Bloat Factor close to 1, we can reduce cache hit latency

and potentially improve performance by 22%. To this end,

this paper makes following contributions.

1. To the best of our knowledge, this is the first paper that iden­

tifies and quantifies the bandwidth bloat in DRAM caches

199

due to secondary operations. We show that secondary op­

erations cause even the most bandwidth-efficient DRAM­

cache design to consume 3.8x the bandwidth, thereby re­

ducing the bandwidth available for the critical operations.

2. We propose Bandwidth Efficient ARchitecture (BEAR) for

DRAM caches. BEAR consists of three component tech­

niques, each aimed at making one of the secondary opera­

tions bandwidth efficient, namely:

(a) Bandwidth Efficient Cache Fills. Inserting missed

lines in the cache consumes cache bandwidth, but

many of the inserted lines do not get reused while

resident in the cache. Bypassing some of the Miss Fills

can reduce bandwidth bloat, but naive bypassing can

reduce the hit rate of the DRAM cache significantly

for some workloads and degrade performance. We

propose Bandwidth Aware Bypass (BA B) to reduce the

bandwidth consumed by fill operations while limiting

the loss in cache hit rate to a desired level.

(b) Bandwidth Efficient Writeback Probe The second com­

ponent scheme, DRAM Cache Presence (DCP), re­

duces Writeback Probe by introducing state informa­

tion in the on-chip Last Level Cache (LLC) to track if

the line exists in the DRAM cache. 1 DCP associates

each cache line in the LLC with one bit, which keeps

track of the line's presence state information in the

DRAM cache; when a dirty line is evicted from the

LLC, this bit guides to issue a Writeback Probe.

(c) Bandwidth Efficient Miss Probe. We reduce the band­

width consumed by Miss Probe by leveraging the prop­

erty of DRAM caches to streams multiple tags on each

access. We buffer the tags of recently accessed adja­

cent cache line's tags in the Neighboring Tag Cache

(NTC). On a LLC miss, the request first looks up the

NTC. If the tag for the requested cache location is

found in the NTC, it avoids the Miss Probe.

Overall, the three component schemes of BEAR can be

implemented with a storage overhead of only 4KB (and one

bit per line in the L3 cache). BEAR can be implemented

without any changes to the architecture of the DRAM array.

BEAR reduces the bandwidth consumption of DRAM cache

by 32%, which reduces the cache hit latency by 24%. Even

though BEAR degrades the cache hit rate by 2% (due to BAB),

it increases overall system performance by 10.1 %.

While we focus on tags-in-DRAM designs in our studies,

we show that BEAR outperforms an idealized design that

stores the tags on-chip using 64MB SRAM, as well as the

sector cache design that has an 6MB SRAM overhead.

1 If the DRAM cache is designed to be inclusive of Last Level Cache
(LLC) then a Writeback Probe is not necessary. Unfortunately, inclusive
DRAM caches do not support bypassing, as all the lines in the LLC must be
present in the DRAM cache and bypassing breaks this requirement. Ideally,
we want to avoid the bandwidth of Writeback Probe, while still being able to

do bypassing. Our solution can obtain both benefits, while inclusive DRAM

caches cannot. We compare our proposal to inclusive cache in Section 7.

2. Background and Motivation

Processor architects face a key design decision on how to

utilize high bandwidth memory in a heterogeneous memory

system. Using high bandwidth memory as a cache, which we

refer to as DRAM cache, is attractive as it is transparent to the

software, and allows hardware vendors to use stacked memory

without relying on support from the software companies. In

this paper, we focus on efficient management of such hardware­

managed gigascale DRAM caches.

2.1. Recent Designs for DRAM Cache

Architecting high performance DRAM cache have received

significant attention over the past few years. These proposals

have mostly focused on managing tag storage overhead, cache

hit rate, and/or cache access latency. We show two recent

designs for DRAM cache in Figure 2.

LLC Miss

MEM in Parallel

Em DRAM Array

B

29 Tags (3 Lines) 29 Data Lines
Data

TAG(192B) DATA(64B)
(a) Loh-Hill Cache

28 Tag and Data (TAD)
- - - - - - Data

TAG+DATA (SOB)

(b) Alloy Cache
Figure 2: Recent Designs for DRAM Cache: (a) Loh-HiII Cache trans­

fers 3 lines for tag and 1 line for data on each hit (256 bytes), and (b)

Alloy Cache transfers 1.25 cache line for each hit.

The tag storage overhead problem arises because gigascale

DRAM caches hold millions of cache lines. For example, a

1GB DRAM cache holds 16 million 64B cache lines which

requires 64MB of tag storage overhead (assuming four bytes

per tag). Since it is impractical to accommodate such a large

tag structure on chip, most proposals suggest storing the tag

and data in the high bandwidth memory itself.

For example, Loh and Hill propose a set-associative DRAM

cache by implementing a 29-way cache stored in a single

DRAM row buffer, as shown in Figure 2(a) [6]. This proposal

stores the tags for the 29 cache ways in the first three cache

lines of the 2KB row buffer. Servicing a cache hit requires first

reading (and checking) the tags from the DRAM row buffer

and then reading the data from the DRAM row buffer (on a tag

match). This proposal targets improving cache hit rate using

higher associativity at the expense of increased access latency

and higher read bandwidth.

More recently, Qureshi and Loh tackled the latency and

bandwidth problem with the direct-mapped Alloy Cache pro-

200

posal, shown in Figure 2(b). Alloy Cache targets both cache

access latency and bandwidth, organizing the tag and data

together to form a Tag And Data (TAD) entry [9]. Servicing

a cache hit requires a single read of the TAD entry from the

DRAM row butler and then checking for a tag match. If the

tag matches, the associated data entry within the TAD is for­

warded to the requesting core. Doing so, the Alloy Cache

improves cache access latency and bandwidth at the expense

of a slight reduction in hit-rate.

2.2. Bandwidth Bloat in DRAM Caches

The conventional approach of using DRAM to architect main

memory follows a simple request response protocol. When

an address misses in the on-chip Last-Level Cache (LLC), the

memory controller fetches the data from the DRAM devices.

With DRAM configured as main memory, the effective raw

DRAM bandwidth is the total number of bytes transferred on

the data bus (i.e., #LLC_misses * LLC_Line_Size).

Architecting DRAM as a cache, on the other hand, requires

additional bandwidth to implement cache functionality (e.g.,

cache fills, cache probes). We propose a metric termed Bloat

Factor, which is defined as the total bytes transferred on the

DRAM cache data bus divided by the total bytes required to

satisfy all LLC misses, as shown in Equation 1.

L Total Bytes Transferred
BloatFactor = (1)

L Useful Bytes Transferred

Ideally, the Bloat Factor value should be 1, meaning that

the entire DRAM cache bandwidth contributes to servicing

LLC misses. However, as Figure 3(a) illustrates, Bloat Factors

are 7.3X and 3.8X for Loh-Hill and Alloy caches, respectively.

DRAM cache hit latency comprises two parts: DRAM array

access latency and queuing delay. Bandwidth bloat increases

DRAM service time due to increasing queuing delay. Shown

in Figure 3(b), DRAM cache hit latency is 409 cycles and 239

cycles with respect to Loh-Hill and Alloy cache, while an ideal

case (termed Bandwidth-Optimized cache (BW-Opt)) that all

secondary operations are free has DRAM cache hit latency of

only 97 cycles. BW-Opt reduces L4 hit latency significantly,

and thus BW-Opt outperforms both Loh-Hill and Alloy cache,

as shown in Figure 3(c). Detailed experimental methodology

is in Section 3.

In the rest of the paper, we use Alloy cache as our baseline

DRAM cache model (comparison to LH-cache in Section 7).

Although Alloy cache is more efficient, it still has room to

improve (3.8X in Bloat Factor, and 22% in performance).

2.3. Breakdown: Where Does the Bandwidth Go?

Bandwidth bloat in DRAM caches corresponds to the steps in

implementing cache functionality. Unlike memory which only

holds data, DRAM caches hold both tag and data. Typically,

on read requests, a tag is used to determine if an address exists

in the cache. Thus, every cache lookup requires both tag and

data to be fetched from the DRAM cache. If the cache lookup

LH: Loh-Hill Cache AL: Alloy Cache OPT: BW-Optimized

8 ����
7

(;; 6
� 5
u.. 4
ro 3
� 2

1
o

'v� 0'�"
o

(a) Bloat Factor

500 2.0 �����

>- 400 u
a; 300
ro
-.J 200
""
J: 100

o
'v� 0' �t, o

(b) Hit Latency

1.81---­
§-1.61---­

"0
�14
a.

en 1.2
1.0

$' 0' �"
o

(c) Speedup

Figure 3: Comparison of Loh-HiII (LH), Alloy (AL), and Bandwidth­

Optimized (OPT) cache: (a) Bloat Factor, (b) Hit Latency, and (c)

Speed up with respect to no DRAM cache.

results in a hit, the first source of bandwidth bloat (referred to

as Hit Probe) can be attributed to tag fetch (the data is critical

and hence not a bandwidth bloat). If the cache lookup results

in a miss, the second source of bandwidth bloat (referred to as

Miss Probe) can be attributed to the fetching of both tag and

data.2 Typically, a cache miss requires inserting a line into the

cache; thus, the third source of bandwidth bloat (referred to as

Miss Fill) is to fill the new tag and data into the cache.3

In addition to read requests, the processor can return dirty

data from the on-chip LLC by issuing writeback requests. On

a writeback request, the DRAM cache must be consulted to

determine whether the corresponding line already exists in the

DRAM cache. Should the line exist in the DRAM cache, the

DRAM cache contents must be updated for correctness. Thus,

the fourth source of bandwidth bloat (referred to as Write back

Probe) can be attributed to fetching the tag to detect whether

or not to update the DRAM cache contents. If the Writeback

Probe results in a cache hit the new data and existing tag are

written back to the DRAM cache.4 Thus, the fifth source

of bandwidth bloat (referred to as Writeback Update) can be

attributed to re-writing the tag (not data). On the other hand,

if the Writeback Probe results in a cache miss there are two

possibilities. If a writeback no-allocate policy is used, the

data is sent to main memory. However, if a writeback allocate

policy is used, the new data and new tag are written to the

DRAM cache replacing the existing data. Thus, the sixth

source of bandwidth bloat (referred to as Writeback Fill) can

be attributed to updating tag and data on writeback requests.

Figure 4 shows the bandwidth breakdown for the Alloy

cache. In a BW-Opt cache, the Bloat Factor is 1, and all

the bandwidth is dedicated to Hit: The cache performs all

the secondary cache operations logically, without using any

of the physical resources. On the other hand, Alloy Cache

2Note that bandwidth bloat is only due to Miss Probes that fetch clean

lines. If a dirty line is fetched, the Miss Probe is necessary for correctness
to write the dirty data to main memory. Most Miss Probes cause bandwidth
bloat since the majority of DRAM cache lines tend to be clean.

3 As Alloy Cache is direct-mapped, it does not require replacement up­
dates on cache hits. For Loh-HiII cache, replacement update on cache hit is
another source of bandwidth bloat (if LRUIDIP replacement is used).

4In the Alloy Cache, if a writeback allocate policy is used, Writeback
Fills must be preceded with a Writeback Probe to determine if a dirty line is

being evicted and a writeback to memory is necessary.

201

4.0 1.4 -
1.3 -

.9 3.0
u g. 1.2
'" "t:I u... 2.0 � 1.1
i;j (j; 1.0 sa
III 1.0

0.9
0.0 0.8

Alloy BW-Opt Performance

Figure 4: Comparison of Bloat Factor and Potential Performance.

requires five 12S-bit bus transfers (SO bytes) to transfer the tag

and data (72 bytes). This is a Bloat Factor of 1.25X for Hit

compared to BW-Opt cache. Miss Probe and Miss Fill each

take about 0.67X. Writeback Probe and Writeback Update

each take about 0.57X. Note that we use write-allocate policy

for DRAM cache, and hence do not have Writeback Fill in the

baseline. Overall, the Bloat Factor for Alloy cache is 3.SX.

Note that the cache operations corresponding to bandwidth

bloat are common to both SRAM and DRAM cache designs.

However, these cache operations do not degrade performance

in SRAM caches primarily because of SRAM cache imple­

mentation. Unlike DRAM caches that share a single narrow

data bus for all read and write operations, SRAM caches typi­

cally consist of separate read and write ports that match the

width of the corresponding tag and data. Furthermore, SRAM

caches have much higher read/write bandwidth because of

separate banked tag and data arrays each with their own read

and write port. Therefore, the bandwidth utilized by these

secondary operations has not been a critical concern for the

on-chip SRAM caches. Unfortunately, for DRAM caches

bandwidth is a scarce resources, so the performance overhead

of these secondary operations becomes significant, and there

is an opportunity to improve performance by reducing the

number of cache operations that result in bandwidth bloat.

2.4. Goal: !!andwidth �fficient ARchitecture (BEAR)

DRAM cache bandwidth bloat is attributed to six different

cache operations: Hit Probe, Miss Probe, Miss Fill, Write­

back Probe, Writeback Update, and Writeback Fill. Among

these operations, only the Hit Probe contributes towards useful

bandwidth to service the LLC miss request. All other cache op­

erations are either targeted for improving performance (Miss

Fill, and Writeback Fill), or for ensuring correctness (Miss

Probe and Writeback Probe).

Since bandwidth bloat increases DRAM cache access la­

tency, we investigate opportunities to reduce bandwidth bloat.

In this paper, we target three sources of following bandwidth

bloat:

1. Bandwidth-Efficient Miss Fill. Miss Fill consumes signif­

icant DRAM cache bandwidth. A typical cache design

inserts all cache lines on a miss, with the assumption that

such lines will later provide cache hits. However, a signifi­

cant percentage of lines are not referenced again [13, 14].

Consequently, we can use cache bypassing to reduce the

bandwidth consumed by Miss Fills, even if it degrades

cache hit rate by a marginal amount.

2. Bandwidth-Efficient Writeback Probe. Typically, a Write­

back Probe is issued before a Writeback Update to deter­

mine whether the line already exists in the DRAM cache.

If the architecture provides guarantees on whether or not

a line already exists in the DRAM cache, the majority of

Writeback Probes can be eliminated. We propose enhance­

ments to the on-chip LLC to avoid Writeback Probes.

3. Bandwidth-Efficient Miss Probe. Miss Probes waste band­

width when the requesting line misses in the cache. We

leverage DRAM cache design to buffer recently accessed

neigh boring tags to reduce the bandwidth of Miss Probes.

We discuss our experimental methodology before describ-

ing each of our solutions in detail.

3. Experimental Methodology

3.1. System Configuration

We use a x86 simulator with a detailed memory system model.

Table 1 shows the configuration used in our study. We assume

a four-level cache hierarchy (Ll, L2, L3 being on-chip SRAM

caches and L4 being the off-chip DRAM cache). All cache

hierarchy uses 64B line size. We use Alloy Cache as the

baseline L4 cache, and the results are normalized to Alloy

Cache unless stated otherwise. Cache misses fill all levels of

the hierarchy. We equip the Alloy Cache with a the MAP­

I miss predictor [9] to overcome the tag lookup latency for

cache misses.

Our baseline assumes that L4 is non-inclusive of L3 cache.

(L3 cache can be either inclusive or non-inclusive of LlIL2

caches, although we model non-inclusive L3 cache for sim­

plicity). Also, we assume the DRAM cache is a memory-side

cache, and hence we do not consider coherence traffic. Write­

back misses do not allocate and instead send data to the next

cache level. We model a virtual memory system to perform

virtual to physical address translations.

We assume a heterogeneous memory system with the

DRAM cache using HBM technology [2] and main memory

using conventional DIMM technology [4]. In accordance with

the specification for stacked memory, we assume the same

access latency in both DRAM technologies. However, the

bandwidth of DRAM cache is much higher than main memory.

In our baseline system, DRAM cache has 8x bandwidth of

main memory (2X channel, 2X bus width, 2X bus frequency).

A DRAM cache bandwidth sensitivity study is presented in

Section 8. We model DRAM timing based on USIMM[15].

For both the stacked DRAM and off-chip DRAM, we equip

each memory channel with separate read queue and write

queue, and the scheduler prioritizes read requests over write

requests, and writes are issued in batches.

202

Table 1 : Baseline System Configuration

Processors

Number of Cores 8

Frequency 3.2GHz

Core Width 2 wide out-of-order

Last Level Cache

Shared L3 Cache 8MB , 1 6-way, 24 cycles

DRAM Cache

Capacity 1 GB

Bus Frequency l.6GHz (DDR 3.2GHz)

Channels 4

Banks 16 Banks per rank

Bus Width 1 28 bits per channel

tCAS-tRCD-tRP-tRAS 36-36-36-1 44 CPU cycles

Main Memory (Conventional DRAM)

Capacity 1 6GB

Bus Frequency 800MHz (DDR l.6GHz)

Channels 2

Banks 8 Banks per rank

Bus Width 64 bits per channel

tCAS-tRCD-tRP-tRAS 36-36-36-1 44 CPU cycles

3.2. Workloads

We use a representative region of I-billion instructions from

the SPEC CPU2006 benchmark suite, captured by Sim­

Points [16]. We present our study using workloads that have

Miss Per Thousand Instruction (MPKI) greater than 1, as

shown in Table 2. We group the workloads into two categories:

High Intensive (MPKI greater than 12) and Medium Intensive

(MPKI between 2 and 12). We evaluate our study by executing

benchmarks in rate mode, where all eight cores execute the

same benchmark, as shown below.

Table 2: Workload Characteristics for Rate Mode.

Category Name L3 MPKI Footprint

mcf 74.6 1 0.2 GB

Ibm 32.7 3.1 GB

soplex 27.1 l.9 GB

High Intensive
mile 26.1 4.5 GB

1ibquantum 25.5 256 MB

omnetpp 21 .1 1 .1 GB

bwaves 1 8.7 l.5 GB

gcc 1 8.6 680 MB

sphinx3 1 2.4 l36 MB

GemsFDTD 9.9 5.3 GB

leslie3d 7.6 61 6 MB

Medium Intensive
wrf 6.8 488 MB

cactusADM 5.5 l.2 GB

zeusmp 4.8 l.5 GB

bzip2 3.7 2.4 GB

xa1ancbmk 2.3 1 .3 GB

We also evaluate 38 mixed workloads that are selected from

the above 16 benchmarks. Table 3 shows the workloads for

which we will show detailed results. The virtual-to-physical

page mapping ensures that two benchmarks do not map to the

same address.

Table 3: Workload Characteristics for Mixed Workloads.

Name Workloads Class

MIX] libq-mcf-soplex-milc-bwaves-lbm-omnetp-gcc 8H

MIX2 libq-mcf-soplex-milc-lbm-omnetpp-Gems-sphinx 6H+2M

MIX3 mcf-soplex-milc-bwave-gcc-lbm-leslie-cactus 6H+2M

MIX4 libq-mcf-soplex-milc-Gems-leslie-wrf-zeusmp 4H+4M

MIXS bwave-lbm-omnetp-gcc-cactus-xalanc-bzip-sphinx 4H+4M

MIX6 libq-gcc-Gems-leslie-wrf-zeusmp-cactus-xalanc 2H+6M

MIX7 mcf-omnetp-Gems-leslie-wrf-xalanc-bzip-sphinx 2H+6M

MIX8 Gems-leslie-wrf-zeusmp-cactus-xalanc-bzip-sphinx 8M

3.3. Figure of Merit: Performance

For rate mode workloads, we use the total execution time as

the performance metric. The reported normalized speed up

is the normalized execution time with respect to the baseline

system. For mixed workloads, we use weighted speedup as the

performance metric, and the reported normalized speed up is

the normalized weighted speed up with respect to the baseline

system. The weighted speed up is given by Equation 2.

L' I Pc�hared
WeightedSpeedup =

1 I . I '"'.[PCmge '--I 1

(2)

To report performance, we use geometric mean to report

the average speedup for the 16 rate-mode runs (RATE), 8

mix-mode runs (MIX), and all 54 workloads (ALL).

3.4. Measuring Bandwidth Efficiency

Another important aspect of our study is the bandwidth con­

sumption of the DRAM cache. We define Bloat Factor as

the amount of total bytes transferred divided by the useful

bytes transferred on the bus, as shown in Equation 1. The

denominator also means the total cache lines transferred to the

processor multiplied by cache line size (i.e., 64 bytes). Note

that bandwidth efficiency is the inverse of the Bloat Factor.

4. Bandwidth-Efficient Miss Fill

Among secondary operations, our first target is Miss Fill. Miss

Fill takes 17% DRAM cache bandwidth (Bloat Factor 0.67 of

3.8). If all inserted cache lines are accessed again, the future

access will be served by DRAM cache, and have lower latency.

However, not all inserted cache lines will be re-referenced

again [13, 14], which gives us an opportunity to bypass some

Miss Fills without impacting hit rate significantly. In this

section, we first examine a naive approach which bypasses

a fixed fraction of the cache fills randomly. We show that

while such a scheme can improve hit latency of the cache, in

some cases it can cause severe degradation in both the hit rate

and overall system performance. We propose a Bandwidth

Aware Bypass (BAB) scheme that tries to free up the bandwidth

consumed by Miss Fills while limiting the degradation in hit

rate to a predetermined amount.

203

4.1. Probabilistic Bypass: A Simple and Naive Scheme

A fairly simple and straight forward way to reduce the band­

width consumed by Miss Fill is to not perform Miss Fill for a

given percentage of cache misses. Let the Bypass Probability

(P) denote the fraction of total cache misses for which we

decide to skip the Miss Fill and instead bypass the cache. On

a cache miss, we could make the decision of install of bypass

by consulting a random number generator. If the value of the

random number generator is less than P, perform bypass, other­

wise fill the line in the cache. We call this scheme Probabilistic

Bypass (PB). The parameter P regulates the effectiveness of

PB at reducing the bandwidth consumed by Miss Fills. At

high value of P, we would expect a larger number of lines

to be bypassed, which reduces the bandwidth consumption

of Miss Fills, and therefore improves the cache hit latency.

Unfortunately, bypassing a larger number of cache lines can

have adverse impact on hit rate too, and thus harm overall

system performance. To analyze this phenomenon, we study

two values of bypass probability: P=50% and P=90%. Note,

PB with P=O% is the same as the baseline design which does

not perform bypass.

(c) Speedup (w.r.t. Alloy Cache)

Figure 5: Comparison of Probabilistic Bypass with P=50% and

P=90% in terms of impact on (a) Cache Hit Latency (b) Cache Hit Rate

(c) Speed up. All numbers are with respect to the baseline.

Figure 5 shows the reduction in cache hit latency (higher

is better), increase in cache hit rate (higher is better) and

speed up (higher is better) with PB for P=50% and P=90%.

As expected, aggressive bypassing can reduce hit latency sig-

nificantly, on average by 12% for P=90%. Unfortunately,

probabilistic bypassing can also degrade hit rate significantly

for several workloads (such as Gems and Zeusmp), which can

reduce performance. Overall, the speed up from probabilistic

bypass is negligible, and we may deem PB to be ineffective at

improving performance.

4.2. Bandwidth Aware Bypass: Limiting Hit-Rate Loss

Ideally, we desire the benefits from cache hit latency reduction

using PB, without significantly impacting the DRAM cache

hit rate. For the DRAM cache to be high performing, PB

should not degrade cache hit rate significantly with respect

to the baseline. This suggests a dynamic mechanism that

measures the differential in hi t rate (or miss rate) between

the baseline and PB. If the differential is lower than some

threshold then it should use PB, otherwise the baseline. We

call this mechanism as Bandwidth Aware Bypass (BAB) as it

tries to continue to bypass (in order to free up the bandwidth)

even if such bypassing causes a minor degradation in cache hit

rate. This is unlike prior schemes on cache replacement that

aim to do bypassing solely with the aim of maximizing cache

hit rate, and would try to disable the bypassing mechanism if

there is any loss of hit rate.

DRAM Cache

Baseline Policy

IMiss Rate X I l
X-V<

Prob Bypass (PB) t ~
Do Not U" PB

True Use PB
Set V IMiss Rate vi

DSet using PB • Set for Baseline Policy D Follower Sets

Figure 6: Design of Bandwidth Aware Bypass.

We use Set Dueling [13] to dynamically select between PB

and the baseline. Of the 16M sets in the DRAM cache, we

create two sampling monitors of 512K sets each for PB and

baseline policy, and the remaining ISM sets are the follower

sets. We use two 16-bit counters for each sampling monitor:

one counts misses, and the other counts accesses. Misses and

accesses to the sampled sets increment the corresponding 16-

bit counters. When any of the access counters saturates, all

the counters are shifted right by 1 bit. We compute the miss

rates of the baseline and PB sampled sets and then compare

the difference in the two miss rates to a threshold, Ll. If the

difference is smaller than the threshold, then PB and baseline

have similar miss rates Therefore, we can be bandwidth effi­

cient and set the mode-bit to enable the follower sets to use

PB. Whereas, if the difference is greater than or equal to the

threshold, then baseline has better miss rate and we unset the

mode-bit to enable the follower sets to use the baseline policy.

Note that there is a single mode-bit for the entire cache and it

changes only when one of the access-bit counter saturates.

204

We conduct a sensitivity study using 90% probability to

determine the best threshold for the differential in miss rate

for the mechanism to select between PB and the baseline, and

found that using Ll = k gave the best overall performance.

Which means that PB must provide a hit rate of at least 15116th

of the baseline hit rate for the bypassing to continue, otherwise

PB get disabled.

4.3. Effectiveness of BAB

Figure 7 shows the speed up of BAB, in which the component

PB policy uses a bypass probability of 90%. On average, BAB

improves performance by 5.1 % (and as much as 15%) over the

baseline, without causing degradation in any of the workloads.

The cache hit rate with and without BAB are 61 % and 63%,

respectively. Thus, BAB sacrifices a small amount of cache hit

rate to free the Miss Fill bandwidth, which reduces hit latency

and improves performance.

1.2 ,----����-==-�Ba�n-;'dWl-o.d�th'A�w�a�re-;OBC--yp�a�ss����� -----,

.g 1.1
'" '" � 1.0

Figure 7: Speedup from Bandwidth Aware Bypass.

5. Bandwidth-Efficient Writeback Probe

Cache writebacks update main memory with new data modi­

fied by the processor core. On a writeback request, the DRAM

cache must be consulted using a WriteBack Probe to determine

whether the line already exists in the DRAM cache. The probe

is necessary for correctness to update the DRAM cache data.

Updates enable the DRAM cache to service future requests

with the most recent data value.

In general, a Writeback Probe is wasteful if the line evicted

from the on-chip LLC (i.e., dirty line) already exists in the

DRAM cache. Since DRAM caches are generally much larger

than on-chip LLCs, the probability that a writeback request

misses in the DRAM cache tends to be very low « 1 % in our

studies). This suggests that the majority of Writeback Probes

are useless and cause unnecesary bandwidth bloat. Hence, it

is highly desirable if the cache architecture can provide some

guarantees on whether (or not) a dirty line evicted from the

on-chip LLC exists in the DRAM cache.

5.1. Limitation of Inclusive Caches

One approach is to enforce the inclusion property [17] for the

DRAM cache. Enforcing inclusion mandates that all lines

resident in the small on-chip caches must also be resident in

the DRAM cache. When evicting lines from the DRAM cache,

inclusion is enforced by sending a back-invalidate request to

also evict the line from all on-chip caches (should the line

be present). Consequently, enforcing inclusion property for

DRAM caches eliminates the need for Writeback Probes since

writebacks are guaranteed to hit in the DRAM cache.

While an inclusive DRAM cache eliminates the bandwidth

bloat due to Writeback Probes, inclusion prevents bypassing of

cache lines on misses. Consequently, inclusion eliminates the

5-15% performance benefits from our bandwidth conscious

Adaptive Fill policy. Ideally, we want to eliminate both Miss

Fill and Writeback Probe, but inclusive cache can avoid only

Writeback Probe. Therefore, we desire a mechanism that not

only reduces Writeback Probes, but also is able to bypass

Miss Fills.s We show that our proposed design outperforms

inclusive cache in Section 7.

5.2. Tracking Residency of Line in DRAM Cache

Writeback Probes can be avoided if there exists some state in­

formation in the memory hierarchy that specifies which cache

lines are resident in the DRAM cache. Note that this state

information need not be for every line in the DRAM cache,

but only those lines that are dirty in the on-chip caches. Thus,

the state information can be reduced from tracking millions of

lines in the DRAM cache to only a few thousand lines present

in the on-chip caches.

o

WritebackUpdate

DATA

WritebackProbe +

WritebackUpdate

Figure 8: Design of DRAM Cache Presence Bit.

The state information is a one-bit field that tracks whether

or not a line is present in the DRAM cache. We refer to this

one-bit field as DRAM Cache Presence (DCP) and propose

adding DCP to each line in the LLC, as in Figure S. DCP

is modified on LLC fills and DRAM cache evictions. On

LLC fills, DCP is set to one if the line was serviced from

the DRAM cache, zero otherwise. DCP is kept up-to-date

on DRAM cache evictions. When a line is evicted from the

DRAM cache, the LLC is conveyed this information (similar

to the flow of an inclusive DRAM cache). If the line is present

in the LLC, DCP is updated to zero (instead of invalidating

the line as in inclusive cache). Consequently, the LLC knows

that the line is no longer present in the DRAM cache.

DCP enables writeback requests to have full knowledge

on whether or not the line is present in the DRAM cache.

On writeback requests from the LLC, if the DCP value is

one, bandwidth bloat due to Writeback Probes can be avoided

SInclusion is commonly used to simplify cache coherence. Since DRAM

caches are usuaUy implemented as memory side caches. they do not participate
in coherence. Hence, relaxing/enforcing inclusion guarantees for DRAM
caches have no impact on cache coherence.

205

altogethor and only a Writeback Update is necessary to update

the line in the DRAM cache.

A DCP value of zero implies a writeback miss since the

dirty line is no longer present in the DRAM cache. With

the writeback-miss allocate policy, to ensure correctness, a

Writeback Probe is required before performing a Writeback

Fill. This is to determine whether the writeback allocate is

replacing a dirty line from the DRAM cache.

5.3. Effectiveness of DRAM Cache Presence

Figure 9 illustrates the performance improvement of DCP in

the presence of BAB. We observe that DCP improves per­

formance by an additional 4%, with maximum of 12.S% in

omnetpp, and 11.3% in gcc, both of which have very high hit

rate for writebacks.

_BAB _ BAB+DRAM Cache Presence
1.2

c- -

1111
r-

m moo r-

Figure 9: Performance for DRAM Cache Presence (DCP) over the

baseline system that implements Bandwidth-Aware Bypass.

6. Bandwidth-Efficient Miss Probe

DRAM cache lookups can either result in a cache hit or a cache

miss. Cache hits result in useful bandwidth whereas cache

misses unnecessarily waste bandwidth by needless fetching

clean data that is not utilized. We refer to the bandwidth

bloat due to cache misses as Miss Probe. If the DRAM cache

architecture can provide some guarantees on whether (or not)

a line is present in the DRAM cache, Miss Probe bandwidth

bloat can be minimized. We observe that current DRAM cache

designs, including both Loh-Hill, and Alloy cache, enables

us to develop simple mechanisms to provide such guarantees;

these designs locate tag and data together in the same DRAM

row buffer, and hence accessing one cache line also reads

tags of other adjacent lines, making additional information

available. We use Alloy cache as an example, but the idea can

also be easily extended to Loh-Hill cache.

6.1. Neighboring Tag Cache

The Alloy Cache organizes the tag and data together to form a

single Tag and Data (TAD) entry. Each TAD entry is 72 bytes

long (S bytes for tag and 64 bytes for the data). Alloy Cache

organizes consecutive cache sets into the same row buffer as

illustrated in Figure 10. With a 12S-bit (l6-byte) DRAM data

bus, a cache lookup transfers a TAD entry in five bursts (total

of SO bytes are transferred). In doing so, any cache lookup

also transfers the neighboring tag of the line present in the

next cache set. This spatial locality can be exploited by storing

the neigh boring tag in a small fully associative structure called

the Neighboring Tag Cache (NTC). Each NTC entry contains

two fields: tag and DRAM cache set index.

ADDR Alloy Cache

I I I .. �r:::rr:::::J"""'-o:::::::J
TAG+DATA+ IillJ. (8+64+8=80Bytes)

Demand / "
Neighbor

Figure 1 0: Alloy Cache brings in two tag entries with each access

by default (due to bus being 16 bytes and tag being 8 bytes).

A miss in the LLC first consults the NTC by performing a

set index match and tag match. If there is no set index match,

the NTC can not provide any guarantees on the existence of

the line in the DRAM cache. Therefore, a Miss Probe must be

issued to to determine DRAM cache hit or miss. If there is a

set index match and a tag match, the NTC guarantees that the

request is present in the DRAM cache. Finally, if there is a set

index match but a tag mismatch, the NTC gurantees that the

request is not present in the DRAM cache. In this situation,

the NTC can reduce the bandwith bloat due to Miss Probes.

However, note that if the tag suggests that the DRAM cache

entry is dirty, a Miss Probe is still necessary for correctness to

read the dirty line and write it back to main memory.

6.2. Effectiveness of NT C

We assume an 8-entry NTC for every DRAM bank. For a

DRAM cache with four channels and 16 banks per channel,

the overall NTC size is 512 entries. However, note that only

the eight NTC entries that correspond to the DRAM cache

bank are accessed on an LLC miss. Finally, we assume single­

cycle acces to the NTC and also ensure that the NTC is kept

up-to-date on DRAM cache evictions.

- BAB _ BAB+DCP
1.2 �

���
=� ... � �J �B�AB�+�D_C_ P_+ _N_e-,"ig ___ h b_o_rin-,g,,"--Ta-,g,- C_a_c_ h_e ����

0.. .g1.1
Q) Q)
� 1.0

Figure 1 1 : Performance for Neighboring Tag Cache for a baseline

with BAB and DCP.

Figure 11 shows that NTC improves performance of the

Alloy Cache by an additional 2%. Detailed analysis reveals

that the NTC provides performance benefits by reducing two

sources of wasteful bandwidth. First, by design NTC reduces

206

bloat bandwidth due to Miss Probes.6 Second, as a side benefit,

the DRAM cache miss predictor takes advantage of the NTC

to verify parallel memory access predictions. If a given entry is

present in the NTC, the DRAM cache miss predictor squashes

the wasteful parallel access to main memory.

7. Tying-it-AIl-Together: BEAR

BEAR consists of three schemes to reduce bandwidth bloat in

the DRAM cache. This section compares the performance of

BEAR to an idealized cache, shows the impact of BEAR on

Bloat Factor, and asseses the storage overheads of BEAR.

7.1. Overall Performance Results

Figure 12 shows the perfonnance of between the baseline

Alloy Cache, BEAR DRAM, and an ideal Bandwith Opti­

mized (BW-Optimized) DRAM cache. Note that RATE and

MIX are referred to as the geometric mean of rate and mix

workloads, while ALL54 is the geometric mean of all of our

54 workloads. On average, BEAR improves perfonnance

over the Alloy Cache by 10.1 %. BEAR outperforms the BW­

Optimized DRAM cache in some workloads: soplex, mile, and

libq. This is because Adaptive Fill increases the hit rate for

these benchmarks, which reduces overall memory latency and

hence provides better performance than BW-Optimized cache.

This is not the typical case, however, as Adaptive Fill causes a

hit rate degradation of 2%, on average.

Table 4: Comparison of DRAM Cache Hit-Rate and Latency_

Design Hit Rate
Latency (cycles)

Hit Miss AVG

Alloy 63.2% 239 391 326

BEAR 61.0% 182 356 282

Table 4 shows the hit rate and latency of DRAM cache. On

average, BEAR is able to reduce DRAM cache hit latency

from 239 to 182 cycles (24% improvement), while only sacri­

ficing 2% hit rate. Also, the miss latency reduces, because of

Neighboring Tag Cache's side effect that reduces unnecessary

parallel access to off-chip memory.

7.2. Impact on Bloat Factor

Figure 13 illustrates the effectiveness of our proposals in re­

ducing bandwidth bloat. We illustrate a bandwidth breakdown

for every bandwidth factor, including Hit, Miss Probe, Miss

Fill, Writeback Probe, Writeback Update, and Writeback Fill

normalized to the Bloat Factor of a BW-Optimized DRAM

cache. The BW-Optimized case only consumes Hit bandwidth,

and transfers 64 bytes for every request. For other configura­

tions, the basic unit of data transfer is 80 bytes. In the baseline

Alloy cache, the Bloat Factor on average is 3.8, in which only

1.25 is critical to service the LLC miss requests.

6NTC does not consume any extra bandwidth for prefetching the neigh­

boring tag. The extra tag is anyways fetched even in the baseline design
because the width of the DRAM bus (16 bytes) is greater than the tag (8B).

_ Alloy _ BEAR _ BW-Optimized
1. 5 ,-�--�-----------------------------,
1.4 r_--------------__ ----�--�

S 1.3 r-----__ --------�._--��----------------------------�I--�-------.----_=------------�
-0 � 1.2 r-�� __ �----_=��--��------.-__ r_----------------����r_ ____ --____ ���----��
� 1.1 e--__ ---1

1.0
0.9 � __ ��� __ U.� __ ��dL __ U.����� __ u.����� __ ��� __ U.� __ ��dL __ ����

� � � � � � � � P # � � ' � ·i � � p � p � � � � � _� � � � �v � c'" � 'l? �� 0C :i>;c �c; ",<? �1f �� � � v �v �v �v �v �v �v �v "';'0
",0 o<$'� �� "'� ,e7 c; ",C .., �

Figure 1 2: Performance Improvement for Alloy, BEAR, and ideal case. Note that RATE and MIX are for 16 rate mode workloads, and 8 mixed

workloads, respectively ; ALL54 means the geometric mean across all 54 workloads.

(a) Alloy (b) Bandwidth-Aware Bypass (c) BAB+DRAM Cache Presence

(d) BAB+DCP+ Neighboring Tag Cache (e) BW-Opt

6 ,---------------------------�==��._�

5 r----------------------------

� 4
ca
LL.. 3

� 2 CC

o
a b e d e

RATE
a b e d e

MIX
a b e d e

ALL

Figure 1 3: Bloat Factor for Different Schemes.

To review, Adaptive Fill targets reduction in Miss Fills,

DRAM Cache Presence (DCP) targets reduction in Write

Probes, and Neighboring Tag Cache (NTC) targets reduction

in Miss Probe. Overall, BEAR is able to reduce the Bloat

Factor by 32%.

7.3. Sensitivity to DRAM Cache Bandwidth and Capacity

We have assumed that the bandwidth of DRAM cache is 8X

of the off-chip DRAM. We conduct a sensitivity study by

studying DRAM caches with 4X, 8X and 16X bandiwdth (by

varying the number of channels) while keeping the cache size

constant. Figure 14(a) shows the performance improvement

when the DRAM cache bandwidth varies. BEAR continues to

provide performance improvements of more than 10% for all

the bandwidth configurations.

_ Alloy _ BEAR
1.2 1.2 ,---------------,

4X 8X 1 6X
(a) D RAM Cache Bandwidth

g. 1.1 r----r"l-_� __ -----j
� Q) 8l" 1.0

0.5 1 2
(b) Capacity (G B)

Figure 1 4: Sensitivity to DRAM Cache: (a) Bandwidth (b) Capacity.

Note that all numbers are normalized to Alloy cache with respect to

each configuration.

We also conduct a sensitivity study by varying the size

of the DRAM cache while keeping the bandwidth constant.

207

Figure 14(b) shows the performance improvement when the

DRAM cache size changes from 512 MB to 2 GB. BEAR

consistently improves performance by more than 10% across

all DRAM cache capacity.

7.4. Sensitivity to DRAM Banks

We also conduct a study varying the number of banks to un­

derstand the delay contributed by bank conflict, and bus con­

tention. Figure 15 shows the performance of BEAR, when the

number of banks increases from 64 to 2048. Note the speed up

is normalize to the baseline, with respect to each configuration.
_ Al loy _ BEAR

1 . 20 '---�----------------------�-----'

1 . 1 5 r---------------------------------1
g. 1 . 1 0 r----rl---------------------------1

D 3l 1 05
c% 1 . 00

0 . 95
0 . 90 �------"----

64 1 28 256 5 1 2 1 024 2048
Number of Banks

Figure 1 5: Sensitivity to DRAM Banks. Note that all numbers are

normalized to Alloy cache with respect to each configuration.

BEAR consistently outperforms Alloy from 11 % at 64

banks, to 6% at 2048 banks. The speed up remains constant at

6%, when the number of banks is 512, or more. As the number

of banks increases, the row buffer conflict reduces. This sug­

gests that the performance improvement provided by BEAR

comes from two parts. The first is contributed by the reduction

of bank conflicts, which is the speedup difference between 64

banks, and 2048 banks, or 5%. Second, the speedup saturation

indicates that the remaining 6% performance improvement

results from the reduction of bus contention.

7.5. Comparison to Alternative DRAM Cache Designs

We also compare our proposal to various implementation

of DRAM cache, including Loh-Hill cache (LH-cache) [6],

Mostly-Clean cache (MC-Cache) [8], and Inclusive Alloy

cache (Incl-Alloy) [9], using default parameters (8X band­

width, 1GB capacity). For LH-cache, we assume the MissMap

has the same latency of LLC, which is 24 cycles in our study.

MC-cache is an extension of LH-cache, which tries to reduce

the Miss Probe bandwidth, and deploys memory requests to

AL : Alloy Cache BEAR: Our P roposal TIS: Tags- I n-SRAM (64 M B) SC : Sector Cache (6M B)

70 400 400 4 1 .2
;R >- >-

65 300 300 0 3 c.. 1 . 1 � (J (J t5 c-c::: c:::, :::J
Q) Q) Q) m "0
10 60 10 200 10 200 l.L. 2 r- r- 3l 1 . O
0::: --l --l 10 c.. - 55 - - 1 00 <J) 1 00 0 f- ,......; f- (f) 0 .9 -
I I .!!1 co

50 0 2 0 0 O .S
��,\� cJ)
<0«)

��,\� c:>0
<0«)

��,\� c:>0
<0«)

� �,\� c:>0
<0«)

� �,\� c:>0
<0«)

(a) L4 H it Rate (b) L4 H it Latency (c) L4 M iss Latency (d) B loat Factor (e) S peed up

Figure 1 6: Comparison to Tags-In-SRAM (TIS) Cache and Sector Cache (SC): (a) L4 Hit Rate, (b) L4 Hit Latency, (c) L4 Miss Latency, (d) Bloat

Factor, and (e) Speedup (w.r.t. Alloy). Note that TIS requires 64MB SRAM storage and SC requires 6MB SRAM storage.

off-chipe memory. For MC-cache, we assume a perfect predic­

tor for hits and misses, and if the outcome of the predictor is a

miss, the request will be serviced by the off-chip memory. For

Incl-Alloy cache, we apply the inclusive property to DRAM

cache with respect to the on-chip LLC.

LH-cache has 27% performance improvement across all

the workloads, while MC-cache has 30%. LH-cache is a

implementation that uses a MissMap structure to avoid Miss

Probe bandwidth to DRAM cache as a trade-off an additional

latency of 24 cycles for all the requests. MC-cache uses a

predictor and removes the additional latency. However, both

of them do not reduce Miss Fills or Writeback Probes.

- LH-cache
MC-cache

_ BEAR - Alloy
_ lncl-Alloy

9 1 .8 �---------"--------� -'
o

z 1 .6 1----------

-i 1 .4 1-----
0.­
.g 1 . 2 I---__ r Cl Cl
rE 1 .0 I...-___ L

RATE MIX ALL

Figure 1 7: Speed up from different implementations of DRAM cache,

normalized to a system without DRAM caches.

Inclusive Alloy cache is also a valid design. Incl-Alloy

cache improves performance by 55% on average, which is

9% more than baseline non-inclusive Alloy Cache, while our

proposal provides 66% performance improvement. Inclusive­

ness can avoid the Writeback Probe bandwidth, because it

enforces every cache line in the LLC must be in the DRAM

cache. However, inclusive DRAM cache loses the opportunity

for other bandwidth optimization, such as Miss Fill, whereas,

our proposal reduces both bandwidth bloat.

7.6. Storage Overhead of BEAR

Table 5 show the hardware overhead of each proposal. Overall,

BEAR incurs negligible hardware overhead of 19.2 KB, the

majority of which is due to the DCP-bit in the LLC.

8. Analysis of Tags-In-SRAM Designs

Thus far, we have only analyzed the Tags-in-DRAM designs,

as such designs are scalable to large cache sizes. We now

20S

Table 5: Storage Overhead of BEAR

Design Cost

Bandwidth-Aware Bypass 8 bytes per thread, total 64 bytes

DRAM Cache Presence One bit per line in LLC, total 16K bytes

Neighboring Tag Cache 44 bytes per bank, total 3.2K bytes

Total 1 9.2K bytes.

make a comparison of alternative designs that store Tags in

SRAM. An unconstrained version of such a design, which

we call Tags In SRAM (T1S) stores all the tags on-chip in

an SRAM structure, and would incur a prohibitive storage of

64MB (at four byte of tag storage per line). The SRAM storage

can be reduced to 6MB by architecting the cache as a Sector

Cache (SC), as has been considered in recent designs such as

the Footprint Cache [12, 10]. The advantage of these SRAM

based designs is that they can support high set associativity and

avoid some probe operations (e.g. Miss Probe and Writeback

Probe). Unfortunately, these advantages come at a high storage

overhead and also high latency overheads of accessing the tag

store, before accessing the data store.

We compare TIS and SC with BEAR. For both TIS and

SC we provision the appropriate SRAM structure for tag store

without penalizing either design for the added storage or the

extra latency of tag access. Both caches are architected 32-

way set associative. SC uses 4KB as an sector, which has 64

blocks (64B). We show statistics related to the DRAM cache

(L4), including L4 hit rate, L4 hit latency, L4 miss latency,

and Bloat Factor as well as the speedup in Figure 16.

BEAR outperforms tags-in-SRAM cache designs for the

following reasons. (1) Hit Rate: For a gigascale DRAM

cache, set-associativity contributes only to a limited improve­

ment in hit rate (from 63% to 68%, consistent with prior

studies [9].) (2) Bloat Factor: Both TIS and SC still incur

bandwidth bloat from Miss Fill, Writeback Update, and Dirty

Evictions. BEAR has very similar Bloat Factor as TIS and

SC, because the amount BEAR saves is close to the amount

of Miss Probe TIS and SC save. One can use the principles

of BEAR to reduce the bandwidth Bloat of TIS and SC also.

(c) Latency: We found latency is the decisive reason for the

performance difference. Although SRAM caches do not need

to look up tags in DRAM to detect cache misses, they do incur

the penalty of dirty replacement, which gets exacerbated in

SC as an evicted page can have a large number of dirty lines.

Overall, BEAR has 10.1 % performance improvement,

which exceeds the 7.5% speed up with TIS and 18% slow­

down with Se. BEAR requires an SRAM overhead of only

20KB, whereas TIS and SC incur respective 64MB and 6MB

SRAM storage overhead, which may be prohibitive.

9. Other Related Work

9.1. DRAM Cache

An extension of Loh-Hill DRAM cache is Mostly-Clean

DRAM cache, which uses a miss predictor to save the

MissMap storage overhead, and use parallel access to avoid

serialization penalty. However, their proposal did not consider

other bandwidth bloat factors [8].

Footprint cache is also another DRAM cache design, which

is a sector cache design with prefetcher [10]. It uses SRAM

storage to store the tag arrays; however, this is not a scalable

solution, since the tag storage of 1GB DRAM cache can be as

large as 6 megabytes. Also, enabling prefetch requests might

exacerbate the bandwidth bloat problem in DRAM cache due

to the extra bandwidth consumed by inaccurate prefetches.

9.2. Adaptive Fill

There are several studies that have focused on cache line install

or bypass policy, which is related to Adaptive Fill. Most of

the work are trying to identify cache blocks that are never

reused after being installed in the cache[18, 19, 20, 21]. These

cache lines are also referred to as Dead Blocks. One example

is to sample dead block prediction, which was proposed to

identify dead blocks in the last-level cache, and the fill process

is skipped, if predicted dead[20]. However, most of the work

requires a status update, leading to an additional access in the

case of DRAM cache. Also, the goal to identify dead blocks

is to improve hit rate of the cache, not improve DRAM cache

bandwidth efficiency.

9.3. Cache Optimization

Cache inclusiveness is referred to as the property of the big­

ger cache with respect to smaller cache. Inclusive or exclu­

sive cache are valid design choices that could be adopted

by different chip vendors [22, 23, 17]. Recent study shows

non-inclusive cache has better performance improvement than

inclusive cache, because it avoids the Back-Invalidate oper­

ation, and provide higher hit rate than the inclusive cache.

However, in the case of DRAM cache, the capacity is huge,

but inclusive cache limits the scope of further optimization.

Other cache optimization, including replacement policy

[13, 14, 24, 25, 26, 27], and write-allocation policy [28] ,

has been an active research area for the past decade. These

optimization improves cache hit rate and therefore improve

off-chip DRAM bandwidth. In contrast, our proposal aims at

reducing DRAM cache bandwidth to improve performance.

209

9.4. Tag Cache

Separate structure to keep recently used tag has been proposed

to avoid the tag look-up latency[29], when the last level cache

is off-chip, and the latency for off-chip access is very high.

Neighboring Tag Cache is storing the tag that has not been

referenced (i.e., adjacent cache lines), but is highly likely to

be referenced in the future. Unlike prior Tag Cache proposals

which exploit temporal locality, Neighboring Tag Cache only

exploits the spatial locality of the neighboring lines. How­

ever, these two schemes are orthogonal, and can be adopted

simultaneously.

10. Summary

This paper aims at making DRAM caches bandwidth-efficient.

We identify and classify DRAM cache operations into six cat­

egories: Hit Probe, Miss Probe, Miss Fill, Writeback Probe,

and Writeback update, and Writeback Fill. Among those oper­

ations, only Hit Probe contributes to satisfy the miss request

from L3 cache. Secondary bandwidth factor are either for

performance or for correctness.

We define a metric termed Bloat Factor to understand how

these secondary operations use DRAM cache bandwidth. We

found only 33% of the DRAM cache bandwidth is used to sat­

isfy L3 miss requests. Other secondary operations increase the

queuing delay and thus DRAM cache hit latency. If bandwidth

bloats are eliminated, hits can be serviced quickly.

We propose Bandwidth-Efficient ARchitecture (BEAR)

DRAM cache to mitigate the bandwidth bottleneck in DRAM

cache. BEAR has three different schemes, each of which tar­

gets its own bandwidth component: Bandwidth Aware Bypass

for Miss Fill, DRAM Cache Presence bit for Writeback Probe

and Neighboring Tag Cache for Miss Probe.
'

Overall, the three component schemes of BEAR can be im­

plemented with a storage overhead of only 4KB (and one bit

per line in the L3 cache). BEAR can be implemented without

any changes to the architecture of the DRAM array. Our eval­

uations show that BEAR reduces the bandwidth consumption

of DRAM cache by 32% and improves system performance

by 10.1 %. BEAR achieves half the performance possible from

an idealized bandwidth-optimized design that consumes no

bandwidth for any of the secondary operations.

While we focus on tags-in-DRAM designs in our studies,

we show that Bandwidth Bloat is a problem for Tags-in-SRAM

designs too. BEAR outperforms an idealized design that stores

the tags on-chip using 64MB SRAM, as well as the sector

cache design that incurs an SRAM overhead of 6MB.

Acknowledgements

We thank Brian Railing, Sriseshan Srikanth, and anonymous

reviewers for their comments and feedbacks. This work was

supported in part by NSF grant 1319587 and the Center for

Future Architecture Research (C-FAR), one of the six SRC

STARnet Centers, sponsored by MARCO and DARPA.

References

[1] HMC Specification 1 . 0, 20 1 3 . [Online]. Available: http :

//www.hybridmemorycube.org

[2] JEDEC, High Bandwidth Memory (HBM) DRAM (JESD235),

JEDEC, 201 3.

[3] Micron, HMC Gen2, Micron, 201 3.

[4] 1 Gb_DDR3_SDRAM.pdf - Rev. 1 0211 0 EN, Micron, 20 1 0 .

[5] DDR4 SPEC (JESD79-4), JEDEC, 201 3.

[6] G. H. Loh and M. D. Hill, "Efficiently enabling conventional

block sizes for very large die-stacked dram caches," in Proceed­

ings of the 44th Annual International Symposium on Microar­

chitecture, 201 1 .

[7] G. H. Loh, N. Jayasena, J. Chung, S . K. Reinhardt, J. M.

O ' C onnor, and K. McGrath, "Challenges in heterogeneous

die-stacked and off-chip memory systems," in 3rd Workshop on

SoCs, Heterogeneous Architectures and Workloads, 20 1 2 .

[8] J . Si m, G . H. Loh, H. Kim, M. O ' Connor, and M. Thottethodi,

"A mostly-clean dram cache for effective hit speculation and self­

balancing dispatch," in Proceedings of the 2012 45th Annual

International Symposium on Microarchitecture, 20 1 2 .

[9] M . K. Qureshi and G. H . Loh, "Fundamental latency trade-off in

architecting dram caches : Outperforming impractical sram-tags

with a simple and practical design," in Proceedings of the 2012

45th Annual International Symposium on Microarchitecture,

20 1 2 .

[1 0] D. Jevdjic, S. Volos, and B. Falsafi, "Die-stacked dram caches

for servers : Hit ratio, latency, or bandwidth? have it all with

footprint cache," in Proceedings of the 40th Annual Interna­

tional Symposium on Computer Architecture, 201 3.

[1 1] c.-C. Huang and V. Nagaraj an, "Atcache: Reducing dram cache

latency via a small sram tag cache," in Proceedings of the

23rd International Conference on Parallel Architectures and

Compilation, 201 4.

[1 2] J. B. Rothman and A. J. Smith, "Sector cache design and perfor­

mance," in Proceedings of the 8th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecom­

munication Systems, 2000.

[1 3] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,

"Adaptive insertion policies for high performance caching," in

Proceedings of the 34th Annual International Symposium on

Computer Architecture, 2007.

[14] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer, "High

performance cache replacement using re-reference interval pre­

diction (rrip)," in Proceedings of the 3 7th Annual International

Symposium on Computer Architecture, 20 1 0 .

[1 5] N . Chatterjee, R. Balasubramonian, M . Shevgoor, S. H . Pugsley,

A. N. Udipi, A. Shafiee, K. Sudan, and M. Awasthi, USIMM,

University of Utah, 20 1 2 .

21 0

[1 6] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,

and B. Calder, "Using simpoint for accurate and efficient simu­

lation," in Proceedings of the 2003 ACM SIGMETRICS Interna­

tional Conference on Measurement and Modeling of Computer

Systems, 2003.

[17] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer,

"Achieving non-inclusive cache performance with inclusive

caches: Temporal locality aware (tla) cache management poli­

cies," in Proceedings of the 201 0 43rd Annual International

Symposium on Microarchitecture, 20 1 0 .

[1 8] M . Kharbutli and Y. Solihin, "Counter-based cache replacement

and bypassing algorithms," IEEE Trans. Comput. , Apr. 2008.

[1 9] A.-C. Lai, C. Fide, and B . Falsafi, "Dead-block prediction

& ; dead-block correlating prefetchers," in Proceedings of

the 28th Annual International Symposium on Computer Archi­

tecture, 200 1 .

[20] S . M. Khan, Y. Tian, and D . A. limenez, "Sampling dead block

prediction for last-level caches ," in Proceedings of the 201 0

43rd Annual International Symposium on Microarchitecture,

20 1 0 .

[21] V. Seshadri, O. Mutlu, M. A . Kozuch, and T. C. Mowry, "The

evicted-address filter: A unified mechanism to address both

cache pollution and thrashing," in Proceedings of the 21st Inter­

national Conference on Parallel Architectures and Compilation

Techniques, 20 1 2 .

[22] AMD Phenom 11. [Online]. Available: http ://www.amd.com/us/

products/desktop/processors/phenom- ii

[23] "lntel core i7-3940xm processor specification." [Online].

Available: http://ark.intel.com/productsI71096/

[24] c.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely,

Jr., and 1. Emer, "Ship : Signature-based hit predictor for high

performance caching," in Proceedings of the 44th Annual Inter­

national Symposium on Microarchitecture, 201 1 .

[25] D . A. Jimenez, "Insertion and promotion for tree-based pseu­

dolru last-level caches," in Proceedings of the 46th Annual

International Symposium on Microarchitecture, 201 3.

[26] M. K. Qureshi and Y. N. Patt, "Utility-based cache partition­

ing: A low-overhead, high-performance, runtime mechanism

to partition shared caches," in Proceedings of the 39th Annual

International Symposium on Microarchitecture, 2006.

[27] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, "A mod­

ified approach to data cache management," in Proceedings of

the 28th Annual International Symposium on Microarchitecture,

1 995.

[28] S. M. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and

D. A. Jimenez, "Improving cache performance using read­

write partitioning," in High Performance Computer Architecture

(HPCA), 2014 IEEE 20thInternational Symposium on. , 201 4.

[29] Z. Zhang, Z. Zhu, and X. Zhang, "Design and optimization

of large size and low overhead off-chip caches," IEEE Trans.

Comput. , lul. 2004.

