DICE: Compressing DRAM Caches for Bandwidth and Capacity

Vinson Young PrashantJ. Nair

Moinuddin K. Qureshi

School of Electrical and Computer Engineering, Georgia Institute of Technology
{vyoung,pnair6,moin } @gatech.edu

ABSTRACT

This paper investigates compression for DRAM caches. As the ca-
pacity of DRAM cache is typically large, prior techniques on cache
compression, which solely focus on improving cache capacity, pro-
vide only a marginal benefit. We show that more performance benefit
can be obtained if the compression of the DRAM cache is tailored
to provide higher bandwidth. If a DRAM cache can provide two
compressed lines in a single access, and both lines are useful, the ef-
fective bandwidth of the DRAM cache would double. Unfortunately,
it is not straight-forward to compress DRAM caches for bandwidth.
The typically used Traditional Set Indexing (TSI) maps consecutive
lines to consecutive sets, so the multiple compressed lines obtained
from the set are from spatially distant locations and unlikely to be
used within a short period of each other. We can change the indexing
of the cache to place consecutive lines in the same set to improve
bandwidth; however, when the data is incompressible, such spatial
indexing reduces effective capacity and causes significant slowdown.

Ideally, we would like to have spatial indexing when the data is
compressible and TSI otherwise. To this end, we propose Dynamic-
Indexing Cache comprEssion (DICE), a dynamic design that can
adapt between spatial indexing and TSI, depending on the compress-
ibility of the data. We also propose low-cost Cache Index Predictors
(CIP) that can accurately predict the cache indexing scheme on ac-
cess in order to avoid probing both indices for retrieving a given
cache line. Our studies with a IGB DRAM cache, on a wide range of
workloads (including SPEC and Graph), show that DICE improves
performance by 19.0% and reduces energy-delay-product by 36% on
average. DICE is within 3% of a design that has double the capacity
and double the bandwidth. DICE incurs a storage overhead of less
than 1KB and does not rely on any OS support.

CCS CONCEPTS

* Hardware — Memory and dense storage;

KEYWORDS
Stacked DRAM, compression, bandwidth, memory.

ACM Reference format:

Vinson Young PrashantJ. Nair Moinuddin K. Qureshi. 2017. DICE: Com-
pressing DRAM Caches for Bandwidth and Capacity. In Proceedings of ISCA
’17, Toronto, ON, Canada, June 24-28, 2017, 12 pages.
https://doi.org/10.1145/3079856.3080243

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4892-8/17/06. .. $15.00
https://doi.org/10.1145/3079856.3080243

627

1 INTRODUCTION

As modern compute systems pack more and more cores on the pro-
cessor chip, their memory systems must scale proportionally in terms
of both capacity and bandwidth in order to store and supply data to
all the cores. Advancements in packaging and interconnect technol-
ogy have enabled stacking several DRAM modules thereby offering
4-8x higher bandwidth than conventional DIMM-based DDR memo-
ries. Examples of DRAM based stacked memory technology include
High Bandwidth Memory, Hybrid Memory Cube, and MCDRAM
in Intel’s Knights Landing [25, 40, 41]. However, while stacked
memories offer 4-8x higher bandwidth, these technologies do not
yet have enough capacity to fully replace conventional DDR-based
DIMMs. So, future memory systems are likely to consist of heteroge-
neous organizations that use both high-bandwidth stacked memories
and high-capacity DDR memories. An attractive option is to archi-
tect stacked DRAM as a DRAM cache and place it between on-die
caches and DDR-based DIMMs [12-15, 19, 21, 22, 24, 32, 39].

Architecting stacked DRAM as a hardware managed cache has
several challenges, including designing and accessing a tag storage
of several megabytes. For example, a 1GB DRAM cache contains
16 million lines, which would need 64MB of storage for tags. There-
fore, practical designs of gigascale DRAM caches place tags inlined
with data in the DRAM array [32, 40], and organize the cache as
a direct-mapped cache to reduce lookup latency. We notice that as
any given bit within the DRAM cache can act as a tag bit or data bit,
we can implement data compression within DRAM caches inexpen-
sively. Extra tags needed for accommodating compressed lines can
be dynamically allocated in the DRAM. Therefore, compression is
well-suited for DRAM caches as it can be implemented at low cost.

Several prior proposals [4, 34, 35] have looked at compression
in the context of SRAM caches. These proposals focus solely on
increasing the effective capacity of the cache as a means to improve
performance. However, if the cache is large enough to hold the
uncompressed working set of the applications, then these propos-
als would not provide any performance benefit. As the size of the
DRAM cache is typically quite large compared to an SRAM cache,
prior schemes [8, 16] that focus solely on increasing the capacity of
DRAM cache have limited performance benefit. Besides compres-
sion for capacity, we can also use compression for bandwidth. For
example, if a compressed DRAM cache can provide two useful lines
per each access, then the effective bandwidth of the DRAM cache
would double. Furthermore, compressing the DRAM cache for band-
width can still provide performance even if the DRAM cache is large
enough to hold the working set of the application. In this paper, we
advocate compressing DRAM cache primarily for bandwidth and
secondarily for capacity. Unfortunately, compressing DRAM caches
for bandwidth is not straight-forward.

https://doi.org/10.1145/3079856.3080243
https://doi.org/10.1145/3079856.3080243

ISCA 17, June 24-28, 2017, Toronto, ON, Canada V. Young et al.
Compressible: all Compressible: all Compressible: none . Compressible: A, B 1.25
A A |W A B |~ A IB?I 1 A I B Spatial index 1.20
when : 2 115
B B |X C | D |— X X compressible | 2
C c |y W[X C |D2| C pog Lo
Base when ! 2105
D 0 < i z Z D incompressible ! « 1.00
A,B,C,D, W, X, Y, Zalso A & B in one access Incompressible, A & B in one access : ’ é}d Q &
four accesses in cache C & D in second access B & D from memory C & D in two accesses ‘ C’Q% RIS
(a) Base (b) Compression) Spatial Indexing (d) Spatial Indexing "(e) Dynamic Index Compression‘ r (f) Speedup

Figure 1: Considerations in compressing DRAM caches (a) Baseline system with four lines (A-D) (b) Compression for capacity (c)
Spatial indexing for bandwidth (d) Slowdown from spatial indexing when data is incompressible (¢) Dynamic index compression
based on compressibility (A, B use spatial index) (f) Potential speedup from doubling DRAM cache capacity, bandwidth, and both.

We explain the considerations in compressing DRAM caches with
an example. Figure 1(a) shows the baseline uncompressed cache
storing lines A-D. The baseline uses Traditional Set Indexing (TSI)
that maps consecutive lines to consecutive sets. There are four more
lines (W-Z) in the working set that are used less frequently than
A-D. A straight-forward method to compress DRAM caches is to
compress the lines that map to the same set together, if they both can
be compressed to within the same set. If the data is compressible,
we can expect all the eight lines (A-D and W-Z) to be resident in
the cache, as shown in Figure 1(b). A single access to the cache
can obtain two lines (A and W for example). However, even though
we can get two lines with one access, such a design compresses
purely for capacity, as two lines mapping to the same set (A and W
for example) would spatially be GBs apart in main memory — and
hence are unlikely to be used within a short period of each other. Our
studies show that compressing DRAM cache only for capacity gives
limited performance improvement (7%). Given that a DRAM cache
provides disproportional bandwidth as compared to its capacity, if
we can compress for both capacity and bandwidth, then as shown in
Figure 1(f), we can potentially get much higher performance (22%).

To obtain higher effective bandwidth, it would be desirable to
obtain two spatially neighboring lines in one access from the DRAM
cache. Figure 1(c) shows a spatial indexing scheme that maps two
consecutive lines into the same set to get more bandwidth and capac-
ity. When lines are compressible, on an access to A, both line A and
line B are received with one access, improving effective bandwidth.
However, if lines are incompressible, in Figure 1(d), only one of A
and B can be resident at a time, and the other would be fetched from
memory, degrading performance. Ideally, we want to use spatial
indexing only when data is compressible, and fallback to TSI other-
wise, as in Figure 1(e). To this end, we propose Dynamic-Indexing
Cache Compression (DICE), a design that dynamically switches
between spatial indexing and TSI based on compressibility. DICE
uses spatial indexing when data is compressible and TSI otherwise.

As DICE supports two indexing schemes, switching between
spatial indexing and TSI should ideally be quick. We propose a
novel indexing scheme called Bandwidth Aware Indexing (BAI) that
maps consecutive lines into the same set, while ensuring that half
of the lines remain in same location as TSI. For the half of lines
where BAI is different from TSI, the line could be in either of the
two locations (depending on BAI or TSI). For such lines, DICE uses
the compressed size of the line to determine if the line should be
installed with BAI or TSI. If the compressed line is smaller than a
given threshold (36B), it is installed using BAI, otherwise using TSI.

628

On a cache access, the line could potentially be in two separate
sets, depending on the indexing scheme. It would be bandwidth
inefficient to check for the line in two locations on every access. To
overcome this, we propose Cache Indexing Predictors (CIP), that
can predict the right indexing scheme for the given access. We find
that compressibility is heavily correlated for lines in a given page, so
if we have a table that keeps track of the last index policy used for a
given page, we can get high accuracy (94%) at low storage overheads
(<1KB). DICE employs history-based CIP for index prediction on
cache accesses, and performs the lookup of the second location only
on misprediction.

We evaluate DICE on a wide variety of workloads (SPEC, GAP),
and find that DICE is robust and improves performance across work-
loads of varying compressibility, working set sizes, and access pat-
terns. Our studies on a 1GB DRAM cache show that DICE provides
on average 19% speedup and 36% reduction in energy-delay-product,
approaching 21.9% speedup of a double-capacity double-bandwidth
cache, while requiring less than 1 kilobyte of storage overhead and
no change to OS.

Overall, this paper makes the following contributions:

(1) We advocate that the compression of DRAM cache should focus
on obtaining not only the capacity benefits but also the bandwidth
benefits. We show how compression can be implemented on DRAM
cache without incurring extra storage for tags, needing multiple
accesses for getting tags, or requiring OS support.

(2) To obtain bandwidth benefits, we propose Bandwidth-Aware
Indexing (BAI), a scheme that maps consecutive lines in the same
cache set, and improves the effective bandwidth. One of the nice
property of BAI is that it ensures that half of the lines in the cache
can still reside in the same location as with Traditional Set Indexing
(TSI), facilitating dynamic adaptation of indexing schemes.

(3) We show that while BAI provides benefits for compressible
workloads, it can degrade performance for incompressible workloads.
To this end, we propose a dynamic scheme called Dynamic-Indexing
Cache Compression (DICE) that employs BAI and TSI based on
data compressibility.

(4) We also propose low-cost and accurate (<1KB) cache index
predictors (CIP) to predict the cache indexing scheme used for a
given access. CIP assists each access by avoiding looking up two
adjacent potential locations where the given cache line may reside.

DICE: Compressing DRAM Caches for Bandwidth and Capacity

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

2KB Row Buffer = 28 x 72 byte TAD = 28 data lines (32 bytes unused)

DRAM ARRAY TAG AND DATA (TAD)
TAG
o ATAG4®)
‘ ADDR
ROW BUFFER

N

80B = One 72-byte TAD + 8 byte of neighbor Tag

Figure 2: Organization of DRAM Cache configured as Alloy Cache. Each access indexes the direct-mapped location and obtains one

Tag and Data (TAD) entry for low hit latency.

2 BACKGROUND AND MOTIVATION

The emerging stacked DRAM technology allows the creation of
DRAM caches, as an intermediate level between on-chip caches and
main memory [24][32][22][21][40]. We investigate compression for
increasing the logical capacity of these caches as well as to improve
overall bandwidth. In this section, we discuss background on on-chip
cache compression, main memory compression, and the organization
of typical DRAM caches, which makes it amenable to implement
compression in a relatively inexpensive and straight-forward manner.

2.1 Compressing On-Chip SRAM Caches

Compression exploits redundancy in data values to increase effective
capacity of a given substrate. Prior work has looked at compres-
sion for improving the capacity of SRAM caches [4, 28, 34, 35].
As decompression latency is in the critical path of cache access,
these proposals use simple compression schemes such as Frequent
Pattern Compression (FPC) [5], Base-Delta-Immediate (BDI) [31],
CPACK [11], and ZCA [17], that can perform decompression within
a minimal number of cycles. In a typical compressed cache de-
sign [4], the cache line is compressed into well-defined segments
(e.g. one-fourth or one-half line), and the cache is provisioned with
extra tag-store entries to reference the extra lines that can be stored
(18% storage overhead for 4x ways).! The extra tags allow the cache
to index up to 4x number of lines than before. However, we note that
SRAM designs compress only for capacity (sometimes at the cost of
bandwidth). If we could improve both capacity and bandwidth, we
could get much higher performance.

2.2 Compressing Main Memory

Compression has also been applied to main memory for increas-
ing memory capacity [1]. Recent work in hardware-assisted main-
memory compression has looked at implementing memory compres-
sion with low-latency and high bandwidth. For example, Linearly
Compressed Pages (LCP) [30] proposes to spatially compress all
lines in a page to one-fourth their size and store exception storage
elsewhere if lines cannot be compressed to one-fourth the size.
One of the primary advantages of LCP is that a single memory
access can obtain multiple memory lines, when data is compressible.
Therefore, LCP can utilize compression not only for capacity but
also for bandwidth benefits. Unfortunately, the page mapping and
organization of LCP must be done using the OS, as the OS is required
to know the compressed page size, in order to access the adjusted
IRecent studies on SRAM cache compression propose sharing tags between a larger
number of sets (say 4x sets, called superblocks) to reduce tag and metadata overhead [28,
34, 35]. However, when applied on DRAM caches, these designs increase the number

of sets that must be checked on each access, which can waste bandwidth. We analyze
these proposals in detail in Section 7.3.

629

offset in the page correctly and in order to use physical main memory
capacity fully. In addition, when data is incompressible, the main
memory must send a second request to obtain data from the exception
storage, which incurs both latency and bandwidth overheads. Thus,
the disadvantages of LCP are that it requires significant OS support,
and it has costly handling of incompressible lines. Ideally, we would
like to get benefits of compression without relying on OS support,
or suffering high-latency access when data is not compressible.

2.3 Organization of Practical DRAM Caches

Recent research has looked at enabling fine-grained (64B line size)
DRAM caches in a low cost manner [24, 32]. Given that the tag-store
required for these caches often is in the range of several tens of MB,
these studies propose to co-locate tag-store entries with the data line.
Without loss of generality, in this paper, we consider Alloy Cache as
a representative example of DRAM cache organization, given that
a similar “direct-mapped, 64B linesize, tags part of line” design is
used for the DRAM cache in Knights Landing [40].

Alloy Cache architects the cache as a direct-mapped structure
and alloys the tag and data together to form a single entity called
Tag and Data (TAD), as shown in Figure 2. On a cache access, the
TAD entry corresponding to the set of the direct-mapped cache is
transferred. On a tag hit, data is obtained from the TAD without
the need for an additional access to the DRAM cache. The size of
the TAD is assumed to be 72 bytes (8B tag plus 64B data). Infact,
given the bus of stacked DRAM is 16B, the cache transfers 80B, so
the tag-entry of the neighboring line is obtained for a given access
without additional bandwidth overheads. Thus, Alloy Cache design
obviates need for SRAM-based tag storage. In addition, designs
that store tag within the data array lend themselves to additional
optimizations as the controller has the freedom to interpret bits as
either tag bits or data bits.

2.4 Compressing DRAM Cache is Almost Free

While DRAM caches have much larger capacity than on-chip caches,
there is still performance benefit if we can improve capacity. As
shown in Figure 1(f), doubling the capacity of the DRAM cache
could potentially provide an improvement of about 10%, on average.
We note that DRAM caches are provided mainly to improve the
system bandwidth. If we could use compression to increase the
effective bandwidth of the DRAM cache as well, then we could get
even higher performance benefit. For example, doubling the capacity
and bandwidth of the DRAM cache can provide 22% performance
on average. Fortunately, the organization and hardware-management
of DRAM caches avoid the limitations of on-chip SRAM cache
compression and main-memory compression, as shown in Table 1.

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

Table 1: Comparison of different forms of compression

Module to Improve Capacity Tag OS support

Compress Only? Overhead? | Needed?
On-Chip Cache Yes Yes No
Main Memory No No Yes
DRAM Cache No No No

Unlike SRAM caches, DRAM caches perform similar to DIMM-
based DRAM counterparts and are sensitive to bandwidth. Designs
that improve only capacity quickly meet diminishing returns on a
1GB DRAM cache. As such, we take inspiration from main-memory
compression to compress for bandwidth.

Unlike compression for SRAM caches, DRAM cache compres-
sion can be done without requiring any extra storage for the addi-
tional tags. The extra tag-store entries can be created dynamically
within the DRAM array, as the memory controller has the freedom
to interpret any bit as either a tag bit or a data bit. This allows the
compressed DRAM cache to hold several compressed lines in a
given set, without being constrained by the size of the tag-store.

Unlike main memory compression, which requires support from
the OS to maintain page mapping and to evict pages in case data
is incompressible, DRAM caches can be managed entirely in a
software-transparent manner.

Thus, we can implement compression on DRAM caches for al-
most free as the tag-store needed to support extra capacity can be
obtained from the DRAM array. We would simply need compression
and decompression logic to enable compression for DRAM caches.
While implementing cache compression for DRAM for capacity is
straight-forward, we would ideally want a design that provides both
capacity and bandwidth benefits. This paper proposes such a design.
We discuss our methodology before we present our solution.

3 METHODOLOGY

3.1 Configuration

We use USIMM [10], an x86 simulator with detailed memory system
model. We modified USIMM to include a DRAM cache. Table 2
shows the configuration used in our study. We assume a four-level
cache hierarchy (L1, L2, L3 being on-chip SRAM caches and L4
being off-chip DRAM cache), with 64B line size. We model a virtual
memory system to perform virtual to physical address translations.

Table 2: Baseline Configuration

Processors
8 cores

Number of cores

Core type 4-wide 3.2GHz out-of-order

L1/L2 (private) 32KB/256KB (8-way each)

L3 cache (shared) 8MB (1MB per core)
DRAM Cache

Capacity 1GB

Configuration
Bus Frequency

4 channel, 128-bit bus
800MHz (DDR 1.6GHz)

Banks 16 banks per channel

tCAS-tRCD-tRP-tRAS | 44-44-44-112 CPU cycles

Read/Write Queue 96 entries per channel
Main Memory (DDR DRAM)

Capacity 32GB

Configuration 1 channel, 64-bit bus

Bus Frequency 800MHz (DDR 1.6GHz)

Banks 16 banks per channel

tCAS-tRCD-tRP-tRAS | 44-44-44-112 CPU cycles

Read/Write Queue 96 entries

630

V. Young et al.

We use Alloy Cache for the L4 cache, and results are normal-
ized to Alloy Cache unless stated otherwise. Cache misses fill all
levels of the hierarchy. We equip Alloy Cache with a MAP-I pre-
dictor to overcome tag lookup latency for cache misses. We assume
a heterogeneous memory system with DRAM cache using HBM
technology [41] and main memory using conventional DDR-based
DIMM technology, corresponding to 1/8" scale of Knights Land-
ing [40]. In accordance with stacked memory specifications, we
assume same access latency for both DRAM technologies. However,
the bandwidth of stacked-DRAM is 8x higher than main-memory,
with 4x channels and 2x bus width.

3.2 Workloads

We use a representative slice of 4 billion instructions selected by
PinPoints [29], for benchmarks from SPEC 2006 and GAP [9]. For
SPEC, we perform studies on all the 16 benchmarks that have at
least 2 Miss Per Thousand Instructions (MPKI) out of L3 cache. In
addition, we run GAP suite (Graph Algorithm Platform) to show
server workloads with real data sets (twitter, web sk-2005). We run
all 30 suggested configurations, and present a sample where speedup
is representative of GAP suite. We perform evaluations by executing
benchmarks in rate mode, where all eight cores execute the same
benchmark. In addition to rate-mode workloads, we also evaluate
four 8-thread mixed workloads, which are created by randomly
choosing 8 out of the 16 SPEC benchmarks. Table 3 shows the L3
miss rates and footprints of the 8-core rate-mode workloads used in
our study.
Table 3: Workload Characteristics

Suite | Workload (8-copies) | L3 MPKI | Footprint
mcf 53.6 13.2 GB
Ibm 27.5 3.2GB
soplex 26.8 1.9 GB
milc 25.7 2.9 GB
gcc 22.7 264 MB
libq 22.2 256 MB
Gems 17.2 6.4 GB
omnetpp 16.4 1.3 GB
SPEC leslie3d 14.6 624 MB
sphinx 12.9 128 MB
zeusmp 5.2 2.9 GB
wrf 5.1 1.4 GB
cactus 4.9 3.3GB
astar 4.5 1.1 GB
bzip2 3.6 2.5 GB
xalanc 2.2 1.9 GB
bc twitter 69.7 19.7 GB
bc web 17.7 25.0 GB
cc twitter 93.9 14.3 GB
GAP cc web 9.4 16.0 GB
pr twitter 112.9 23.1 GB
pr web 16.7 25.2 GB

We perform timing simulation until all benchmarks in the work-
load execute at least 4 billion instructions each. We use weighted
speedup to measure aggregate performance of the workload normal-
ized to baseline. We use geometric mean to report average speedup
across workloads, and use RATE to denote average over 16 spec
rate-mode workloads, MIX for the 4 mixed workloads, GAP for its
6 workloads, and ALL26 to denote average over all 26 workloads.

DICE: Compressing DRAM Caches for Bandwidth and Capacity

Variable-Number Tags

1o - 19
4B Tags Next Tag Valid? Next Tag Valid?

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

Variable—-Sized Data

Next Tag Valid?

‘TagA‘SlzeA‘ lHTagB‘SlzeB‘ 1] Tag C|Size C| 0\ | 24B Data C

16B Data B | 20B Data A

12B Tag Storage

1 Dirty Shared Tag
’ 18 bit tag ‘l|l|l|1‘ 9 metadata bits ‘1|
Valid BAI

Next Tag Valid?

+ 60B Data Storage

=72B Total Storage

Figure 5: Proposed format for storing multiple compressed lines in 72B Alloy set. Space for tags can be allocated as needed (up to 28).

4 COMPRESSED DRAM CACHE

4.1 Overview: Organization and Working

As practical implementations of DRAM caches use the same DRAM
array for storing tags as well as data, we can simply architect a
compressed DRAM cache by providing L4 cache controller with
compression and decompression logic as shown in Figure 3. In
our compressed DRAM cache design, only the L4 is compressed,
and the data in other parts of the memory system (such as the L3
cache or main memory) remain in normal uncompressed form; thus,
cache compression can be implemented local to L4 cache controller
without requiring changes to the other parts of the system.

‘ L3 Cache (uncompressed) ‘
Read 4
[

Decompression Compression
Logic Logic
A

L4 Cache Controller

Writeback Install

y
‘ L4 Cache (compressed) ‘

‘ Main Memory (uncompressed)
Figure 3: Design of compressed DRAM-cache. Compression

can be implemented with L4-controller-local changes.

On an L3 read from the compressed L4 cache, the L4 controller
obtains a 72B TAD from the Alloy Cache. Decompressing the TAD
can provide multiple lines with a single access. The system can
decide to install these lines in L3, or only the requested line.

The L4 cache controller compresses data before L3 writebacks
to L4, and before L4 installs from main memory. For writes, the
L4 cache controller compresses the data to see how much space is
required to store the line, and reads from L4 cache to check what
lines are resident. If the compressed line can be stored in the unused
space of the 72B TAD, it is appended and written. If the compressed
line cannot fit, then resident entries are evicted (and written back to
memory if dirty) until enough space is made available for the line.

4.2 Potential for Compression

In our evaluations, we use two low-latency compression algorithms

Frequent Pattern Compression[5] and Base-Delta-Immediate[31].
FPC and BDI'’s decompression latency is expected to be 1-5 cycles.

We use both FPC and BDI, and compress with the policy that gives
better compression ratio. Bits denoting the compression algorithm
used are stored inside the space allocated for tags. If two adjacent

lines are compressed together, we share tags [34, 35] and bases [31].

Figure 4 shows the compressibility of lines with FPC+BDI. We
analyze the lines being installed in DRAM cache, and measure the

631

fraction of lines that get compressed to half the size (32B), 36B (tag
not needed due to tag sharing), or the likelihood of compressing two
adjacent lines into 68B. For some workloads, such as mcf, omnet, and
astar the potential for compressibility is high. Whereas, workloads
such as Ibm, libg, and Gems have little potential for compression. We
find that on average 52% of two adjacent lines can be compressed
within a single 72B physical line of Alloy Cache.

2 == Single<=32 =3 = Single<=36 mmmm Double<=68
£ 100 ;

2 80 ol

3w |] } } —
g 40] -yl | el
£ | ‘ \ i .
g o T
5 LU mu AR 1 i \ il i ‘
B S \f» 6 @R D Q@ o & @& N ©
° & 000;1@ %Qi%&$®¢}"\Q<\ o 0@0 Qe\& ‘ym

Figure 4: Fraction of compressible lines per workload. 52% of
two adjacent lines compress to <68B (72B TAD).

4.3 Flexible Data format for Compression

To enable compression, we need not change the organization of the
DRAM cache. The DRAM cache provides 72B per set. It is up to
the memory controller to interpret those 72B as either tag or data.
For supporting compression, we use a format that allows the number
of tag-store entries to increase dynamically to accommodate storing
extra lines with the same set. We implement this by having one bit
per tag denoting that the next 4B should be interpreted as tag or data.
Figure 5 shows the format of the tag and data entry used in our
design. We note that even though the Alloy Cache provisioned 8
bytes for tag-store (so that TAD is aligned at the bus boundary), the
tag entry for such a large cache need not be large. For example, for a
48-bit physical address space, a 1GB direct-mapped cache requires
only 18 bits of tag. With a valid bit and a dirty bit, we only need
20 bits for tag-store entry for the baseline cache. For compressed
design, each tag entry has a Next Tag Valid bit to inform whether the
next 4B is tag or data. This allows us to store arbitrary number of
tags. A BAI bit is added to distinguish the direct-mapped line vs. an
adjacent line that is spatially compressed together with it (more on
this in Section 5). A Shared tag bit is used to save tag space when
spatially contiguous lines are compressed in the same index [34, 35].
We use up to 9 bits for compression algorithm metadata (FPC/BDI).
Our design can accommodate up to 28 compressed lines per set.

4.4 Speedup from Compression for Capacity

Our compressed cache design tries to accommodate more lines in
each set of Alloy Cache, if data is compressible. For our baseline
Alloy Cache, we assume that each set of Alloy Cache is determined
by the conventional cache indexing scheme that places consecutive
lines in consecutive sets. We call this set selection as Traditional

ISCA 17, June 24-28, 2017, Toronto, ON, Canada V. Young et al.

18 - TSI BAI =1 2x Capacity mmmm 2x Capacity, 2x BW
1.6 —

g 12 1 | | Hi

@ 1.0 H ‘ - - 1 H [1 —
06 L1 | | | i \
’ S RO S Q{\%Q, © Q. I TR SN & F R ©

¢ \QQQ\Q &S \\0 ° \@%@Q\Q S ’V\Q Fd FFEE c“’io*@ o‘io*@ Q\i\@e &N VVV\:L

Figure 7: Speedup from Tradltlonal Set Indexing and Bandwidth-Aware Indexing, compared to doubling the cache capacity and
bandwidth. BAI improves bandwidth for compressible workloads but causes slowdown for others due to thrashing.

Set Indexing (TSI), in Figure 6(a). Lines that map to the same set
under TSI are separated by several GB in physical memory. If these
lines can be compressed, then they can reside in the same cache
set, and an access to the set will obtain these lines with a single
access. Unfortunately, lines that are spatially far away are unlikely
to be accessed within a short period of each other, and should not be
installed in the L3 cache. Thus, this form of compression is purely
for capacity benefits, and not for bandwidth. Figure 7 shows perfor-
mance improvement of a cache compressed with TSI. Unfortunately,
compression for capacity alone has limited performance benefit, as
it provides a speedup of 7%. We observe that compressing for both
capacity and bandwidth has higher potential for speedup. Therefore,
we seek a design that can improve both capacity and bandwidth.

Set0 | A0, A8 Set 0 Al Set0 | [a0]Ar,
Set 1 ALLA9 Set 1 A2, A3 Set 1 A8,
Set2 | A2, A10 | | Set2 | a4, A5 set2 | [az] a3
Set3 | AL AL | | Set3 | a6 A7 Set3 | Aloan]
Setd | A4 A12 | | Setd | As Ao || Sets AS
Set5 | As A3 | [Set5 | Aloanl || Sets | A12fa13
Set6 | A6 Al4 | | Set6 | A12,A13 || Set6 A7
Set7 | A7, AlS Set7 | Al4a1g Set7 | Al4/a1
(a) TSI (b) NSI | (c) BAI

Figure 6: Mapping 16 consecutive lines AQ-A15 in a cache with
8 sets under (a) TSI (b) NSI (c¢) BAIL Purple boxes indicate lines
that remain in the same set as TSIL.

4.5 Bandwidth-Aware Indexing (BAI)

Spatially nearby lines are more likely to be accessed within a short
period of each other. Therefore, if we could change the cache index-
ing such that spatially neighboring lines can be resident in the same
set, then with compression we can obtain multiple useful lines per
access, improving both capacity and bandwidth. A simple method
to have two consecutive lines in the same set is to ignore the least
significant bit of line address while indexing the cache, as in Fig-
ure 6(b). We call such a method of cache indexing as Naive Spatial
Indexing (NSI). When lines are compressible, NSI is successful in
having two consecutive lines map to same set. This improves both ca-
pacity and bandwidth. Unfortunately, when lines are incompressible,
the spatially close lines fight for space in the same set, degrading
performance (by as much as 63%).

We explain shortcoming of NSI with an example. Figure 6 shows
a cache with 8 sets, labeled Set 0 to Set 7. We have a workload with
sixteen consecutive lines AO-A15, where lines AO-A7 are frequently
accessed. Figure 6(a) shows the mapping with TSI and Figure 6(b)

632

shows mapping with NSI. When lines are compressible, both TSI
and NSI can fit all 8 frequently used lines (A0O-A7), and NSI can
stream out these lines in half the number of accesses. Unfortunately,
if lines are incompressible, NSI can accommodate only four lines
out of AO-A7 at any time, causing thrashing. This thrashing can
degrade performance of NSI to worse than that of uncompressed
cache, which is undesirable. As such, we aim to have a dynamic
policy to switch between TSI and NSI depending on compressibility,
to get capacity and bandwidth when lines are compressible, but avoid
slowdown when lines are incompressible.

However, switching between NSI and TSI is costly, as nearly
all the lines are in different positions, as shown in Figure 6(b). To
address this, we propose Bandwidth-Aware Indexing (BAI) that en-
sures consecutive lines map to the same set, while half of lines retain
the same position as in TSI, as shown in Figure 6(c). BAI retains
capacity and bandwidth benefits of NSI when lines are compressible,
as consecutive lines map to same set. And, it allows quick switching
to TSI when lines are incompressible.

Another key feature of BAI is that BAI is guaranteed to be either
the same set, or neighboring set as under TSI. Thus, both locations
of the line (under BAI or TSI) are guaranteed to be in the same row
buffer. Furthermore, by design, Alloy Cache streams out tags of the
neighboring set, so we can determine if line is resident in either of
the two locations with a single access.

4.6 Effectiveness of Bandwidth-Aware Index

BAI can get benefits of both capacity and bandwidth — as multiple
lines obtained from a single cache access are likely to be useful,
reducing accesses to the DRAM cache. Unfortunately, when lines
are incompressible, BAI (and NSI) performs poorly compared to TSI.
For example, if our access stream contained only 8 lines (A0-A7),
TSI would be able to accommodate all lines, where BAI (and NSI)
would be able to accommodate only four lines at any time.

Figure 7 compares the speedup from BAI with TSI, and also to
doubling the cache capacity and bandwidth. BAI improves perfor-
mance significantly for compressible workloads such as soplex, gcc,
zeusmp, and astar. This happens because compression allows the
cache to have more effective capacity and bandwidth. Unfortunately,
for workloads such as mcf, lbm, libq, and sphinx, there is significant
performance degradation with BAI, as spatially contiguous lines end
up fighting for the same set. Ideally, we would like to use BAI as
much as possible when lines are compressible, but use TSI when
lines are incompressible. To this end, we propose a dynamic index-
ing scheme for compressed caches that can adapt cache indexing
based on data compressibility.

DICE: Compressing DRAM Caches for Bandwidth and Capacity

TS| 1 BAI

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

= DICE = 2x Capacity, 2x BW

Speedup

5 . <

S & " ¢ F R o & @ F©

O F S T O E K@ & GRS
eoQ QO&Q\&\ QQ&\) R

DD ™ NP VRN CF R ©
&P F S & N &N QAN
FF &S 0000*\6’00‘*6‘@\6 Q?®O\§’

Figure 10: Speedup of compressing DRAM cache with TSI, BAI, and DICE. DICE’s dynamic selection helps it to outperform both
TSI and BAI DICE provides an average speedup of 19.0%, nearing the 21.9% of a double-capacity double-bandwidth cache.

S DYNAMIC-INDEXING COMPRESSION

We develop a compressed cache indexing policy that maximizes both
bandwidth and capacity while ensuring no performance degradation
compared to baseline uncompressed cache. To do so, we propose a
dynamic indexing scheme called Dynamic-Indexing Cache Compres-
sion (DICE) that switches between two indexing policies, Traditional
Set Indexing (TSI), and Bandwidth-Aware Indexing (BAI) depend-
ing on data compressibility. We present overview and working of
DICE, then discuss effectiveness of our solution.

DRAM Cache

<=36B

Compressibility Cache Index
Based Insertion Prediction
N rd

Figure 8: Design of DICE. DICE is implemented by deciding
index policy on write, and predicting index policy on read.

5.1 DICE: Overview

DICE allows the cache to adapt its indexing scheme between TSI
and BAI Therefore, a given cache line can be present in either of
the two locations, determined either by TSI or BAI Fortunately, our
BAI scheme is designed such that both of these sets would be either
neighboring to each other, or be the same set, as shown in Figure 8.
On a write access (due to install or writeback), we must decide which
indexing policy to use. We develop a compressibility-based scheme
to make this decision. Similarly, on a read access, we predict which
indexing scheme is likely to have been used, and access that location.
We exploit the property that an access to the Alloy Cache also brings
the 8 byte tag information from the neighboring set. Therefore, we
can find out if the index prediction is incorrect (the requested line
is in neighboring set due to alternate indexing scheme) or is just
a miss, and send a second access only if the line is guaranteed to
be in the alternate location. The effectiveness of DICE depends
on developing simple and effective mechanism for deciding index
policy on writes and predicting index policy on reads. Note that,
given BAI is designed such that the set index of 50% of the lines
remain invariant between BAI and TSI, we need to decide insertion
index (on write) and predict index policy (on read) for only the
remaining 50% of the lines.

633

5.2 Deciding Cache Index Policy on Insertion

To decide the index policy at insertion, we leverage the observation
that lines within a page are usually compressible to similar sizes [30].
As BAI gets benefits of both capacity and bandwidth when lines are
compressible, we want the insertion policy to favor BAI when two
lines are likely to compress together. If a line compresses to < 36B,
its neighboring line is also likely to compress to < 36B. In these
cases, we insert into BAIL. Conversely, if a line is incompressible
(say it compresses to 60 bytes), then its neighboring line is unlikely
to be able to be compressed with it, so we insert using TSI.

We propose a simple mechanism that selects insertion policy
based on size of compressed line. If a line compresses to <Threshold,
we insert the line using BAIL. Otherwise, we insert it using TSI
We study different threshold values for deciding index policy and
determine that a threshold of 36B provides the best performance.
In our studies, we use a default threshold of 36B. Sensitivity to
threshold is performed in Section 6.2.

5.3 Cache Index Prediction (CIP)

As DICE makes the decision to use either TSI or BAI at insertion
time, a cache can become mixed with some lines using TSI and
others using BAI. To retrieve a line in the cache, we may need to
look up both the possible locations. Unfortunately, doing so would
consume more bandwidth and incur high latency. We develop a
predictor to determine which location to access first. Note that, as
a single access to Alloy Cache also gets tag information of the
neighboring set, we can determine the location of the line in a single
access to either set. If the line is not in either location (miss), a
second access is not required. Only if the requested line is found in
the adjacent set is a second access issued.

Demand Access

i

| Page #

Last-Time—-Table (LTT)

| Hasn

0=TSI
1=BAI

Predict TSI

7

cle|lomm|=mle

Figure 9: History-based Cache Index Predictor. CIP tracks his-
tory at page granularity.

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

W TSI
100%

V. Young et al.

] BAI

90%
80%
70%
60%

Distribution of Indices (%)

50% -
SO Fa D R RS Qo D> &
SRV ERI P SRS S 8 R S ST
R &Y 00&3%\”@)@& & VD 6\&&&%@

Figure 11: Distribution of BAI and TSI for a cache compressed with DICE. Note that for 50% of accesses, we do not need to make
install decisions or do index prediction as TSI and BAI refer to the same set, hence the y-axis starts at 50%.

As misprediction incurs extra latency and bandwidth, we would
like rate of misprediction to be low. We develop Cache Index Pre-
dictors (CIP) for reads and writes that can accurately predict cache
index with low storage overhead. For reads, we design a page-based
CIP predictor that uses last-time information for predictions, as
shown in Figure 9. CIP leverages observation that lines within a
page have similar compressibility [30]. If a page is compressible,
lines within that page will likely be in BAI. CIP contains a Last
Time Table (LTT) that tracks last outcome for a page. Given LTT has
limited entries, we hash page address to index LTT.

We vary the number of entries in LTT and find the accuracy
increases from 93.2% (512 entries) to 94.1% (8192 entries). For
reads, we use a default LTT of 2048 entries (256B), which has an
average accuracy of 93.8%. For writes, we predict index based on
compressibility of data (same as insertion policy), which has an
accuracy of 95%.

5.4 Impact on System Performance

Figure 10 shows the speedup of cache compression with TSI, BAI
and DICE, and compare it with a cache that has double the capacity
and bandwidth. Recall that compressing with TSI provides only ca-
pacity benefits and not bandwidth. Therefore, compression with TSI
provides a marginal benefit of 7% on average. We observe that TSI
always provides a hit rate that is either better than or equal to baseline
uncompressed cache, so no workloads experience slowdown.
Compression using BAI tries to get both higher capacity and
higher bandwidth. Therefore, there is significant performance im-
provement for workloads such as gcc and cc twi, where optimizing
for capacity alone provided negligible benefits. Unfortunately, for
workloads such as /bm and libg, the data is incompressible and the
increased contention due to the indexing of BAI causes significant
increase in cache misses, resulting in performance degradation. Over-
all, BAI performs similar to baseline (0.1% speedup), on average.
With DICE, the cache performs as well as BAI when BAI per-
forms well, and similar to TSI for incompressible workloads, causing
no degradation compared to baseline. In addition, there are several
standouts (such as soplex, leslie3d, zeusmp, wrf, and cactus) when
DICE performs better than either BAI or TSI independently, as it is
able to use BAI for compressible regions of memory, and TSI for
incompressible regions of memory. The dynamic selection of DICE
helps it to outperform the two static indexing schemes. Overall, our
DICE design incurs an SRAM overhead of less than 1 kilobyte yet
provides 19.0% speedup, which is close to the 21.9% performance
improvement of a double-capacity double-bandwidth DRAM cache.

634

6 RESULTS AND ANALYSIS

6.1 Distribution of TSI and BAI with DICE

With DICE, the cache can use TSI, or BAIL or a combination of
TSI and BAI across the cache sets. Figure 11 shows the distribution
of BAI and TSI. We separate the cases where location of the line
remains invariant between BAI and TSI (50% of lines). From the
remaining lines, we see a skew of 52% towards TSI and 48% towards
BAL This is due to incompressible workloads such as /ibq that cause
almost the entire cache to use TSI to avoid performance degradation.

6.2 Sensitivity to Insertion Threshold

DICE uses compressibility of data to determine index policy on
insertion. We use a default threshold of 36B to determine if BAI
or TSI should be used. Table 4 shows the speedup of DICE as the
threshold is changed from 32B to 36B to 40B. Note that a threshold
of 0 will degenerate DICE to always use TSI, and a threshold of 64
will degenerate DICE to always use BAI. We find that the perfor-
mance is maximized for a threshold of 36B. This is because BDI
often compresses a single line to 36B, but double-line compresses it
to 68B, which can fit in BAI if the tags are shared.

Table 4: Sensitivity to DICE threshold

[<32B | <36B [<40B

SPEC RATE || +10.6% | +12.2% | +11.1%
SPEC MIX +6.4% | +7.5% | +7.4%
GAP +47.6% | +48.9% | +49.1%

| GMEAN26 [[+17.5% | +19.0% | +18.3% |

6.3 Impact on DRAM Cache Capacity

Compression increases effective capacity of cache by storing more
lines within the same physical space. Table 5 shows average capacity
of DRAM cache when compressed with TSI, BAI, or DICE. We
estimate effective capacity by checking number of valid lines in each
set every SOM instructions.

Table 5: Effective Capacity of TSI/BAI/DICE

[[TSI | BAI [DICE

SPEC RATE || 1.07x | 1.16x | 1.13x
SPEC MIX 1.12x | 1.28x | 1.24x
GAP 2.00x | 5.57x | 5.06x

GMEAN26 || 1.24x | 1.69x | 1.62x

DICE: Compressing DRAM Caches for Bandwidth and Capacity

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

=18

<

c 1.6

o

S1.4

kst

o 1.2

&

1.0

908

O - \\ . ., o
CE T FLER T LSL @B F® RO e S E LSS & &R P
&P X SR A M S RN . G &S @ " N @ > I
A Oeo@&\@\@ £ TF PEY TS F ST NI

Figure 12: DICE on a DRAM cache design based on Intel Knights Landing. Note that even on KNL, DICE improves average perfor-
mance by 17.5% (within 2% of the speedup of DICE on an Alloy Cache).

DICE and BAI have higher compression ratios due to two reasons:
First, TSI compresses lines from different pages within the same set.
These lines are less likely to have similar compressibility. DICE and
BALI, on the other hand, often compress together lines from the same
page, which are likely to have similar compressibility and hence
are more likely to fit within the same set. Second, DICE and BAI
improve compression ratio due to tag and base-sharing (BDI), which
amortizes tag and metadata overhead. Unlike SRAM-based cache
compression, which is limited by tag-store entries, our design can
store up to 28 logical compressible lines in one physical line and
provide higher capacity (e.g. GAP).

While many workloads, such as those in GAP, see capacity bene-
fits, other workloads, such as /ibg, have poor compressibility. DICE
increases effective cache capacity by 62%, on average.

6.4 Impact of DICE on Hit-Rate of L3

If data is compressible, then BAI can provide two spatially-contiguous
lines with a single access to the L4 cache. As these lines are spatially
close, we install both lines in the L3 cache as they are likely to be
used within a short period of each other, improving L3 hit rate.

Table 6 shows the hit rate of the L3 cache for a baseline system
(uncompressed L4), and a system using DICE. For the baseline
system, the average L3 hit rate is 37.0%, and it is improved to 43.6%
with DICE. Thus, the adjacent lines obtained due to compression
with DICE are useful, and installing them in the L3 cache provides
performance benefits.

Table 6: Effect of DICE on L3 hit rate

| BASE [DICE |
SPEC RATE || 34.7% [43.0%
SPEC MIX || 61.6% | 67.2%
GAP 26.9% [29.4%

[AVG26][37.0% [43.6% |

6.5 Comparison to Larger Fetch for L3

DICE can send adjacent lines from the L4 cache proactively to the L3
cache. While this may have some resemblance to nextline prefetch
or 2x-width line fetch, we note that there is a fundamental difference.
DICE sends the adjacent line from L4 to L3, only when that line
is obtained without any bandwidth overheads. However, prefetches
result in an independent cache request which incurs extra bandwidth.
We compare our proposal, with alternative designs for L3 cache that
try to either get a wider granularity line in the L3 cache (128 bytes,
with two separate 64 byte requests) or next line prefetching in the L3
cache (demand request is followed by a prefetch for the next line).

635

Table 7 shows the performance of wide-granularity fetch at L3
cache, next-line prefetch in L3 cache, and compare it with DICE
(in L4) and a combination of DICE (in L4) plus next-line prefetch
in L3 cache. We find that designs that simply try to get an extra
line in the L3 cache (due to wider fetch or next-line prefetch) give
marginal benefits of 1.9% and 1.6%, on average. DICE, which in-
herently provides an extra line to the L3 cache when such a line is
obtained without bandwidth overheads, provides speedup of 19.0%.
Nonetheless, the L3 optimizations are orthogonal to DICE and can
be combined for greater benefit. For example, using DICE with next
line prefetch increases speedup to 20.9%.

Table 7: Comparison of DICE to Prefetch

[128B-PF [Nextline-PF | DICE |DICE+NL

SPECRATE[[+32% [+2.6% [+122%] +16.7%

SPECMIX [[+12% | +19% [+75% | +1.7%
GAP L1% | -11% [+48.9% [+43.4%

[GMEAN26 [+1.9% | +1.6% [+19.0%] +20.9% |

6.6 DICE on Intel’s Knights Landing (KNL)

In our studies, we assumed a baseline Alloy Cache configuration,
which obtains a 72-byte TAD per each access by transferring 80
bytes over 5 bursts. In this section, we study DICE on the DRAM
cache used in Intel’s Knights Landing (KNL). The DRAM Cache
in KNL uses 64B cacheline with tags stored in ECC [40]. In this
design, the 3D memory is equipped with additional lanes for ECC,
and each access obtains a 72-byte TAD over four bursts. The TAD
is used for tag, data, and ECC; however, such a design does not
provide tag information for the neighboring line. Nonetheless, CIP
still predicts read and write locations correctly 94% and 95% of the
time, respectively. However, to ensure correctness, misses now need
to check both indices when BAI#TSI (50% of the time).

Fortunately, neighboring lines are likely to be accessed together,
so the miss probes for both accesses are often merged by the con-
troller, therefore the effective performance impact of checking the
alternate location is mitigated. Figure 12 shows that DICE on KNL
configuration achieves 17.5% speedup, which corresponds to most
of the 19.0% benefit of DICE on Alloy Cache.?

2KNL provisions 8GB of MCDRAM capacity and 400GBps bus bandwidth shared
between 64 cores. We model a system that is 1/8™" the size of KNL and has 1GB capacity
and 100GBps shared between 8 cores.

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

6.7 Non Memory-Intensive Workloads

In our studies, we only considered benchmarks that had an L3 cache
MPKI > 2, as they tend to be sensitive to optimizing memory sys-
tem. Alternatively, if a workload fits in on-chip caches, then such
workload would not benefit from improving off-chip memory.

Figure 13 shows performance impact of DICE on the non memory-
intensive SPEC benchmarks excluded from our detailed study. As
many of these benchmarks fit in L3 cache, they do not see benefit.
However, more importantly, DICE does not degrade performance
for any of them. On average, DICE improves performance by 2% on
these workloads.

i}
o 1.15
o
< 1.10
2 1.05
o
>
3 1.00
a 0.95
wn U 4%9 \\'}"\' rz}\\ Qf;o @b {bc;o “vbb‘ @Q;\ @b ch\\ Q&\ Q)QQ Q\O Qqs
& .
o & ¥ g’b@ s g‘o& T &Q}@z & ° TS
<

Figure 13: Speedup of DICE on non-memory-intensive applica-
tions (L3 MPKI < 2). DICE does not degrade these workloads.

6.8 Sensitivity to Capacity, BW, and Latency

Table 8 shows sensitivity of DICE to varying the capacity, bandwidth,
and latency of the DRAM cache, normalized to their respective
uncompressed designs. For a 2GB DRAM cache, DICE retains its
bandwidth benefits for a speedup of 13.2%. For a 2x-channel DRAM
cache, denoted by 2x BW in Table 8, DICE performs well at 24.5%
speedup. We note that specifications for stacked DRAM state that
stacked DRAM latency remains same as DIMM-based counterparts.
Nonetheless, we perform sensitivity study on a half-latency DRAM
cache. For a half-latency DRAM cache, DICE is able to alleviate the
increased memory pressure (by increasing L4 hit rate) caused by the
lower-latency DRAM cache for a speedup of 24.4%. Overall, DICE
is robust and benefits a wide range of DRAM configurations.

Table 8: Sensitivity of DICE on different caches

[Base(1GB) | 2x Capacity | 2x BW | 50% Latency

SPECRATE[[+122% | +87% [+133%] +135%
SPECMIX [+75% +47% | +82% | +9.1%

GAP +48.9% | +32.6% |+759%| +73.5%

[GMEAN26 [| +19.0% [+132% [+245%] +24.4%

6.9 Impact of DICE on Energy

Figure 14 shows L4+Memory power, energy consumption, and
energy-delay-product (EDP) of a system with TSI, BAI, and DICE,
normalized to the baseline. TSI increases L4 hit rate, which reduces
memory energy consumption. BAI improves performance and en-
ergy for compressible workloads, but hurts incompressible ones,
making its performance similar to baseline but energy worse. DICE
improves both L3 and L4 hit rate leading to a reduction in both
stacked DRAM and memory energy consumption. Overall, DICE
reduces energy consumption by 24% and EDP by 36%.

636

V. Young et al.
© == Baseline wmmm TS| = BAI == DICE
£12
T 11
& 10
209
Qo8
Lo7
ot N .
2 05
=z Power Performance Energy EDP

Figure 14: Impact of DICE on energy. DICE reduces DRAM
cache and memory accesses, reducing off-chip energy by 24 %.

7 RELATED WORK

To our knowledge, this is the first paper to advocate compressing
DRAM cache primarily for bandwidth and secondarily for capacity.
‘We show that compression can be implemented without increasing
tag storage overhead or affecting tag access. We also show that it
is important to design DRAM cache compression to exploit both
capacity and bandwidth. We discuss prior research proposals related
to our study.

7.1 Low-Latency Compression Algorithms

As decompression latency is in the critical path of memory accesses,
memory systems rely on simple data compression schemes [4, 5, 17,
23, 31, 42]. We evaluate DICE using a hybrid compression scheme
based on FPC and BDI. However, DICE is orthogonal to the type
of data compression scheme used and can be used in conjunction
with any data compression scheme, including ones that employ
dictionary-based compression [6, 7, 11, 26].

7.2 Main Memory Compression

Hardware-based memory compression has been applied to increase
the effective capacity of main memory [1, 18, 30]. Memzip [36, 38]
proposes to send compressed data across links in smaller bursts, and
send additional ECC or metadata bits when there is still room in a
burst length. These proposals try to increase the bandwidth of the
memory system. However, they either require OS support or give up
on the capacity benefits.

A recent work on DRAM cache compression for a PCM + DRAM
hybrid system [16] uses IBM MXT main memory compression as
a baseline. This work has a key shortcoming inherited from main
memory compression. It requires an additional serialized access to
find compressed size and offset, before finally accessing the data.
This comes with double the bandwidth usage and double the latency
per access, which we show to be ineffective in Section 7.3. Another
work [8] on PCM + DRAM hybrid system is based on SRAM cache
compression and assumes an associative DRAM cache. This requires
an additional serialized lookup of tag and is thus also latency and
bandwidth-inefficient. Our proposal, on the other hand, provides
both capacity and bandwidth benefits without relying on OS support
or needing serialized tag lookup.

7.3 Compressing SRAM Caches

Prior work has looked at using compression to increase capacity
of on-chip SRAM caches. Cache compression is typically done by

DICE: Compressing DRAM Caches for Bandwidth and Capacity

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

== SCC === DICE

Speedup
co A=
DOONPS~O O

0.4
0.2

Figure 15: Skewed Compressed Cache (SCC) on DRAM cache. SCC causes 22 % slowdown due to extra tag accesses.

accommodating additional ways in a given cache set and statically
allocating more tag-store entries [4, 20]. These proposals optimize
purely for hit rate, while we find that DRAM caches are more sen-
sitive to bandwidth. As such, 11.4% of our 19.0% speedup is from
bandwidth benefits, not capacity (DICE over TSI). Recent proposals,
such as Skewed Compressed Cache (SCC), investigate reducing
SRAM tag overhead by sharing tags across spatially-contiguous sets
in what are called superblocks [27, 28, 34, 35]. For a 4x-superblock
8-way physical cache, these proposals use 32 physical tags to address
up to 128 compressed lines by sharing the tags of neighboring sets.
Unfortunately, an access in SCC requires skewed associative lookup
for different locations in the cache. While this may be practical to do
in an SRAM cache, it incurs prohibitively high bandwidth overhead
to lookup multiple locations in DRAM cache to service each request.

We evaluate SCC in the context of DRAM caches, to highlight
need for bandwidth efficiency in compressing DRAM caches. Fig-
ure 15 shows the speedup from compressing the DRAM cache with
SCC and DICE. Each request in SCC incurs four accesses to DRAM
cache (3 for tags and one for data), whereas a request in DICE re-
quires only one access to the DRAM cache in the common case
(second only in case of CIP misprediction). On average, SCC causes
22% slowdown, whereas DICE provides 19% speedup.

7.4 Multiple Index to Reduce Conflict Misses

DICE uses multiple indexing schemes (TSI and BAI) in order to get
bandwidth benefits of spatial indexing and avoid slowdown when
data is incompressible. Prior work in designing direct-mapped L1
caches have also looked at using multiple indexing schemes in order
to reduce conflict misses. On a miss, these designs [2, 3] check an
alternative location (a faraway set in the cache) to find the conflicting
line. Unfortunately, such a design that always requires a second
access in case of a cache miss would incur high latency (on hits in
second location) and high bandwidth (from extra accesses due to a
second lookup on a miss). Schemes that rely on looking up multiple
locations in parallel [33, 37] to reduce conflict misses would reduce
latency overheads but would incur significant bandwidth overheads
for DRAM cache. Unlike these proposals, DICE avoids the latency
and bandwidth of second lookup via index prediction and exploiting
properties of a DRAM cache. Furthermore, the multiple indexing
schemes in DICE are not aimed at reducing conflict miss but for
increasing cache bandwidth for compressed lines.

637

8 CONCLUSIONS

This paper looked at compression as a means of increasing the band-
width of DRAM caches, while also obtaining capacity benefits. We
exploit the fact that practical DRAM caches are likely to store tags
within the DRAM array, so they can support compression seamlessly,
as the tag-store entries required for the additional capacity created
due to compression can be accommodated within the DRAM sub-
strate without the need for any SRAM overheads. Furthermore, as
DRAM caches are managed entirely in hardware, we can do DRAM
cache compression in a software-invisible manner and avoid the OS
changes that are necessary for compressing main memory.

Our study showed that for maximizing performance it is important
that DRAM caches perform compression for enhancing both the
capacity and the bandwidth. We note that traditional methods to
perform cache compression are aimed at solely increasing the cache
capacity and provide only marginal benefits. To this end, our paper
proposes to change the cache indexing dynamically to a bandwidth-
enhancing scheme called Bandwidth-Aware Indexing (BAI). We show
that while BAI can improve both capacity and bandwidth when
data is compressible, it can degrade performance when data is not
compressible. We propose Dynamic-Indexing Cache Compression
(DICE) that dynamically changes cache indexing depending on
compressibility of line. To avoid looking up two locations for a
line, we develop low-cost Cache Index Predictors (CIP) that can
accurately predict index for the line using history information. Our
evaluations show that DICE improves performance of a 1IGB DRAM
cache by 19.0% and reduces EDP by 36%, while incurring storage
overhead of less than 1 kilobyte and without requiring OS support.

ACKNOWLEDGMENTS

We thank Chia-Chen Chou, Alaa Alameldeen, Rajat Agarwal, and
Swamit Tannu for comments and feedback. This work was supported
in part by a gift from Intel, NSF grant 1319587, and the Center for
Future Architecture Research (C-FAR), one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA.

REFERENCES

[1] Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E. Poff, and T. Basil Smith.
2001. Performance of hardware compressed main memory. In High-Performance
Computer Architecture, 2001. HPCA. The Seventh International Symposium on.
73-81. https://doi.org/10.1109/HPCA.2001.903253

Anant Agarwal, John Hennessy, and Mark Horowitz. 1988. Cache Performance
of Operating System and Multiprogramming Workloads. ACM Trans. Comput.
Syst. 6,4 (Nov. 1988), 393-431. https://doi.org/10.1145/48012.48037

2

https://doi.org/10.1109/HPCA.2001.903253
https://doi.org/10.1145/48012.48037

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

[3]

[4

[5

[6

[7

[8

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Anant Agarwal and Steven D. Pudar. 1993. Column-associative Caches: A
Technique For Reducing The Miss Rate Of Direct-mapped Caches. In Proceedings
of the 20th Annual International Symposium on Computer Architecture. 179-190.
https://doi.org/10.1109/ISCA.1993.698559

Alaa R. Alameldeen and David A. Wood. 2004. Adaptive Cache Compression
for High-Performance Processors. In Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture (ISCA '04). IEEE Computer Society,
Washington, DC, USA, 212—. http://dl.acm.org/citation.cfm?id=998680.1006719
Alaa R Alameldeen and David A Wood. 2004. Frequent pattern compression: A
significance-based compression scheme for L2 caches. Dept. Comp. Scie., Univ.
Wisconsin-Madison, Tech. Rep 1500 (2004).

Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. 2015. HyComp: A
Hybrid Cache Compression Method for Selection of Data-type-specific Com-
pression Methods. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48). ACM, New York, NY, USA, 38-49. https:
//doi.org/10.1145/2830772.2830823

Angelos Arelakis and Per Stenstrom. 2014. SC2: A statistical compression cache
scheme. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. 145-156. https://doi.org/10.1109/ISCA.2014.6853231
Seungcheol Baek, Hyung Gyu Lee, Chrysostomos Nicopoulos, and Jongman
Kim. 2014. Designing Hybrid DRAM/PCM Main Memory Systems Utilizing
Dual-Phase Compression. ACM Trans. Des. Autom. Electron. Syst. 20, 1, Article
11 (Nov. 2014), 31 pages. https://doi.org/10.1145/2658989

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Bench-
mark Suite. CoRR abs/1508.03619 (2015). http://arxiv.org/abs/1508.03619
Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, S Pugsley,
A Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan Chishti. 2012.
Usimm: the utah simulated memory module. University of Utah, Tech. Rep
(2012).

Xi Chen, Lei Yang, Robert P. Dick, Li Shang, and Haris Lekatsas. 2010. C-pack:
A High-performance Microprocessor Cache Compression Algorithm. IEEE Trans.
Very Large Scale Integr. Syst. 18, 8 (Aug. 2010), 1196-1208. https://doi.org/10.
1109/TVLSI.2009.2020989

Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014. CAMEO: A
Two-Level Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 1-12. https://doi.org/10.1109/MICRO.2014.63
Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2015. BATMAN:
Maximizing Bandwidth Utilization of Hybrid Memory Systems. Technical Report
TR-CARET-2015-01. School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, Georgia. 12 pages. http://www.jaleels.org/ajaleel/
publications/techreport-BATMAN.pdf

Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2015. BEAR: Tech-
niques for Mitigating Bandwidth Bloat in Gigascale DRAM Caches. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architec-
ture (ISCA ’15). ACM, New York, NY, USA, 198-210. https://doi.org/10.1145/
2749469.2750387

Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2016. CANDY:
Enabling coherent DRAM caches for multi-node systems. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-13. https:
//doi.org/10.1109/MICRO.2016.7783738

Yu Du, Miao Zhou, Bruce Childers, Rami Melhem, and Daniel Mossé. 2013.
Delta-compressed Caching for Overcoming the Write Bandwidth Limitation of
Hybrid Main Memory. ACM Trans. Archit. Code Optim. 9, 4, Article 55 (Jan.
2013), 20 pages. https://doi.org/10.1145/2400682.2400714

Julien Dusser, Thomas Piquet, and André Seznec. 2009. Zero-content Augmented
Caches. In Proceedings of the 23rd International Conference on Supercomputing
(ICS ’09). ACM, New York, NY, USA, 46-55. https://doi.org/10.1145/1542275.
1542288

Magnus Ekman and Per Stenstrom. 2005. A Robust Main-Memory Compression
Scheme. In Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture (ISCA "05). IEEE Computer Society, Washington, DC, USA,
74-85. https://doi.org/10.1109/ISCA.2005.6

Sean Franey and Mikko Lipasti. 2015. Tag tables. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 514-525. https:
//doi.org/10.1109/HPCA.2015.7056059

Jayesh Gaur, Alaa R. Alameldeen, and Sreenivas Subramoney. 2016. Base-
Victim Compression: An Opportunistic Cache Compression Architecture. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 317-328. https://doi.org/10.1109/ISCA.2016.36

Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison
Cache: A Scalable and Effective Die-Stacked DRAM Cache. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. 25-37. https://doi.
org/10.1109/MICRO.2014.51

Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache. In Proceedings of the 40th Annual International Symposium on Computer

638

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

V. Young et al.

Architecture (ISCA ’13). ACM, New York, NY, USA, 404-415. https://doi.org/
10.1145/2485922.2485957

Jungrae Kim, Micahel Sullivan, Esha Choukse, and Mattan Erez. 2016. Bit-
Plane Compression: Transforming Data for Better Compression in Many-Core
Architectures. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 329-340. https://doi.org/10.1109/ISCA.2016.37
Gabriel H. Loh and Mark D. Hill. 2011. Efficiently Enabling Conventional Block
Sizes for Very Large Die-stacked DRAM Caches. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44).
ACM, New York, NY, USA, 454-464. https://doi.org/10.1145/2155620.2155673
Micron. 2013. HMC Gen2. Micron (2013). http://www.micron.com/products/
hybrid-memory-cube

Tri M. Nguyen and David Wentzlaff. 2015. MORC: A Manycore-oriented
Compressed Cache. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48). ACM, New York, NY, USA, 76-88. https:
//doi.org/10.1145/2830772.2830828

Shingo Ohya. 2016. Skewed Compressed DRAM Cache Ni Yori. (2016).
Biswabandan Panda and André Seznec Seznec. 2016. Dictionary sharing: An
efficient cache compression scheme for compressed caches. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-12. https:
//doi.org/10.1109/MICRO.2016.7783704

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. 2004. Pin-
pointing Representative Portions of Large Intel Itanium Programs with Dynamic
Instrumentation. In Microarchitecture, 2004. MICRO-37 2004. 37th International
Symposium on. 81-92. https://doi.org/10.1109/MICRO.2004.28

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. 2013. Linearly
Compressed Pages: A Low-complexity, Low-latency Main Memory Compression
Framework. In Proceedings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 172-184.
https://doi.org/10.1145/2540708.2540724

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, Phillip B.
Gibbons, and Todd C. Mowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT). 377-388.
Moinuddin K. Qureshi and Gabriel H. Loh. 2012. Fundamental Latency Trade-off
in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with a
Simple and Practical Design. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-45). IEEE Computer
Society, Washington, DC, USA, 235-246. https://doi.org/10.1109/MICRO.2012.
30

Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling Ways
and Associativity. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. 187-198. https://doi.org/10.1109/MICRO.2010.20

Somayeh Sardashti, André Seznec, and David A. Wood. 2014. Skewed Com-
pressed Caches. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. 331-342. https://doi.org/10.1109/MICRO.2014.41

Somayeh Sardashti and David A. Wood. 2013. Decoupled compressed cache:
Exploiting spatial locality for energy-optimized compressed caching. In 2073
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
62-73.

Vijay Sathish, Michael J. Schulte, and Nam Sung Kim. 2012. Lossless and Lossy
Memory I/0 Link Compression for Improving Performance of GPGPU Workloads.
In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 325-334.
https://doi.org/10.1145/2370816.2370864

André Seznec. 1993. A case For Two-way Skewed-associative Caches. In Pro-
ceedings of the 20th Annual International Symposium on Computer Architecture.
169-178. https://doi.org/10.1109/ISCA.1993.698558

Ali Shafiee, Meysam Taassori, Rajeev Balasubramonian, and Al Davis. 2014.
MemZip: Exploring unconventional benefits from memory compression. In 2074
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 638-649. https://doi.org/10.1109/HPCA.2014.6835972

Jaewoong Sim, Gabriel Loh, Hyesoon Kim, Mike OConnor, and Mithuna Thot-
tethodi. 2012. A Mostly-Clean DRAM Cache for Effective Hit Speculation and
Self-Balancing Dispatch. In 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 247-257. https://doi.org/10.1109/MICRO.2012.31
Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 36, 2
(Mar 2016), 34-46. https://doi.org/10.1109/MM.2016.25

JEDEC Standard. 2013. High bandwidth memory (hbm) dram. JESD235 (2013).
Youtao Zhang, Jun Yang, and Rajiv Gupta. 2000. Frequent Value Locality and
Value-centric Data Cache Design. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX). ACM, New York, NY, USA, 150-159. https://doi.org/10.
1145/378993.379235

https://doi.org/10.1109/ISCA.1993.698559
http://dl.acm.org/citation.cfm?id=998680.1006719
https://doi.org/10.1145/2830772.2830823
https://doi.org/10.1145/2830772.2830823
https://doi.org/10.1109/ISCA.2014.6853231
https://doi.org/10.1145/2658989
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1109/TVLSI.2009.2020989
https://doi.org/10.1109/MICRO.2014.63
http://www.jaleels.org/ajaleel/publications/techreport-BATMAN.pdf
http://www.jaleels.org/ajaleel/publications/techreport-BATMAN.pdf
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1109/MICRO.2016.7783738
https://doi.org/10.1109/MICRO.2016.7783738
https://doi.org/10.1145/2400682.2400714
https://doi.org/10.1145/1542275.1542288
https://doi.org/10.1145/1542275.1542288
https://doi.org/10.1109/ISCA.2005.6
https://doi.org/10.1109/HPCA.2015.7056059
https://doi.org/10.1109/HPCA.2015.7056059
https://doi.org/10.1109/ISCA.2016.36
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1109/ISCA.2016.37
https://doi.org/10.1145/2155620.2155673
http://www.micron.com/products/hybrid-memory-cube
http://www.micron.com/products/hybrid-memory-cube
https://doi.org/10.1145/2830772.2830828
https://doi.org/10.1145/2830772.2830828
https://doi.org/10.1109/MICRO.2016.7783704
https://doi.org/10.1109/MICRO.2016.7783704
https://doi.org/10.1109/MICRO.2004.28
https://doi.org/10.1145/2540708.2540724
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2010.20
https://doi.org/10.1109/MICRO.2014.41
https://doi.org/10.1145/2370816.2370864
https://doi.org/10.1109/ISCA.1993.698558
https://doi.org/10.1109/HPCA.2014.6835972
https://doi.org/10.1109/MICRO.2012.31
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1145/378993.379235
https://doi.org/10.1145/378993.379235

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Compressing On-Chip SRAM Caches
	2.2 Compressing Main Memory
	2.3 Organization of Practical DRAM Caches
	2.4 Compressing DRAM Cache is Almost Free

	3 Methodology
	3.1 Configuration
	3.2 Workloads

	4 Compressed DRAM Cache
	4.1 Overview: Organization and Working
	4.2 Potential for Compression
	4.3 Flexible Data format for Compression
	4.4 Speedup from Compression for Capacity
	4.5 Bandwidth-Aware Indexing (BAI)
	4.6 Effectiveness of Bandwidth-Aware Index

	5 Dynamic-Indexing Compression
	5.1 DICE: Overview
	5.2 Deciding Cache Index Policy on Insertion
	5.3 Cache Index Prediction (CIP)
	5.4 Impact on System Performance

	6 Results and Analysis
	6.1 Distribution of TSI and BAI with DICE
	6.2 Sensitivity to Insertion Threshold
	6.3 Impact on DRAM Cache Capacity
	6.4 Impact of DICE on Hit-Rate of L3
	6.5 Comparison to Larger Fetch for L3
	6.6 DICE on Intel's Knights Landing (KNL)
	6.7 Non Memory-Intensive Workloads
	6.8 Sensitivity to Capacity, BW, and Latency
	6.9 Impact of DICE on Energy

	7 Related Work
	7.1 Low-Latency Compression Algorithms
	7.2 Main Memory Compression
	7.3 Compressing SRAM Caches
	7.4 Multiple Index to Reduce Conflict Misses

	8 Conclusions
	Acknowledgments
	References

