
166   |   A Case for Nonuniform Fault Tolerance in Emerging Memories

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributor

As DRAM systems face scalability challenges, the architecture community 
has started investigating alternative technologies for main memory. These 
emerging memory technologies tend to suffer from the problem of limited write 
endurance. This problem is exacerbated because of the high variability in lifetime 
across different cells, resulting in weaker cells failing much earlier than nominal 
cells. Ensuring long lifetimes under high variability requires that the design 
can correct a large number of errors for any given memory line. Unfortunately, 
supporting high levels of error correction for all lines incurs significantly high 
overhead, often exceeding 10 percent of overall memory capacity. We propose 
to reduce the storage required for error correction by exploiting the observation 
that only a few lines require high levels of hard-error correction. Therefore, 
prior approaches that uniformly allocated a large number of error correction 
entries for all lines are inefficient, as most (more than 90 percent) of these entries 
remain unused. We propose Pay-As-You-Go (PAYG), an efficient hard-error 
resilient architecture that allocates error correction entries in proportion to the 
number of hard faults in the line. We describe a storage-efficient and low-latency 
organization for PAYG. Compared to uniform error correction, PAYG requires 
one third the storage overhead and yet provides 13 percent more lifetime.

Introduction
As DRAM-based memory systems get limited by power and scalability 
challenges, architects are turning their attention towards emerging memory 
technologies for building future systems. Phase Change Memory (PCM) has 
emerged as one of the most promising technologies suitable for incorporation 
into main memory.[3] While PCM has several desirable attributes such as 
improved scalability and nonvolatility, the physical properties of PCM dictates 
that only a limited number of writes can be performed to each cell. On average, 
PCM devices are expected to last for about 10 to the 7th and 10 to the 8th, 
writes per cell.[1] Once a cell reaches its end of life, it gets stuck in one of the 
states, manifesting itself as a hard error. The problem of limited lifetime is further 
exacerbated by the high variability in lifetime across different cells due to process 
variations. This means a small percentage of cells that have a significantly lower 
than average lifetime end up determining the overall lifetime of the system. 

Ensuring reasonable system lifetime under high variability requires that the 
design provision large amounts of error correction for PCM lines. As we 
are concerned with lifetime failures that manifest themselves as hard errors, 
we focus only on hard-error correction in this article. Recent studies have 
proposed write-efficient error correction schemes such as Error Correction 

“…a small percentage of cells that 
have a significantly lower than average 
lifetime end up determining the 
overall lifetime of the system.”

Moinuddin K. Qureshi  
Georgia Institute of Technology

A CAsE For NoNuNIForM FAulT TolErANCE 
IN EMErGING MEMorIEs



Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories   |   167

Pointers (ECP)[5] and SAFER[6] to tolerate a large number of hard faults in 
memory lines. While our analysis is applicable to any hard-error correction 
scheme, we discuss ECP for our studies owing to its simplicity. 

ECP corrects a failed bit in a memory line by recording the position of the bit 
in the line and its correct value. For example, a 64-byte (512-bit) line needs 
a 9-bit pointer plus 1 replacement bit resulting in a total of 10 bits for each 
ECP entry. Our evaluations show that correcting six errors per line can provide 
a lifetime of about 6.5 years for our baseline (the configuration is described 
in the section “Experimental Methodology”). Provisioning for 6 bits of error 
correction requires an overhead of 61 bits (60 bits of ECP plus one full bit 
to indicate that all ECP entries are used) per line, which translates to a total 
storage overhead of 12 percent. Note that this level of error correction would 
not be an optional feature in future PCM systems but rather something that 
would be essential to enable meaningful operation of the PCM array. Given 
that the memory market is low margin and highly cost-sensitive, it is important 
that the storage overhead of such necessary error correction be minimized, 
while retaining the desired levels of reliability. Thus, the 12 percent storage 
overhead of ECP may very well prove to be too high for wide-scale adoption 
of PCM. 

To reduce the storage overhead of error correction, we begin by pointing to 
the inefficiency with the ECP approach that uniformly allocates six ECP 
entries per line. Our analysis shows that very few lines are weak, and more 
than 95 percent of the lines require no more than one ECP entry per line. 
Therefore, we would expect that with uniform ECP-6, the majority of the ECP 
entries would remain unused. Table 1 shows the distribution of lines that use 
a given number of ECP entries at different aging levels (age normalized to the 
lifetime under ECP-6, or 6.5 years). The average number of ECP entries used 
is also shown.

Number Writes 
(Normalized Age)

Number of ECP Entries Used per Line Average Number of 
ECP Entries Used0 1 2 3–6

50% 99.02% 0.97% 0.00% 0.00% 0.010

90% 84.76%  14.02% 1.16% 0.07% 0.165

95% 79.63%  18.14% 2.06% 0.17% 0.228

 100% 73.24%  22.82% 3.55% 0.40% 0.311

Table 1: Inefficiency of Uniform ECP-6. On average, only 0.3 out of six 
entries eventually gets used 
(Source: Moinuddin K. Qureshi, 2013)

As the number of writes increase, the rate of faults increases, and hence more 
and more of the allocated ECP entries get used. However, even at the end of 
the expected system lifetime under ECP-6, less than 5 percent of the lines 
utilize more than one ECP entry. On average, only 0.3 entries out of the 
allocated six entries of ECP get used, indicating significant inefficiency with 
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uniform ECP. If we could allocate ECP entries only to lines that need those 
entries, we would reduce the required ECP entries by almost 20X. Ideally, 
we want to allocate more ECP entries to weak lines (lines with large number 
of errors) and fewer ECP entries to other lines. Unfortunately, uniform ECP 
allocates a large (and wasteful) number of ECP entries with each line a priori, 
being agnostic of the variability in lifetime of each line.

We propose Pay-As-You-Go (PAYG, pronounced as “page”), an error correction 
architecture that allocates error correction entries in response to the number of 
errors in the given memory line. To maintain low latency of error correction, 
PAYG splits the correction entries into two parts: first, a per-line Local Error 
Correction (LEC) that can correct up to one error per line and is sufficient for 
95 percent of the lines; and second, a Global Error Correction (GEC) pool that 
contains tagged ECP entries and provides error correction entries for lines that 
have more errors than can be handled by the LEC. 

We describe several versions of PAYG, each with varying effectiveness, storage 
overhead, and latency overhead. Our evaluations show that PAYG reduces the 
storage overhead of error correction by a factor of 3.1X compared to ECP-6 
(19.5 bits per line vs. 61 bits per line) while still obtaining 13 percent longer 
lifetime. Thus, PAYG obtains the best of both worlds in that it achieves the 
lifetime corresponding to strong levels of error correction while maintaining 
the low storage overhead that is sufficient for most of the lines.

Background
The problem of limited write endurance is common to many of the emerging 
memory technologies. Without loss of generality, this article analyzes Phase Change 
Memory (PCM) as an example of emerging memory technology. PCM suffers 
from the limited endurance in that the memory cells cease to have the ability to 
store data after a certain number of writes. Such cells get stuck to one of the states 
and manifest themselves as hard errors.[5] Designing a robust PCM system that can 
last for several years requires carefully architecting the system to tolerate such errors.

Problem: Variability in Lifetime
ITRS[1] projections (and various other studies) indicate that PCM cells can be 
expected to have an average endurance in the range of 107–108 writes. While 
this range of endurance is much lower than the ∼1015 endurance of DRAM, 
it is still sufficient to architect a system with several (more than five) years of 
lifetime. Unfortunately, the lifetime of PCM cells is not uniform, and process 
variability results in significant variations even within adjacent cells in the same 
die.[2][5] This causes certain cells to have much lower endurance than the average 
population. Such weak cells fail much earlier than the typical cell and can 
reduce the lifetime of the system significantly to the tune of a few weeks. 

The variation in lifetime is typically expressed as normalized standard deviation 
(COV) around the mean. Previous studies on variability of PCM endurance 
have used COV values between 10–30 percent of the mean.[2][5][6] In our 
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analysis, we use a default COV value of 20 percent. With a COV of 20 percent, 
the cell failure probability at the very start is in the range of 10−6. Given that a 
typical main memory system contains tens of billions of cells, even this small 
failure probability would result in several thousand cells having bit failures, 
which in turn would result in a drastic reduction in the overall system lifetime 
because of variability.

Prior Work
The lifetime of a PCM system can be increased to a useful range if the system 
can tolerate errors. Hamming code-based error correction, which is typically 
employed in memory systems, can tolerate transient errors as well as hard 
errors. Unfortunately, such codes are write intensive and can further exacerbate 
the endurance problem in PCM. Fortunately, identifying the endurance-related 
write failures is easy as it can be done by simply performing a verify read after 
completing a write.1 If the two values do not match then the nonmatching bit 
is likely to be a hard error. 

Recent studies[5][6] have focused on developing write-efficient methods to 
provide error correction of hard faults, relying on this simple detection 
property of endurance-related failures. 

One such proposal is Error Correcting Pointers (ECP).[5] ECP performs error 
correction by logging bit errors in a given line. For example, for a line of 
64 bytes (512 bits), a 9-bit pointer is used to point to the failing bit and an 
additional bit to indicate the correct value. This scheme can correct one error 
and is referred to as ECP-1. The concept can be extended to correct multiple 
bits per line. Intelligent precedence rules allow correction of errors even in 
the ECP entries. A generalized scheme that can correct N errors per line is 
called ECP-N. A full bit per line indicates if all the ECP entries associated 
with the line are used. Thus, the storage overhead of ECP-N is (10N + 1) bits 
per line.

Need to Correct Several Errors per Line
Given that transient faults are rare, a typical memory system is designed to 
handle at most one or two transient faults per line. However, unlike transient 
faults, endurance-related hard errors accumulate over time. Therefore, we 
need to provide large amount of error correction per line in order to obtain 
reasonable system lifetime. Figure 1 shows the mean time to first uncorrectable 
error for our baseline system, where the number of ECP entries per line is 
varied from 1 to 12. All lifetime numbers are normalized to the case of zero 
variance. To show dependence of lifetime on variance, we show data for 
different COVs. For COV = 20 percent, ECP-6 obtains 35 percent of ideal 

1 If the system supports some amount of transient fault protection with each line, then we can 
identify the hard faults without performing the verify read. For example, the position of a bit that 
causes a failure with a transient fault protection mechanism can be tracked. Given that transient 
faults are rare, if the same bit position is causing frequent errors then that bit is likely to be a 
hard fault. Such a bit can then be corrected using a hard-error correction mechanism. This article 
assumes that an efficient means of detecting endurance-related failures exists and focuses only on 
correcting such failures.

“…a typical main memory system 
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result in several thousand cells having 
bit failures,…”

100

N
or

m
. S

ys
te

m
 L

ife
tim

e 
(w

rt
 C

O
V

 5
 0

%
) 90

80

70

60

50

40

30

20

10

0 1 2 3 4 5
ECP-N (Num Error Correction Per Line)

6 7 8 9 10 11 12
0

COV 5 10%
COV 5 15%
COV 5 20%

Figure 1: Normalized value of system lifetime 
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lifetime. For our baseline, this translates to a lifetime of 6.5 years, which is 
in the desired range of 5–7 years for a typical server. ECP-6 incurs storage of 
61 bits per line, which translates to 12 percent storage overhead. Given that 
memory chips are extremely cost sensitive, such overhead may be too high for 
practical use.

Inefficiency of Traditional Approach
For a memory of N lines, a PCM system would provision a total of 6N ECP 
entries to implement ECP-6. The problem with such an approach is that it 
results in significantly underutilized ECP entries. Because weak lines are few, 
only a few lines require high levels of error correction. Most of the other lines 
do not use the allocated ECP entries. Figure 2 shows the failure probability 
as the number of writes is increased (under COV = 20 percent), normalized 
to a system that has zero variance. The failure of line (or system) occurs 
when there is at least one uncorrectable error for a given amount of ECP. 
The expected time to failure is computed as the time at which the failure 
probability is 50 percent.
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the lines” when each line has ECP-6. Observe that when the system failure is expected to occur under ECP-6, 
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(Source: Moinuddin K. Qureshi, 2013)

Given that memory has millions of lines, the line failure probability must be 
very low (much less than 10−6) to achieve a low system failure probability. 
When the system failure is expected to occur under ECP-6, the probability 
of line failure with ECP-1 is approximately 3.5 percent. This implies that 
fewer than 5 percent of the lines have more than one failed bit at the time of 
system failure, indicating significant inefficiency in the traditional approach 
that allocates six ECP entries for all lines. We note that ECP-1 is sufficient in 
the common case, and we need higher levels of ECP for very few lines. Ideally, 
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we would like to retain the robustness of ECP-6 while paying the hardware 
overhead of only ECP-1. 

We base our solution on the insight that hard errors are quite different from 
transient faults. We need to allocate the storage for the error detection of 
transient faults up-front—before the error occurs. However, for hard errors, 
we can detect the error using a separate mechanism and allocate the error 
correction entry only when the error occurs. We discuss our experimental 
methodology before describing our proposal.

Experimental Methodology
The following section describes our experimental methodology.

Baseline Configuration
We assume a memory configuration that is designed with PCM banks each with 
1 GB memory. Each bank has one write port and the write operation can be 
performed with a latency of 1 microsecond. The size of the line in the last-level 
cache is 64 bytes, which means there are 224 lines in each bank. All operations on 
memory occur at line-size granularity. Given that each bank is a separate entity 
and can be written independently, we focus on determining the lifetime of one 
bank. We assume that each line has an endurance of 225 writes. If endurance 
variance was 0 percent, we would expect the baseline to have a lifetime of 
18 years.2 ECP-6 obtains 35 percent of this lifetime, which translates to 6.5 years. 

Assumptions
We are interested in evaluating the lifetime of memory, which is typically in the 
range of several years. Modeling a system for such a long time period inevitably 
involves making some simplifying assumptions. We make the following 
assumptions in order to evaluate memory lifetime:

 ● We assume the lifetime of each memory cell to follow a normal distribution 
without any correlation between neighboring cells. We assume a mean 
lifetime of 225 writes[4] and a COV of 20 percent of the mean.

 ● We assume perfect wear-leveling to focus only on the impact of the error 
correction schemes. This implies that all the memory lines will receive the 
same number of writes.

 ● A write request to memory is converted into a sequence of write requests 
followed by a read request to detect hard faults. We assume that this 
technique can identify hard faults with 100 percent accuracy.

Figure of Merit
The endurance-limited lifetime of the system can be defined as the number 
of writes performed before encountering first uncorrectable error. Thus, for a 
given scheme, lifetime is determined by the first line that gets more errors than 

2 Each of the 224 lines can be written 225 times, for a total of 249 writes. With write latency of 
1 microsecond, we can perform 106 writes/second or 244.8 writes per year, hence, a lifetime of  
18 years, even under continuous write traffic.
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can be corrected. ECP-6 obtains a lifetime of 6.5 years, which is in the range of 
5–7 years of lifetime for a typical server. We want a lifetime in this range; hence 
all lifetime numbers in our evaluation are normalized to ECP-6. We define 
Normalized Lifetime (NL) as follows, and use this as the figure-of-merit in our 
evaluations:

NL =   Total Line Writes Before System Failure × 100%
    ___________________________________    Total Line Writes Before System Failure With ECP 6   (1)

Pay-As-You-Go Error Correction
We can architect an efficient and robust design by allocating error correction 
entries only on demand, as and when an error occurs. In fact, one can reduce 
the percentage of unused ECP entries to zero by having a fully associative 
structure where each entry contains one tagged ECP-1 unit. Unfortunately, such 
a design would incur intolerable latency as each memory access would need to 
search through hundreds of thousands of error-correction entries. Our proposed 
design, PAYG, provides storage-efficient on-demand error correction while 
incurring negligible latency overhead. In this section, we first start with a naive 
design for PAYG, identify its shortcomings, and then propose the robust design.

Architecture of Naive PAYG
When failure occurs under ECP-6, we observe that 73 percent of the lines have 
0 errors (Table 1). Hence, error correction overhead could be decreased by ∼4x, 
by allocating ECP-6 only for lines that have at least one error. This simplified 
architecture is called Naive-PAYG, and is shown in Figure 3. 

Main Memory

Way (Num GEC entries per set)

Global Error Correction (GEC) Pool
GEC Entry

V TAG ECP–NSets

Memory Line (64B)OFB
O

Figure 3: Architecture of Naive-PAYG (newly added 
structures are shaded)
(Source: Moinuddin K. Qureshi, 2013)

Each line contains an overflow bit (OFB) to indicate if the line has at least one 
failed bit.3 

A Global Error Correction (GEC) pool provides error correction entries for 
such lines. Each GEC entry contains a valid bit, a tag (to identify the owner 

3 A stuck-at-zero OFB can be a single point of failure. Under COV = 20 percent, the probability 
that a bit will fail at first write is 0.3 × 10−6. Given 16 million lines in memory, 4.8 lines are 
expected to have such a failure on average. We avoid this problem by using two-way replication for 
the OFB bit. We assume that OFB is set to 1, if any of the replicated bits is 1. The probability that 
both the replicated bits of OFB are stuck-at-zero is negligible (10−13).

“…PAYG, provides storage-efficient 
on-demand error correction while 
incurring negligible latency overhead.”
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line), and one or more ECP entries (ECP-6 in our case). GEC is organized 
as a set-associative structure. Given that memory designs are highly 
optimized for a given array size, we want to use a line-size granularity for 
GEC as well. Therefore one set of GEC is sized such that it fits in 64 bytes, 
translating to seven GEC entries per set. We found that such a design is 
noncompetitive compared to even uniform ECP-6 because it suffers from 
three problems:

 ● The set associative organization needs a much larger number of entries 
(∼8x) than a fully associative structure to reach the same level of 
effectiveness.

 ● Even with the filtering provided by the OFB, 25 percent of the lines can 
still incur a latency of two accesses (one for main memory and second for 
GEC), resulting in significant slowdowns.

 ● Most ECP entries remain unused as six ECP entries are allocated for lines 
with even one error.

We now describe efficient solutions to each of these problems, leading up to 
our final design.

Addressing Problem 1: Shortcoming of Set Associative Structure for 
GEC Pool
In a set-associative organization, each set has only a fixed number of 
ways, which means that the first set to exceed its allocation causes an 
uncorrectable failure. So, an important question in determining efficiency 
of the set-associative structure is to analyze the number of GEC entries 
occupied before one of the sets overflows. Given that most of the efficient 
wear-leveling algorithms[4][7] randomize the address space in PCM, we 
assume that failures occur at random lines in memory, and that any access 
pattern gets spread over the entire memory (due to remapping from 
wear leveling). Based on this randomized address space property, we can 
analyze the effective capacity utilization of a set-associative structure using 
an analogous buckets-and-balls problem, where a bucket represents one 
of the sets and a ball represents one of the occupied ways. If there are 
N buckets, each of which can hold B balls, then the collection can hold a 
maximum of NB balls. However, if balls are thrown at random, then how 
many balls can be thrown before one of the buckets overflows? Our Monte 
Carlo simulations indicate that a 7-way or 8-way GEC pool is only about 
12 percent occupied when one of the sets overflows, indicating about 
8x inefficiency with a set-associative structure. 

Ideally, we want the efficiency of a fully associative structure (where all entries 
get used) and latency of set-associative structure (single low-latency index). To 
handle these contradictory requirements, we use a hash-table-with-chaining 
structure. It consists of two tables: first, the Set Associative Table (SAT) and 
second, the Global Collision Table (GCT). SAT provides a single-index low-
latency access to the GEC pool, while GCT provides flexibility in placement. 
Both SAT and GCT are structurally identical and differ only in the way they 

“Ideally, we want the efficiency of a 
fully associative structure (where all  
entries get used) and latency of set- 
associative structure (single low-latency 
index).”
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are indexed. Each GEC set (both in SAT and GCT) also contains a pointer 
(GCTPTR) that points to a location in the GCT.4 The proposed GEC 
structure is shown in Figure 4.

GEC Entry

PTR

1

0

OFB

GEC Entry

Set Associative Table (SAT)

Global Collision Table (GCT)

PTR1

OFB

GCT–Head

PTR

Figure 4: Architecture of scalable GEC pool (Set Associative Table + Global Collision Table)
(Source: Moinuddin K. Qureshi, 2013)

Reading GEC Entries
For obtaining a GEC entry, SAT is accessed first in a set that is indexed by 
some bits of the line address. If there is no tag match in the set, then the 
GCTPTR of that set identifies the GCT set that must be checked. GCT can be 
indexed only in this manner. If there is a tag match in the GCT row, then GEC 
entries can be obtained. If there is no match, the GCTPTR in that set identifies 
the next GCT set that must be checked. The traversal continues until a GCT 
entry with matching tag (or a set with OFB = 0) is found.

Allocating GEC Entries
Initially, all GCT sets remain unallocated. These sets get allocated to a set of 
SAT only on overflow. To aid this allocation, a register called GCT-Head keeps 
track of the number of GCT entries that have been allocated. When one of the 
set of SAT or GCT overflows, the GCTPTR of that set is initialized to GCT-
Head and the OFB associated with that set is set to 1. The newly allocated 
set of GCT provides as many GEC entries as the associativity of GCT. The 
GCTPTR of this newly allocated entry is marked invalid and OFB is set to 0 
(to indicate end of traversal). 

The GCT-Head is incremented after every GCT allocation. When the value 
of GCT-Head reaches the number of sets in GCT, it indicates an uncorrectable 
error. 

We use a GCT that has half as many sets as SAT. Table 2 shows the effective 
capacity if there are N sets in SAT and 0.5N sets in GCT, as the associativity of 
SAT is varied. For an 8-way SAT, our organization obtains an effective capacity 
of more than 70 percent of the allocated 1.5N entries, much higher than the 
12 percent with a set-associative structure.

4 We use two-way replication for GCTPTR for tolerating errors. We force the GCTPTR with 
a single stuck-at-bit to point to either location all-zeros or all-ones (both locations are reserved). 
On mismatch between the two copies of GCTPTR, the entry pointing to the reserved location is 
ignored. The probability of two bits stuck in GCTPTR is negligible (10−12).

“…our organization obtains an 
effective capacity of more than 70 
percent of the allocated 1.5N entries, 
much higher than the 12 percent with 
a set-associative structure.”
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Associativity of SAT 1 2 4 8

Effective Capacity 1.19N 1.15N 1.11N 1.08N

Table 2: Effective capacity utilization (of 1.5N entries) with proposed 
(sAT+GCT) organization
(Source: Moinuddin K. Qureshi, 2013)

In the common case, we want the access to be satisfied by SAT and not 
the GCT, as GCT incurs higher latency due to multiple memory accesses. 
Our Monte Carlo simulations show that until about half the entries in SAT 
get occupied, the probability of single GCT access remains low (less than 
1 percent). Thus, the proposed design has a good storage efficiency as well as 
low latency.

Addressing Problem 2: Local Error Correction for  
Low-Latency
One of the shortcomings of the naive design is that it accesses the GEC for 
a line with even one error. We can reduce latency and storage requirements 
for GEC by allocating a small amount of error correction with each line. 
For example, we observe that with ECP-1, the likelihood of failure is less 
than 4 percent even at the end of system lifetime. Therefore if we allocate 
ECP-1 with each line, we can reduce the GEC access rate as well as demand 
significantly. We propose to have such Local Error Correction (LEC) with 
each line. When the number of errors in the line exceeds what can be 
corrected by LEC, the OFB associated with that line is set and an entry from 
GEC is allocated. With ECP-1 in LEC, each GEC entry would need to store 
only ECP-5, which means the GEC can be an 8-way structure in a 64-byte 
space.

Addressing Problem 3: Fine-Grained On-Demand  
Allocation for Improved Efficiency
Another source of inefficiency in the naive design is that it allocates a large 
number of ECP entries for each assignment of a GEC entry. While this 
amortizes the tag overhead, it results in severe inefficiency, as most of the 
allocated ECP entries remain unused. The utilization of ECP entries can 
be increased by reducing the number of ECP entries in each GEC entry. 
For example, if each GEC entry contained only ECP-1, it would result in 
significant increase in utilization of ECP entries, even if it would mean relative 
increase in tag overhead. With ECP-1 in GEC entry, we can fit approximately 
24 entries in the space of 64 bytes, therefore the associativity of GEC (SAT as 
well as GCT) would be 24. As there can be multiple tag hits in a given GEC 
set, we use the same precedence rule as used in the ECP proposal, that is, GEC 
entries are allocated from right to left, and younger entries have precedence 
over older entries. Our design restricts that all GEC entries of a given line must 
be placed in the same set. If a line needs more GEC entries and that set is full, 
then all ECP entries of the line are invalidated from the GEC set and relocated 
into a new set in GCT.
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Proposed PAYG: Tying It All Together
PAYG obtains both high storage efficiency and low latency by leveraging the 
flexible structure for GEC, a hybrid LEC-GEC organization, and fine-grained 
allocation. Figure 5 shows the overall architecture of our proposed PAYG 
design. 

Main Memory

Memory Line (64B)O LEC
Over Flow Bit

O LECSAT

GCT

Global Error Correction (GEC) Pool

PTR

O LEC PTR

Figure 5: Proposed Architecture of PAYG
(Source: Moinuddin K. Qureshi, 2013)

The LEC handles the common case of one-or-zero errors in a line for more 
than 95 percent of the lines. The GEC provides a storage-efficient low-
latency on-demand allocation of ECP entries for lines that have more than 
one error. Each GEC entry would contain only ECP-1 for high utilization 
of ECP entries. To reduce the array design overhead, we assume the same 
memory array for GEC (SAT and GCT) as the main memory, and provision 
the LEC + OFB for GEC as well, to maintain uniformity (this also allows 
the GEC size to be changed freely at runtime by the OS). An access to main 
memory with OFB = 0 is satisfied by single access. When OFB = 1, the GEC 
is accessed, one or more memory lines are read, matching GEC entries are 
obtained, ECP information is retrieved, and the line or lines get corrected. 

Unlike uniform ECP-6, PAYG does not have to limit the maximum error 
correction allocated to a line. Thus, a weak line can use as many ECP entries 
as needed (limited only by the number of GE entries per line). This allows 
PAYG to outperform even ECP-6. The only real limiter of lifetime with PAYG 
is the number of GEC entries, as the likelihood of 24 or more errors per line is 
negligible for our system.

Results and Analysis
Our proposed design has three key components: the scalable structure for the 
GEC pool, Fine Grained Allocation (FGA), and Local Error Correction (LEC). 
In this section, we present the key results highlighting the importance of each 
of these components. We then analyze the storage and latency overheads, and 
also the impact of different variability scenarios on the effectiveness of our 
proposal.

“The LEC handles the common case 
of one-or-zero errors in a line for 
more than 95 percent of the lines. The 
GEC provides a storage-efficient low-
latency on-demand allocation of ECP 
entries…”
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Importance of Scalable GEC Pool
The key component of PAYG that provides scalability and efficiency is 
the architecture of the GEC pool. The first set of results we present are to 
emphasize the need for such a scalable structure. For this analysis, we assume 
a version of PAYG that has LEC implemented as ECP-1. The GEC does not 
have fine-grained allocation, which means each GEC entry contains ECP-5, 
and each set of GEC (in both SAT and GCT) contains 8 GEC entries. We call 
this configuration PAYG-NoFGA. Figure 6 compares the normalized lifetime 
of uniform ECP to that with PAYG-NoFGA. The left sets of bars are for ECP 
where the level of ECP is varied from 1 to 6. The middle sets of bars are for 
PAYG-NoFGA without GCT, where the number of sets in SAT is varied from 
32K to 1024K. The right sets of bars are for PAYG-NoFGA with 128K sets in 
SAT and GCT sets vary from 2K to 64K. 
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Figure 6: Lifetime of uniform ECP and PAYGNoFGA. Without GCT, PAYG-NoFGA needs 
1024 sets (6.25% storage overhead) for lifetime comparable to ECP-6. With GCT, this 
reduces to (128K + 64K = 192K), 5x lower
(Source: Moinuddin K. Qureshi, 2013)

The first observation is that ECP-6 improves lifetime compared to ECP-1 
by more than 10x. Unfortunately, ECP-6 incurs a storage overhead of 12 
percent of memory capacity. The second observation is that PAYG-NoFGA 
needs a large number of sets (1 million) to achieve the lifetime as ECP-6, 
resulting in significantly high storage overhead (6.25 percent). However, the 
presence of GCT decreases storage requirement significantly. Combining 
128K sets in SAT with 64K sets in GCT can provide a lifetime slightly 
higher than ECP-6 (this occurs because PAYG does not cap maximum 
error correction entries to six per line, so a few lines end up using ECP-7). 
The storage overhead of this combination would be 128K + 64K = 192K 
sets (1.2 percent overhead), which is 5x lower. Thus, a SAT-GCT based 
architecture is much more storage efficient than a simple set-associative 
structure. Unless specified otherwise, we will use 128K-set SAT combined 
with 64K-set GCT for the rest of the article.

“…SAT-GCT based architecture is 
much more storage efficient than a 
simple set-associative structure.”
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Importance of Fine-Grained Allocation
PAYG-NoFGA allocates five ECP entries with each GEC entry, most of which 
remain unused. FGA improves the utilization of ECP entries by reducing the 
number of ECP entries in each GEC entry. Table 3 shows the number of GEC 
entries that can be packed in one set (64 bytes), when the number of ECP entries 
in each GEC entry is varied from one to five. The tag size for our GEC structures 
is 7 bits, and we replicate the valid bit in GEC entry for fault tolerance. We also 
reserve 32 bits for GCTPTR (16 bits, 2-way replicated), which means only 480 
bits per line are available for GEC entries. As the number of ECP entries per 
GEC entry decreases, the total number of GEC entries per each set increases. 

Number of ECP in each GEC entry 1 2 3 4 5

Number of tag bits + valid bits 9 9 9 9 9

Number of bits for ECP 11 21 31 41 51
Size of 1 GEC entry (bits) 20 30 40 50 60
Number of GEC entries per set 24 16 12 9 8
Number of ECP entries per set 24 32 36 36 40

Table 3: Tradeoff between the number of ECP entries per GEC entry vs. 
ECP entries per set. Note that 24 GEC entries can be packed in one GEC 
set if each GEC entry contains ECP-1 
(Source: Moinuddin K. Qureshi, 2013)

Figure 7 shows the normalized lifetime of PAYG as the number of ECP entries 
in GEC is varied from six to one. PAYG is implemented with LEC of ECP-1, 
SAT contains 128K sets, and GCT contains 64K sets. As the number of ECP 
entries in each GEC entry is reduced, there is a gradual increase in relative 
lifetime indicating that the effective utilization of ECP entries outweighs the 
relative increase in tag-store overhead. 
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Figure 7: Effect of fine-grained allocation on effectiveness of 
PAYG. Note that having ECP-1 in GEC provides the highest 
lifetime and is the default PAYG configuration
(Source: Moinuddin K. Qureshi, 2013)

With only ECP-1 in each GEC entry, PAYG obtains a lifetime 13 percent higher 
than ECP-6, which is similar to that obtained with uniform ECP-8. Given the 
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efficiency of such fine-grained allocation, we assume that PAYG is implemented 
with ECP-1 in each GEC entry. The Default PAYG configuration used in our study 
is: 128K sets in SAT, 64K sets in GCT, LEC with ECP-1, and FGA with ECP-1 
in each GEC entry. This configuration incurs a storage overhead of 3.8 percent of 
memory capacity and provides 13 percent more lifetime than uniform ECP-6.

Importance of Local Error Correction 
The LEC provides the first line of defense for error correction in PAYG and is 
designed to handle the common case of zero or one failure per line. Figure 8 shows 
the normalized lifetime with PAYG as the level of ECP in LEC is varied from zero 
to six. Note that each ECP in LEC accounts for storage of approximately 2 percent 
of overall memory capacity, so having higher levels of ECP in each LEC entry incurs 
significant storage overhead. As expected, the lifetime increases with increasing ECP 
in LEC. A version of PAYG that has LEC containing ECP-5 has storage similar to 
uniform ECP-6 and provides a lifetime improvement of 43 percent. Thus, PAYG 
can not only be used to obtain a given amount of lifetime for reduced storage but 
can also be used to enhance lifetime at a given storage budget.

For the PAYG configuration without LEC (NoLEC), the given number of GEC 
entries are insufficient to handle the error rate, hence it obtains a lifetime lower 
than ECP-6. This can be avoided by simply increasing the number of GEC 
entries. The right set of bars in Figure 8 shows the lifetime of PAYG without 
LEC, when the GEC entries are doubled or quadrupled. We observe that simply 
doubling the entries (storage overhead of 2.4 percent) has lifetime equivalent to 
ECP-6, and when we double the GEC entries further to overhead of 4.8 percent, 
this combination can provide a lifetime significantly higher than with uniform 
ECP. However, the key problem of the PAYG configuration without LEC is the 
increased access latency. Because the line of defense of LEC is absent, all lines that 
have even a single error will experience increased latency because of GEC accesses. 
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(Source: Moinuddin K. Qureshi, 2013)

“This configuration incurs a storage 
overhead of 3.8 percent of memory 
capacity and provides 13 percent more 
lifetime than uniform ECP-6.”
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Storage Overhead of PAYG
The storage overhead of PAYG consists of two parts: LEC and GEC. The 
overhead of LEC is incurred on a per-line basis, whereas the overhead of GEC 
gets amortized over all the lines. Table 4 computes the storage overhead of 
Default PAYG, given that the bank in our baseline contains N = 224 lines. The 
LEC incurs 13 bits/line (2-way replicated OFB bits + (1+10) bits for ECP-1). 
The storage overhead of PAYG is 3.13x lower than ECP-6. On average, PAYG 
needs 19.5 bits/line vs. 61 bits/line for ECP-6. 

PAYG

LEC (2 OFB + ECP-1) 13 bits/line

SAT (217) sets 217 lines × 64 B = 8 MB

GCT (216) sets 216 lines × 64 B = 4 MB

Total overhead of LEC 13 bits (224 + 217 + 216) = 26.9 MB

Total overhead of PAYG 26.9 MB + 8 MB + 4 MB = 38.9 MB

Total overhead of ECP-6 61 bits/line × 224 = 122 MB

Ratio of (ECP-6/PAYG) 122 MB/38.9 MB = 3.13x

Table 4: Storage overhead of PAYG (PAYG obtains 13% more 
lifetime than ECP-6) 
(Source: Moinuddin K. Qureshi, 2013)

Effective Latency with PAYG
Correcting an error with PAYG may require multiple accesses to memory. The 
main access simply gets broken down into multiple memory accesses (each of 
which takes deterministic time). The structures SAT and GEC are organized 
at a granularity of memory line, and we assume that an access to them incurs 
similar latency as access to main memory. When a GEC access occurs, the SAT 
is indexed and the memory line obtained is searched for a GECP entry with 
a matching tag. This incurs one extra memory access. If a match is not found, 
then the GCT is accessed, which incurs yet another memory access for each 
GCT access. However, this occurs rarely, given that GEC access happens only 
when the number of errors in a given line exceeds what can be corrected by 
the LEC. Figure 9 shows the percentage of demand accesses that require one 
extra access (satisfied by SAT) and two extra accesses (one for SAT and one for 
GCT). The probability of one extra access remains 5 percent or less throughout 
the expected lifetime under ECP-6 (6.5 years under continuous write traffic). 
Only after that does it increase significantly, reaching 17 percent at the end 
of lifetime with PAYG. In fact, for the first five years of system lifetime there 
is on average only 0.4 percent extra access per memory access, which means 
the performance impact is negligible (less than 0.4 percent) during the useful 
lifetime. The probability of two extra accesses remains very low throughout 
the lifetime. 

“The storage overhead of PAYG is 
3.13x lower than ECP-6.”

“…for the first five years of system 
lifetime there is on average only  
0.4 percent extra access per memory 
access…”
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Summary
Emerging memory technologies suffer from the problem of limited write 
endurance. Such systems need high levels of error correction to ensure 
reasonable lifetime under high variability in device endurance. Uniformly 
allocating large amounts of error correction entries to all the lines results 
in most of them remaining unused. We can avoid the storage overhead of 
such unused entries by allocating the entries in proportion to the number of 
faults in the line. Based on this key insight, our article makes the following 
contributions:

 ● We propose Pay-As-You-Go (PAYG), an efficient hard-error–resilient 
architecture that allocates error correction entries on-demand, as and when 
errors occur.

 ● We propose a storage-efficient, low-latency organization for searching 
through large number of global error correction (GEC) entries. 

 ● We reduce the latency for accessing error correction entries further by 
allocating a small amount of Local Error Correction (LEC) per line. Our 
analysis shows that one bit of LEC per line is sufficient to balance the 
tradeoff between storage overhead and latency impact. 

PAYG can be implemented with any hard-error correction technique and is 
highly effective compared to line sparing. While we have evaluated the concept 
of nonuniform fault tolerance in the context of PCM systems, this concept is 
applicable to other memory technologies as well.
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