
BATMAN: Techniques for Maximizing System Bandwidth of
Memory Systems with Stacked-DRAM

Chiachen Chou
School of ECE

Georgia Institute of Technology
Atlanta, GA

cchou34@gatech.edu

Aamer Jaleel
NVIDIA Research

NVIDIA
Santa Clara, CA

ajaleel@nvidia.com

Moinuddin �reshi
School of ECE

Georgia Institute of Technology
Atlanta, GA

moin@gatech.edu

ABSTRACT
Tiered-memory systems consist of high-bandwidth 3D-DRAM
and high-capacity commodity-DRAM. Conventional designs at-
tempt to improve system performance by maximizing the number
of memory accesses serviced by 3D-DRAM. However, when the
commodity-DRAM bandwidth is a signi�cant fraction of overall
system bandwidth, the techniques ine�ciently utilize the total
bandwidth o�ered by the tiered-memory system and yields sub-
optimal performance. In such situations, the performance can be
improved by distributing memory accesses that are proportional
to the bandwidth of each memory. Ideally, we want a simple and
e�ective runtime mechanism that achieves the desired access distri-
bution without requiring signi�cant hardware or so�ware support.

�is paper proposes Bandwidth-Aware Tiered-Memory Manage-
ment (BATMAN), a runtime mechanism that manages the distribu-
tion of memory accesses in a tiered-memory system by explic-
itly controlling data movement. BATMAN monitors the num-
ber of accesses to both memories, and when the number of 3D-
DRAM accesses exceeds the desired threshold, BATMAN disallows
data movement from the commodity-DRAM to 3D-DRAM and
proactively moves data from 3D-DRAM to commodity-DRAM. We
demonstrate BATMAN on systems that architect the 3D-DRAM
as either a hardware-managed cache (cache mode) or a part of the
OS-visible memory space (�at mode). Our evaluations on a sys-
tem with 4GB 3D-DRAM and 32GB commodity-DRAM show that
BATMAN improves performance by an average of 11% and 10%
and energy-delay product by 13% and 11% for systems in the cache
and �at modes, respectively. BATMAN incurs only an eight-byte
hardware overhead and requires negligible so�ware modi�cation.

CCS CONCEPTS
•Computer systems organization→Architectures; •Hardware
→ Semiconductor memory; Emerging technologies; Emerging
interfaces; •So�ware and its engineering→Memory manage-
ment;

An earlier version of this paper was published as a technical report at Georgia Tech
in March 2015 [9].
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MEMSYS 2017, October 2–5, 2017, Alexandria, VA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5335-9/17/10…$15.00
https://doi.org/10.1145/3132402.3132404

1 INTRODUCTION
3D-DRAM technology, such as hybrid memory cube (HMC) and
high-bandwidth memory (HBM) [20; 25; 38], cater to the growing
demands for high memory bandwidth. Compared to commodity
DRAM (e.g., DDR3 and DDR4 [24; 36]), 3D-DRAM provides 4x-8x
high bandwidth at similar DRAM access latency [7; 44]. As 3D-
DRAM, compared to commodity DRAM, has limited capacity, both
3D-DRAM and commodity DRAM are likely to co-exist in future
memory systems. We refer to such a system as a hybrid-memory
system or a tiered-memory system. Recently announced products
such as Intel’s Knights Landing (KNL) [43–45] and NVIDIA’s Pas-
cal [39] already incorporate a tiered-memory system design.

In tiered-memory systems, 3D-DRAM is referred to as the near
memory (NM) and commodity DRAM as the far memory (FM).
Figure 1(a) shows a typical tiered-memory system available in com-
mercial products today: a 4x-bandwidth NM and a 1x-bandwidth
FM. �e NM in a tiered-memory system can be architected in two
ways; for example, Intel’s KNL con�gures the NM in either a cache
mode or a �at mode. In the cache mode, the NM is con�gured as a
hardware-managed cache (DRAM cache) that sits between on-chip
caches and the main memory (FM) [11; 17; 26; 27; 31; 41; 42; 45].
In the �at mode, the NM is part of the main memory and is visible
to the operating system (OS) [2; 10; 13; 14; 22; 32; 35].

Regardless of how the NM is architected, the conventional wis-
dom maximizes the fraction of memory requests satis�ed by the
NM (i.e., the access rate of the NM) [17; 26; 35]. Doing so in-
e�ciently utilizes total available bandwidth in the system. For
example, Figure 1(b) presents an application whose frequently ac-
cessed working set �ts in the NM and shows a system that employs
the conventional approach: On an access to data in the FM, the
conventional approach always moves the data to the NM, shown
in Figure 1(b), so later accesses to the data are serviced by the NM.
In a steady state, the entire working set is always serviced by the
NM. As a result, the utilized system bandwidth is 4x (only NM),
as shown in Figure 1(c). However, such a scheme under-utilizes
the FM bandwidth. Given that the FM bandwidth accounts for 20%
of overall system bandwidth, the conventional approach does not
optimize for total system bandwidth, which leads to sub-optimal
performance.

As the NM simply o�ers higher bandwidth, not lower latency,
the performance of tiered-memory systems is determined by the
utilization of system bandwidth. We observe that both system band-
width and performance are maximized when memory accesses are
distributed proportional to the bandwidth of each memory. For
the example in Figure 1(a), the NM should service 80% of memory

1

WSet WSet

WSet

NEAR MEMORY FAR MEMORY

WSet

1x latency

4x BW

1x latency

1x BW

(a) System configuration

(b) Conventional approach

(d) BATMAN

80% access rate, system BW 5x (+25%)

100% access rate, system BW 4x

Do Not Move

Optimize for NM access rate
Move ALL Wset

Optimize for overall system bandwidth
Disallow some Wset movement

(c) 4x System Bandwidth

(e) 5x System Bandwidth

WSet

Figure 1: Optimizing for the access rate versus for system bandwidth. (a) A system where the NM has 4x the bandwidth as that of the FM.
Wset denotes the working set of the application. (b) and (c) Conventional approach that optimizes for the NM access rate obtains up to 4x
system bandwidth (only NM). (d) and (e) Explicitly controlling the NM access rate achieves 5x system bandwidth (NM+FM), 25% higher than
the conventional approach.

accesses and the FM 20% of memory accesses. �e observed rela-
tionship between access distribution and performance is consistent
with a recent study [1] that uses so�ware modi�cation to enforce
the access distribution. Speci�cally, the prior study proposes static
page placement strategy, which requires compiler support for pro-
�ling and programmer intervention that annotates data structures
of programs. However, the proposed static scheme is sensitive to
the input set of applications and system parameters, so it cannot
distribute memory accesses at runtime. �is paper seeks a simple
and e�ective mechanism that achieves the desired distribution at
runtime without requiring any so�ware support.

Tiered-memory systems provide functionality to move data be-
tween the NM and FM (e.g. OS-supported page migration in the �at
mode and cache line transfers in the cache mode). When data move
to the NM, the number of memory accesses serviced by the NM
increases, and the same principle also applies to the FM. �erefore,
if we can control the data movement in the tiered-memory system,
we can regulate the memory access distribution. For instance, in
Figure 1(d), when the NM already has 80% of memory accesses,
if we disallow data movement from the FM to the NM and keep
data that account for 20% of memory accesses in the FM, we would
achieve the desired split of memory accesses that maximizes the
system bandwidth utilization. In such case, the overall system
bandwidth has the maximum of 5x (NM + FM), which is 25% higher
than that of the conventional approach, shown in Figure 1(e).

We leverage our key insight on controlling data movement and
propose Bandwidth-Aware Tiered-Memory Management (BATMAN),
which is a runtime mechanism that monitors memory access dis-
tribution and explicitly controls the data movement between the
NM and the FM. We de�ne the desired access rate of the NM as the
target access rate (TAR). TAR is the fraction of memory accesses
serviced by the NM when memory accesses to both memories are
proportional to the respective bandwidth. When the access rate
of the NM exceeds the TAR, BATMAN disallows data movement
from the FM to the NM and also proactively migrates data from the

NM to the FM, which decreases the NM access rate. When the NM
access rate falls below the TAR, BATMAN allows the data move-
ment from the FM to the NM, the same as conventional approaches,
which increases the NM access rate.

To the best of our knowledge, BATMAN is the �rst study that
maximizes system bandwidth of tiered-memory systems at runtime.
We demonstrate BATMAN in the context of both the cache and
�at modes. In the cache mode, BATMAN monitors the NM access
rate and distributes memory accesses by partially disabling the
cache. When the access rate of the NM exceeds the TAR, BATMAN
dynamically turns o� a fraction of the cache sets to ensure that
memory accesses that could have been satis�ed by the disabled
cache sets are serviced by the FM. Although BATMAN lowers the
cache hit rate by cache disabling, BATMAN improves overall sys-
tem bandwidth. BATMAN requires no so�ware support and incurs
an overhead of only two 16-bit counters and a 32-bit register. In
the �at mode, we assume a system that relies on the OS to perform
page migration; BATMAN achieves the TAR by monitoring the
NM access rate at runtime and dynamically controls the direction
of page migration based on the NM access rate. When the access
rate of the NM exceeds the TAR, BATMAN disallows page migra-
tion from the FM to the NM. BATMAN leverages the existing OS
support of page migration and incurs an overhead of two 16-bit
counters.

We evaluate BATMAN on a 16-core system with a 4GB NM (4x
bandwidth) and a 32GB FM (1x bandwidth), which is similar to the
con�guration of a sub-NUMA cluster (SNC) node of Intel’s Knights
Landing product. In both the cache and �at modes, BATMAN is ef-
fective at maintaining the desired distribution of memory accesses
at runtime, while BATMAN incurs only an eight-byte hardware
overhead and requires negligible so�ware modi�cation. On aver-
age, BATMAN improves performance for a system that uses the
NM in cache mode by 11% and for a system that uses the NM in �at
mode by 10%. Also, BATMAN improves energy-delay product by
13% and 11% for systems in the cache and �at modes, respectively.

2

2 BACKGROUND AND MOTIVATION
�is section introduces two uses for the 3D-DRAM in a tiered-
memory system, analyzes the e�ectiveness of conventional schemes
that maximize the access rate of the 3D-DRAM, and provides a
quantitative motivation for optimizing for the overall system band-
width.

2.1 3D-DRAM in a Tiered-Memory System
�e recently introduced 3D-DRAM, such as HBM and HMC [20;
25; 38], is an emerging DRAM technology that, compared to the
commodity DDR-based DRAM, o�ers high bandwidth but has lim-
ited capacity and similar latency. Consequently, emerging systems
combine the high-bandwidth 3D-DRAM with the low-cost com-
modity DDR-based DRAM to form a tiered-memory system. One
key characteristic of the tiered-memory system is the latency of
3D-DRAM and DDR-based DRAM. Although 3D-DRAM provides
higher bandwidth than DDR-based DRAM, recent studies indicate
that because the 3D-DRAM and the DDR-based DRAM use the
same DRAM technology, the latency of 3D-DRAM is similar to that
of DDR-based DRAM [7; 44]. As illustrated in Figure 2, 3D-DRAM
technology, such as HMC and HBM, exhibit similar DRAM access
latency as the DDR-based DRAM, such as DDR3 and DDR4.

 0

 20

 40

 60

 80

 25 50 75 100 125 150 175

DDR3

DDR4 HBM

HMC

L
a
te

n
c
y
 (

n
s
)

Bandwidth (GB/s)

Figure 2: A comparison of DRAM technologies: latency (ns) versus
bandwidth (GB/s).

In a tiered-memory system, 3D-DRAM can be architected in two
ways: a hardware-managed cache or part of the OS-visible memory
space [43–45]. As mentioned, we refer to the 3D-DRAM as the near
memory (NM) and the DDR-based DRAM as the far memory (FM).
�e �rst use of the NM is a hardware-managed cache, or a DRAM
cache, an intermediate level between the last-level cache and the
main memory (FM). Although many studies have proposed various
organizations for DRAM cache [17; 26; 27; 31; 42], recent academic
research and commercial products have converged to a direct-
mapped, 64B-line-size, and tags-with-data DRAM cache [11; 41; 45].
�is use of the NM is referred to as the cache mode. Alternately,
the NM can also be architected as a part of the OS-visible memory
space, referred to as the �at mode. In the �at mode, the NM and the
FM are exposed as two nodes to the operating system (OS), which
is responsible for managing the data placement in and movement
between the NM and the FM [43]. For instance, the OS provides

a special malloc() function, such as hbw malloc(), to exploit the
high-bandwidth NM.

2.2 Conventional Wisdom: Optimize for the
NM Access Rate

In both the cache and �at modes, many studies tend to maximize the
access rate of the NM, which is de�ned as the fraction of memory
accesses that the NM receives, shown in Equation 1. �e underlyin-
gassumption of prior studies is that the NM has a latency advantage
over the FM. �erefore, the conventional wisdom is to retain as
much of the frequently accessed working set in the NM as possible,
and the e�ectiveness of the scheme is determined by the fraction
of memory accesses that are serviced by the NM, that is, the access
rate of NM. For example, in the cache mode, researchers propose
mechanisms and organizations that maximize the cache hit rate so
that almost all memory accesses are serviced by the NM [17; 26; 31].
Also, in the �at mode, the goal of many studies is to place or move
all the hot (i.e., frequently accessed) data in the NM [21; 35] and
use only the NM to service all memory requests.

�e NM Access Rate = Total NM Accesses
Total Memory Accesses (1)

As 3D-DRAM simply provides higher bandwidth, not lower la-
tency, placing all the frequently accessed data in the NM does not
necessarily yield optimal performance. Unlike the conventional de-
signs, which evaluates its e�ectiveness according to the NM access
rate, the key metric for a tiered-memory system is the number of
memory requests satis�ed within a time period, or, simply put, the
overall system bandwidth. Higher overall system bandwidth leads
to be�er system performance. In a conventional approach that
optimizes for the access rate of NM, the overall system bandwidth
is under-utilized and capped by the bandwidth of the NM. Ideally,
to maximize overall system bandwidth and performance, we would
like to use all of the bandwidth available from both NM and FM.

2.3 Optimize for the Overall System
Bandwidth

�e tiered-memory system utilizes the bandwidth of both the NM
and the FM by distributing memory accesses to both memories.
We corroborate this hypothesis experimentally: As an example, we
study a set of memory intensive STREAM benchmarks [34] on a
memory system whose con�guration is similar to that in Figure 1
(4x bandwidth NM and 1x bandwidth FM, see the experimental
methodology in Section 3). As the working set of the STREAM
benchmarks �ts in the NM, the baseline con�guration services all
memory accesses entirely from the NM (a 100% NM access rate).
We conduct a sensitivity study that distributes memory accesses
to both memories by explicitly allocating part of the working set
in the FM. Figure 3 shows the speedup compared to the baseline as
the the fraction of memory requests serviced by the NM increases
from 10% to 100%. For all systems that vary the bandwidth ratio
from 2X, 4X, to 8X, the peak performance occurs much earlier than
100%, validating our hypothesis that the system optimizing for
overall system bandwidth achieves higher performance.

�e maximum performance improvement depends on the overall
bandwidth improvement. When the ratio of the bandwidth of the

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

2X

4X

8X

S
p
e
e
d
u
p

Fraction of Requests Serviced from Near Memory

add
triad
copy
scale
read

Figure 3: Speedup versus the fraction of accesses serviced from the
near memory. Note that peak performance occurs far below 100%
(i.e., the baseline system).

NM to that of the FM is 4x, we get a peak performance of 1.2x,
close to the ideal speedup of 1.25x, which we expect by improving
the system bandwidth by 25% (system bandwidth increases from
4x to 5x, or 25% improvement). A similar observation applies to
systems with di�erent bandwidth ratios; systems with 2x and 8X
bandwidth ratio have the peak performance of 1.45x and 1.11x,
respectively, while the bandwidth improves by 50% and 12.5%,
respectively. �erefore, for a tiered-memory system in which the
FM accounts for a signi�cant fraction of the overall bandwidth,
distributing memory accesses to both memories has great potential
to improve performance.

2.4 Goal: Optimum Split at Runtime
Peak performance occurs when memory accesses are distributed in
proportion to the bandwidth of each memory. When the NM has 4x
as high bandwidth, peak performance occurs when the access rate
of the NM is approximately 80%: �e NM services four-��hs of the
accesses and the FM the remaining one-��h of the accesses. �e
same principle applies to the case of 2X and 8X the bandwidth ratio.
�is observation that maximum system bandwidth and peak perfor-
mance occur when memory accesses are distributed in proportion
to the respective bandwidth is consistent with recent studies [1; 12],
one of which is a study by Agarwal et al. on tiered-memory systems
for GPU [1]. �e authors propose a static page placement strategy
that relies on programmers knowledge of the data structures in
workloads. However, this study has several drawbacks: First, their
scheme requires so�ware modi�cation. Second, the proposed static
scheme cannot adjust the memory access distribution at runtime.
As the prior work has limited applicability and requires program-
mer and so�ware intervention, we seek a mechanism that achieves
the desired memory access distribution at runtime without any
so�ware support.

�e key insight that achieves the desired access distribution is
the explicit control of data movement in tiered-memory systems.
When data moves from the FM to the NM, subsequent memory
access to the data will be serviced by the NM, which increases the
NM access rate. Examples of such data movement include cache
line install in the cache mode and page migration in the �at mode.
�erefore, controlling data movement can regulate the NM access

rate. To this end, we propose Bandwidth-Aware Tiered-Memory
Management (BATMAN), a runtime mechanism that manages the
memory accesses distribution in proportion to the bandwidth ratio
of the NM and the FM. �e desired NM access rate is referred to
as the target access rate (TAR). BATMAN monitors the access rate
of the NM at runtime and controls the data movement to meet
the TAR: When the NM access rate exceeds the TAR, BATMAN
disallows data movement from the FM to the NM and proactively
moves data from the NM to the FM, which lowers the NM access
rate. Also, when the NM access rate falls below the TAR, BATMAN
does not intervene in data movement that increases the NM access
rate. We develop BATMAN in the context of two NM use cases:
�rst, BATMAN in the cache mode (Section 4) and second, BATMAN
in the �at mode (Section 5). Before presenting our solutions, we
describe our experimental methodology.

3 EXPERIMENTAL METHODOLOGY
3.1 System Con�guration
We model a 16-core system similar to one Intel’s Knights Landing
sub-NUMA cluster (SNC) node [43] by a detailed event-driven x86
simulator. Table 1 shows the core parameters, the cache hierarchy
organization, and latency numbers, all of which are similar to
the con�guration of recent Intel Xeon processors [23]. Each core,
running at 3.2GHz, is a four-wide issue out-of-order processor
with a 128-entry ROB. �e on-chip cache subsystem contains a
three-level cache hierarchy with private L1 and L2 caches and an
L3 cache shared by the cores. All cache hierarchies use a 64B cache
line.

Table 1: Baseline System Con�guration

Processors
Number of Cores 16

Frequency 3.2GHz
Core width 4-wide out-of-order
Prefetcher Stream prefetcher

Last Level Cache
Shared L3 cache 16MB, 16-way, 27 cycles

Near Memory (3D-DRAM)
Capacity 4GB

Bus frequency 800MHz (DDR 1.6GHz)
Channels 8
Bus width 64 bits per channel

tCAS-tRCD-tRP-tRAS 36-36-36-144 CPU cycles
Far Memory (DDR-based DRAM)

Capacity 32GB
Bus frequency 800MHz (DDR 1.6GHz)

Channels 2
Bus width 64 bits per channel

tCAS-tRCD-tRP-tRAS 36-36-36-144 CPU cycles
�e memory system consists of a 4GB near memory (NM) using

HBM2 technology [25] and a 32GB far memory (FM) using DDR3
technology [36]. As recent speci�cation reveals that 3D-DRAM
uses the same DRAM technology as DDR-based DRAM and thus
has identical no-load latency, we assume the same timing parame-
ters in both DRAM technologies [24; 25]. However, the bandwidth

4

of the NM is higher than that of the FM. In our baseline system,
the NM (4x channel) has 4x as high bandwidth as the FM. Note
that this con�guration is similar to one sub-NUMA cluster (SNC)
node in Intel KNL. We present a sensitivity study of the bandwidth
ratio in Section 6. Our DRAM simulator is similar to USIMM [8]
and contains read and write queues for each memory channel. �e
DRAM controller prioritizes reads over writes, and writes are is-
sued in batches. �e default memory address mapping policy is the
minimalist-open page policy [28], which exploits memory channel
parallelism and also retains the bene�ts of DRAM page hits. �e
policy places a group of four consecutive cache lines in the same
DRAM page and interleaves groups of four lines among memory
channels.

Cache mode In the �rst use case of the NM, we con�gure the
NM as a hardware-managed cache that is an intermediate level
between on-chip caches and the main memory. We refer to the
cache as DRAM cache, which is a direct-mapped, 64B-cache-line-
size, and tags-with-data cache. �e con�guration of the DRAM
cache is similar to that in a recent academic study [41] and that of
commercial products [45]. We equip the DRAM cache with a cache
hit-miss predictor. �e NM access rate in the cache mode includes
all DRAM cache operations, such as miss- and writeback-related
operations [11]. To optimize for the NM access rate, the baseline
system in the cache mode installs the missed cache lines in the
DRAM cache for future memory accesses.

Flat mode In the second use case, we architect the NM as part
of the memory space. �e system exposes the NM and the FM as
two nodes to the OS, which determines the placement of memory
page in and migrates memory pages between the NM and the FM.
In our evaluation, we model a virtual memory system that translate
the virtual memory address to the physical address and uses a 4KB
page size. In this mode, we assume that the OS performs aggressive
page migration that moves a page from the FM to the NM on an
access to a page in the FM (and a page from the NM to the FM if
the NM is full) [21; 32; 35].

3.2 Workloads
We use Pin and SimPoints [33; 40] to capture a representative
region of one billion instructions from each workload of various
benchmark suites, including SPEC CPU2006 [18; 19], STREAM [34],
and high performance computing (HPC) workloads. We number
the HPC workloads, which represent weather research and forecast
(hpc1), high-performance computing cluster (hpc2), computational
�uid dynamics (hpc3), in-cylinder �ow and combustion (hpc4), and
multi-purpose explicit and implicit �nite element analysis (hpc5).
We evaluate 20 workloads, including ten memory-intensive SPEC
workloads, �ve STREAM and �ve HPC workloads. Table 2 shows
the characteristics of the 20 workloads used in our study. Note that
the working set size is the aggregate size of all 16 cores, which
is observed during the simulation, unlike studies that report the
resident set size (rss) and the virtual size (vsz) for the entire exe-
cution of workloads [16; 19]. �e L3 MPKI re�ects the bandwidth
consumption of evaluated workloads, which is consistent with that
of prior work [16; 34].

We evaluate our study by executing benchmarks in the rate
mode, which executes the same benchmark on all cores. As we

shall see in a later section, the e�ectiveness of our scheme depends
on the relative size of the application working set with respect to
the NM capacity. �erefore, we divide the SPEC workload into
two categories: Applications whose aggregated working set (for 16
cores) is larger than 4GB are categorized as SPEC BIG; otherwise,
they are categorized as SPEC SML.

Table 2: Workload Characteristics

Category Name L3 MPKI Aggregate
Footprint(GB)

STREAM

add 83 3.58
triad 73 3.58
copy 71 2.38
scalar 64 2.38
read 43 2.38

HPC

hpc1 82 2.09
hpc2 48 1.27
hpc3 46 0.72
hpc4 43 2.06
hpc5 30 1.88

SPEC SML

soplex 64 0.84
omnetpp 50 2.19

libq 48 0.50
leslie 43 1.22
astar 25 0.58

SPEC BIG

milc 65 6.70
lbm 64 6.23

Gems 53 11.4
mcf 43 18.5

bwaves 39 6.61

3.3 Figure of Merit
We measure the total execution time as the �gure of merit. As
we run the workloads in rate mode, the di�erence in execution
time of the individual benchmark within the workload is negligibly
small. We normalize the execution time to the baseline system of
the respective modes and report the speedup. Also, as the goal
of BATMAN is to control the NM access rate, we also report the
access rate of the NM, de�ned in Equation 1.

4 BATMAN IN THE CACHE MODE
�e fundamental mechanism of BATMAN is that it explicitly con-
trols the data movement between the NM and the FM and dis-
tributes the memory access proportionally to the respective band-
width. �is section examines systems in the cache mode, develops
the fundamental mechanism of BATMAN, and demonstrates BAT-
MAN for such systems, which architects the NM as a DRAM cache
(L4) between the on-chip L3 cache and the memory (the FM).

5

(b) NM Access Rate > TAR:

L4 Miss

L3 Miss

L3 Miss

(FM)

Memory

Disable more sets

DRAM Cache (NM)

Memory

(FM)

(a) BATMAN in the Cache−mode

DRAM Cache

DSIndex

(c) NM Access Rate < TAR:
Enable more sets

L4 Miss

L3 Miss

L3 Miss

(FM)

Memory

skip

DRAM Cache

L3$

L3 Miss

L4 Miss
DSIndex

skip

Normal

P

Normal

AccessCounterCache

Disabled

Normal

Disabled

Normal

Disabled

Normal

Pre−selected

Pre−selected
Enabled

Disabled

Pre−selected

cache sets

Disabled

Normal

AccessCounterTotal

increment

increment

Figure 4: Overview of BATMAN for DRAM caches. (a) BATMAN in the cache mode. BATMAN uses two counters to monitor the NM access
rate: AccessCounterCache and AccessCounterTotal. While one access to the NM increments both counters, one access to the FM increments
only the AccessCounterTotal counter. BATMAN selects cache sets as candidates that can be disabled. (b) All pre-selected sets at index lower
than DSIndex are “disabled sets,” which neither incur a tag look-up nor service any cache request. When the NM access rate is greater than
the TAR, DSIndex increases and disables more cache sets. (c) When the NM access rate is lower than the TAR, DSIndex decreases and enables
the disabled sets.

4.1 Idea: Controlling the NM Access Rate by
Partially Disabling the Cache

�e mechanism of BATMAN that controls the NM access rate
becomes the regulation of the cache hit rate for DRAM caches. Al-
though other cache operations, such as miss-related and writeback-
related operations, also contribute to the NM accesses [11], the
cache hit rate is a proxy of the NM access rate in the cache mode.
For example, when the DRAM cache has a 100% hit rate, all mem-
ory requests are serviced by the NM (DRAM cache), which leads
to a 100% NM access rate. To achieve the goal of regulating the
NM access rate at TAR, BATMAN monitors the NM access rate at
runtime and takes action based on either of the following two cases:
(1) an NM access rate higher than the TAR or (2) an NM access
rate lower than the TAR. In the �rst case, BATMAN intentionally
lowers the cache hit rate to achieve the TAR. On the other hand,
in the second case, BATMAN uses the baseline mechanism, which
increases the cache hit rate. �erefore, in either case, BATMAN
forces the system to approach the TAR.

One simple way of dynamically regulating the DRAM cache hit
rate is via partial cache disabling. When a cache set is disabled,
memory accesses to the disabled set would miss in the DRAM cache
and use the FM to obtain data. In an extreme case in which all
the cache sets are disabled, all memory accesses would miss in the
cache and rely on the FM for data, which results in both a 0% cache
hit rate and a 0% NM access rate. �erefore, explicitly controlling
the number of disabled sets is the key to controlling the NM access
rate. When the NM access rate is higher than the TAR, BATMAN
disables more cache sets, which lowers the rate. On the other hand,
when the NM access rate is lower than the TAR, BATMAN enables
the disabled sets, which increases the NM access rate.

To convert an NM access to an FM access, memory accesses to
disabled cache sets should not incur an NM access. However, to
maintain data integrity between the DRAM cache and the memory,
a memory access to a disabled set must check the DRAM cache (a

tag lookup via an NM access), ensuring that the most recent copy of
requested data is not in the cache, which consumes NM bandwidth.
To conserve the bandwidth of such accesses, BATMAN supports
the disabling of DRAM cache sets by pre-selecting a subset of the
DRAM cache sets as candidates that can be disabled. With the
knowledge of pre-selected sets, BATMAN avoids the tag look-up
overheads (NM accesses) when memory requests go to disabled
sets.

4.2 Design of BATMAN for DRAM Caches
Based on the idea of cache disabling, we develop BATMAN for
systems in the cache mode. Figure 4(a) presents an overview of
BATMAN for DRAM caches. �e key a�ribute that controls the
number of disabled cache sets is the disabled sets index (DSIndex).
�e pre-selected sets at an index lower than DSIndex are the “dis-
abled sets,” which neither incur a tag look-up overhead nor service
any cache requests, shown in Figure 4(b). �e pre-selected sets at
an index higher than DSIndex are enabled sets that can still service
cache requests. By moving the DSIndex to di�erent positions, BAT-
MAN controls a fraction of cache sets that remain enabled and thus
the NM access rate. BATMAN regulates the movement of DSIndex
by monitoring the NM access rate and comparing it to the target
access rate (TAR, 80% in our default parameters). We provision the
system to monitor the NM access rate and to increase or decrease
the DSIndex, as described below:

4.2.1 Structures. BATMAN monitors the access rate of the NM
using two 16-bit counters: AccessCounterCache and AccessCoun-
terTotal. While the AccessCounterCache counter tracks the total
number of the NM accesses, including reads, tag look-ups and
writebacks, the AccessCounterTotal counter tracks the total num-
ber of accesses to the NM and to the FM. �e NM access rate is
the value of the AccessCounterCache counter divided by the Ac-
cessCounterTotal counter. When the AccessCounterTotal counter
over�ows, we halve (right shi� by one) both counters. Figure 4(a)

6

 60

 70

 80

 90

 100

 0 20 40 60 80 100

(a) copy

N
M

 A
c
c
e
s
s
 R

a
te

 (
%

)

Normalized Execution Time (%)

baseline
BATMAN

 60

 70

 80

 90

 100

 0 20 40 60 80 100

(b) soplex

Normalized Execution Time (%)

baseline
BATMAN

 60

 70

 80

 90

 100

 0 20 40 60 80 100

(c) lbm

Normalized Execution Time (%)

baseline
BATMAN

Figure 5: NM Access Rate Versus Time. In each �gure, the x-axis is the execution time normalized to the baseline, and the y-axis is the NM
access rate recorded per 20-million-cycle interval. We show the NM access rate of both the baseline and BATMAN for three workloads: (a)
copy, (b) soplex, and (c) lbm.

shows the tracking counters and their operations. BATMAN re-
quires only two 16-bit counters and a 32-bit DSIndex, which has a
negligible storage overhead of eight bytes.

4.2.2 Operation. Memory requests are serviced by either the
NM or the FM based on the status of cache set that they access in
the DRAM cache. If a L3 miss goes to a disabled set, a pre-selected
set whose index is smaller than the DSIndex, (e.g., the top request
in Figure 4(b)), the request directly goes to the FM, without the
need for a cache look-up. On the other hand, if a L3 miss goes to
other sets, either normal sets or pre-selected sets whose index is
larger than the DSIndex (e.g., the bo�om request in Figure 4(b)),
the request follows a normal operation: It looks up the cache set to
�nd the corresponding data block. If the request hits in the cache,
the request is serviced by the NM; otherwise, the request goes to
the FM for data and installs the data in the cache.

4.2.3 Regulating DSIndex and Hysteresis. BATMAN continu-
ously monitors the NM access rate by computing the ratio of Ac-
cessCounterCache to AccessCounterTotal to determine whether
the NM access rate exceeds the TAR. If the NM access rate exceeds
the TAR, BATMAN increases the DSIndex until the rate is within a
2% guard-band of the TAR. If the NM access rate is lower than the
TAR, BATMAN decreases DSIndex until the rate is within the 2%
guard-band. For a fast converge time, the length of each DSIndex
movement, either an increase or a decrease, is proportional to the
delta between the measure NM access rate and the TAR.1 Before
increasing the DSIndex, BATMAN �ushes the sets that would be
disabled because the index of the sets becomes lower than the
DSIndex. Note that the cache �ushing overhead includes reading
the data from the DRAM cache and writing the data back to the
memory should the block is dirty.

1We discuss the design of contiguity in disabled sets only for simplicity. In our
implementation, BATMAN chooses the candidates (i.e., pre-selected sets) based on
hashed indexing. �at is, only every Nth set is eligible for cache disabling; also, the
DSIndex changes by N on a movement. For the default parameters, we use N=5 in our
design. �e advantage of hashed indexing is the reduction of the traversal time, in
which the DSIndex reaches to hot regions of sets that are far away from the DSIndex,
by N times.

4.3 �e NM Access Rate with BATMAN
As the goal of BATMAN is to regulate the NM access rate, we
�rst show the NM access rate of workloads over time during the
execution. We track the NM access rate for every 20 million cycles
and show three sampled workloads in Figure 5. In each one, the
x-axis is the execution time normalized to the baseline, the y-axis
is the NM access rate, and two con�gurations, the baseline and
BATMAN, are shown in the graph. Figure 5(a) and Figure 5(b) are
copy and soplex, which have an almost 100% NM access rate in the
baseline; BATMAN is e�ective at regulating the NM access rate at
80%, the TAR. In addition, Figure 5(c) is lbm, with di�erent phases
that have various access rates. BATMAN is e�ective at adapting to
the phases and maintaining the NM access rate at the TAR.

In addition to the NM access rate per interval, we also show the
average NM access rate for whole execution. Figure 6 presents the
NM access rate for both the baseline system and BATMAN. Recall
that the baseline system has no disabled cache sets and always
installs cache lines in the cache a�er a cache miss. In the baseline,
the access rate of the NM is 95% on average, with many workloads
exceeding 90%. Workloads with a high NM access rate is consistent
with the reported workloads of Intel Knights Landing [44]. �ese
workloads have a working set size that is smaller than the NM
capacity, so their working set �ts in the NM, which results in a
high NM access rate. In contrast, for workloads whose working
set size is larger than the NM (SPEC BIG), the NM access rate is
not as high. For those workloads whose NM access rate is over the
TAR, BATMAN consistently regulates the rate at the TAR, 80% in
this case. For other workloads, BATMAN has negligible changes
of the NM access rate (within 1%).

4.4 Performance Improvement from BATMAN
Figure 7 shows the speedup of BATMAN with respect to the base-
line in the cache mode. BATMAN improves the overall system
bandwidth in two ways: First, the bandwidth of the FM becomes
usable. Second, misses to the disabled sets that would have been
misses in the baseline too would now avoid the NM bandwidth
of miss-related and writeback-related operations. As BATMAN

7

 60

 70

 80

 90

 100

ad
d

tri
ad

co
py

sc
la
e

re
ad

hp
c1

hp
c2

hp
c3

hp
c4

hp
c5

so
pl
ex

om
ne

tp
p

lib
q

le
sl
ie

as
ta

r
m

ilc lb
m

G
em

s
m

cf

bw
av

es
AVG

A
c
c
e
s
s
 R

a
te

 (
%

)

Baseline BATMAN

Figure 6: �e NM Access Rate of the Baseline and BATMAN

improves overall system bandwidth, BATMAN provides an average
speedup of 11%. More speci�cally, for applications whose working
set �ts in the cache, BATMAN consistently improves performance
by as much as 23%. In addition, for applications whose working
set is larger than the NM, BATMAN accurately captures and ef-
fectively reacts to the phases. For example, for lbm, we observe
that adjusting the DSIndex captures di�erent phases, shown in
Figure 5(c), which results in 24% performance improvement.

 0

 10

 20

 30

ad
d

tri
ad

co
py

sc
la
e

re
ad

hp
c1

hp
c2

hp
c3

hp
c4

hp
c5

so
pl
ex

om
ne

tp
p

lib
q

le
sl
ie

as
ta

r
m

ilc lb
m

G
em

s
m

cf

bw
av

es
AVG

S
p
e
e
d
u
p
 (

%
)

Figure 7: Speedup with BATMAN in the Cache Mode

5 BATMAN IN THE FLAT MODE
BATMAN works for systems not only in the cache mode but also in
the �at mode. Recall that in the �at mode, the system uses the NM
as part of the memory space and relies on the operating system to
performs dynamic page migration for data locality [21; 35]. Page
migration relieves the system from being sensitive to the initial
placement of memory pages. For example, although a frequently
access page may be initially placed in the FM, an access to the page
transfers the accessed page from the FM to the NM, which allows
subsequent memory accesses to the page to be serviced by the
NM. When the size of the application working set is smaller than
the capacity of the NM, a page migration scheme will eventually
move the entire working set to the NM, thus underusing the FM
bandwidth. Even when the working set does not �t in the NM, the
page migration scheme would move frequently accessed data to
the NM so that almost all memory requests are serviced by the NM.
Ideally, we want page migration for data locality and yet ensure
that the bandwidth utilization of both the NM and FM is balanced
at the target access rate (TAR).

5.1 Idea: Regulate Direction of Migration
We apply the idea of BATMAN that explicitly controls data move-
ment to meet the TAR to systems in the �at mode. In �at mode,
page migration, in either direction from the NM to the FM or from
the FM to the FM, is in the control of the OS. In our baseline system,
the OS aggressively migrates a page from the FM to the NM on an
access to the FM (also moves a page from the NM to the FM if NM is
full). To control the data movement, BATMAN adds the constraint
of the NM access rate when the OS is migrating the page because
the NM access rate depends on the direction of the page migration:
Migrating pages from the FM to the NM, referred to as page up-
grade, increases the NM access rate; similarly, downgrading pages
from the NM to the FM reduces the NM access rate. �erefore,
BATMAN monitors the NM access rate at runtime and provides the
information to the OS that decides the direction of page migration.
�rough controlling the direction of page migration, BATMAN
explicitly controls data movement and enforce the NM bandwidth
utilization at the TAR.2

FM

>TAR: Downgrade <TAR: Upgrade

NM FM

NM NMFM

AccessCounterTotal

AccessCounterNM
> Target Access Rate?
<

Figure 8: Overview of BATMAN in the �at mode: monitor the ac-
cess rate of the NM and change the direction of page migration

5.2 BATMAN Design for Flat Mode Systems
�e key idea of BATMAN for �at-mode systems is to regulate
the direction of page migration based on the NM access rate. If
the NM access rate is lower than the TAR, BATMAN upgrades
the accessed pages from the FM to the NM; otherwise, BATMAN
downgrades pages from the NM to the FM. Figure 8 shows an
overview of BATMAN for �at-mode systems. �e default system
has a 4x-bandwidth NM and a 1x-bandwidth FM, so the TAR is
80%. We provision the system to monitor the access rate of the NM
and to decide to upgrade or downgrade pages, as described below:

5.2.1 Structures. BATMAN dynamically monitors the fraction
of total memory accesses that are serviced by the NM by using two
counters: AccesssCounterNM and AccessCounterTotal, which count
the number of accesses to the NM and to the system (both the
NM and the FM), respectively. �e ratio of the AccessCounterNM
counter to the AccessCounterTotal counter shows the fraction of
memory accesses serviced by the NM. Note that both these coun-
ters account for all memory activity and increments on demand,
2 Although we assume an aggressive page migration policy, BATMAN can be applied
to other policies, too. For example, for a frequency-based page migration strategy [35],
BATMAN allows up to 80% accesses to be serviced by the NM.

8

prefetch, or writeback memory requests. In our design, we use
two 16-bit hardware registers for the counters. When the Access-
CounterTotal counter over�ows, we halve (right shi� by one) both
counters. �erefore, BATMAN requires a storage overhead of only
four bytes (two 16-bit counters) to track the accesses to the NM
and the system.

5.2.2 Operation. On each access, we compute the ratio of Ac-
cesCounterNM to AccessCounterTotal, which overlaps with the
memory address translation. If this ratio is less than the TAR, we
want to increase the access rate of the NM: If the memory request
goes to FM, BATMAN upgrades the requested page from the FM to
the NM. Similarly, if the ratio is greater than the TAR, we want to
reduce the access rate of the FM: If the memory request accesses a
page in the NM, BATMAN downgrades the requested page from
the NM to the FM. BATMAN leverages the existing OS support
for page migration between the NM and the FM. Regulating such
downgrade and upgrade operation ensures that the NM access rate
becomes close to the TAR. Note that BATMAN still utilizes all the
memory capacity by downgrading a page to the FM, instead of
evicting it to the storage.

5.2.3 Hysteresis on Threshold. Using a single threshold of the
TAR leads to frequent switching between upgrade and downgrade
modes. When the NM access rate is close to the TAR, the system can
continuously switch between upgrade and downgrade operation.
To avoid this oscillatory behavior, we provision a guard band of
2% in either direction in the decision of upgrade and downgrade.
�erefore, page upgrades occur only when the measured access
rate of the NM is less than (TAR-2%) and downgrades occur only
when the measured access rate of the NM exceeds (TAR+2%). In the
intermediate zone, between (TAR-2%) and (TAR+2%), BATMAN
does not perform either upgrades or downgrades.

5.3 E�ectiveness of BATMAN at Reaching TAR
Figure 9 shows the NM access rate for the baseline system with
page migration and BATMAN. In the baseline, all workloads have a
NM access rate close to 100%, even for the SPEC BIG benchmarks
suites whose working set is larger than the NM capacity because
these workloads have high spatial locality within a page. For ex-
ample, a�er an accesses to the FM upgrades a page to the NM,
if the next 15 memory references go to other lines in the page,
the NM access rate is as high as 15/16, or close to 94%. For other
applications, as their working set �ts in NM, all the pages are trans-
ferred to the NM and provides a 100% NM access rate. BATMAN
redistributes some of the memory tra�c to the FM, and balance
the system based on the bandwidth ratio of the NM and the FM.
For all workloads, BATMAN e�ectively obtains a NM access rate
close to the target value of 80%. �us, our proposed mechanism
of BATMAN is e�ective at maintaining the NM access rate at the
TAR, with a simple monitoring logic at runtime.

5.4 Performance Improvement from BATMAN
Figure 10 shows the speedup from BATMAN compared to the base-
line system that always performs page migration between the NM
and the FM on an access to the FM. BATMAN improves perfor-
mance of all workloads by an average of 10%. �e performance

 60

 70

 80

 90

 100

ad
d

tri
ad

co
py

sc
la
e

re
ad

hp
c1

hp
c2

hp
c3

hp
c4

hp
c5

so
pl
ex

om
ne

tp
p

lib
q

le
sl
ie

as
ta

r
m

ilc lb
m

G
em

s
m

cf

bw
av

es
AVG

A
c
c
e
s
s
 R

a
te

 (
%

)

Baseline BATMAN

Figure 9: Access rate of the near memory. BATMAN enforces the
NM access rate close to the TAR (80%) for all workloads.

improvement comes from two factors: First, for workloads whose
working set �ts in the NM, BATMAN e�ectively uses both NM
and FM bandwidth and thus has higher throughput for those work-
loads. All HPC, STREAM and SPEC SML (soplex-astar) workloads
belong to this group. Second, for workloads form the SPEC BIG
category, whose working set is larger than the NM capacity, (e.g.,
bwaves-milc), BATMAN reduces the number of page migration be-
tween the NM and the FM because BATMAN allows only a certain
number of page upgrades. As page migration consumes signi�cant
memory bandwidth on both the NM and FM, BATMAN helps re-
duce the bandwidth usage for this group of workloads. �erefore,
BATMAN improves performance regardless of the working set of
the application.

 0

 5

 10

 15

 20

 25

 30

ad
d

tri
ad

co
py

sc
la
e

re
ad

hp
c1

hp
c2

hp
c3

hp
c4

hp
c5

so
pl
ex

om
ne

tp
p

lib
q

le
sl
ie

as
ta

r
m

ilc lb
m

G
em

s
m

cf

bw
av

es
AVG

S
p
e
e
d
u
p
 (

%
)

Figure 10: Speedup of BATMAN for systems in the �at mode

6 RESULTS AND ANALYSIS
6.1 Sensitivity Study for Bandwidth Ratio
In our default system, we assume the Near Memory has 4X band-
width as that of the Far Memory, which is similar to the recent
industry product [43–45]. A recent report indicates that the next
generation of 3D-DRAM provides two lines of products [47]: high-
end HBM3, which o�ers as approximately 8X high bandwidth as
DDR4, and low-cost HBM2, which provides as 2X high bandwidth
as DDR4. �erefore, we conduct a sensitivity study by varying the
bandwidth ratio provided by the NM from 2X to 8X. As only the
NM bandwidth changes, we vary the bandwidth ratio by �xing the
number of DRAM channels in the FM and varying the number of
DRAM channels in the NM. �at is, for an 8X ratio, the number
of channels in the NM is as eight times as that in the FM. Table 3

9

shows the comparison of con�gurations. Notice that when the
bandwidth ratio is 2X, the bandwidth increase from BATMAN is as
high as 50%, which strongly suggests that when the FM bandwidth
accounts for a signi�cant fraction of overall system bandwidth,
we should optimize the system for overall bandwidth, not the NM
access rate.

Table 3: Sensitivity Study of Bandwidth Ratio

NM FM Utilized System BW BW
BW BW Baseline BATMAN Increase
2X 1X 2X 3X +50%
4X 1X 4X 5X +25%
8X 1X 8X 9X +12.5%

Shown in Figure 11, when the ratio is 2X, BATMAN improves
performance by more than 30% because the aggregate bandwidth
is as 1.5 times high bandwidth as that of the NM, providing a huge
increase in available bandwidth. When the ratio is 8X, the room for
improvement is small because using the FM bandwidth increases
total bandwidth by 12.5% and provides 9% and 5% speedup for
systems in the cache and �at mode, respectively.

 0

 10

 20

 30

 40

 0 2 4 6 8 10

S
p
e
e
d
u
p
 (

%
)

Bandwidth Ratio

Cache Mode
Flat Mode

Figure 11: Sensitivity to the relative bandwidth of the FM: We
�x the FM bandwidth and vary the NM bandwidth from 2X to 8X.
Each con�guration is normalized to the respective baseline. When
the NM bandwidth is as 2X high as the FM bandwidth, BATMAN
improves overall bandwidth by 50% and provides more than 30%
speedup.

6.2 Power and Energy Analysis
We analyze the power consumption and the energy-delay product
(EDP) for both the cache and �at modes. As the FM is based on
DDR3 [37], we use the Micron DDR3 DRAM power calculator for
the power estimation of the FM, and we estimate the NM power
based on Micron 3D-DRAM technology [4]. For the power mea-
surement, we conservatively assume the memory system consumes
30% of the system power and the remaining system consumes 70%
of the system power [48].3

3 For systems that have high memory intensity, the memory system may consume
more than 30% of the system power. Although we conservatively assume 30%, BAT-
MAN could further improve system energy and energy-delay product if the memory
system consumes more power.

Figure 12 shows the power consumption and the energy-delay
product for the baseline and BATMAN in two modes. Note that
each con�guration is normalized to the respective baselines. With
BATMAN, the overall power consumption of the system increases
by 7% and 10% for systems in the cache and the �at mode, respec-
tively. �e power consumption contributed by BATMAN comes
from two reasons. First, BATMAN reduces the execution time,
which increases power because the all system activity must hap-
pen within a reduced time interval. Second, BATMAN exploits
the FM bandwidth in the system and incurs the active power of
the FM. However, lower execution time reduces energy consump-
tion; BATMAN reduces the energy consumption by 5% and 1% for
two modes, respectively. Also, BATMAN improves the EDP of the
system by 13% and 11% for two modes, respectively.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Speedup Power Energy EDP

N
o
rm

a
liz

e
d
 t
o
 B

a
s
e
lin

e Cache Mode
Flat Mode

Figure 12: Speedup, power, energy, and EDP with BATMAN (num-
bers normalized to respective baseline)

7 RELATEDWORK
7.1 Bandwidth Optimization
�e work that is most closely related to ours is a recent study by
Agarwal et al. [1], who investigate static page placement strategies
for maximizing the bandwidth of a tiered-memory system for GPU
workloads. �ey provide programmers annotations to the GPU
codes that mark which data structures should be in the NM and
which should be in the FM. �ey maximize the overall system
bandwidth for systems with static page mapping. Our work di�ers
from theirs in two key aspects:

(1) BATMAN does not rely on programmer annotations or
knowledge of the data structure of a given program. We
show that explicitly controlling the direction of page mi-
gration is su�cient for the desired NM access rate, which
makes our proposal applicable to a wide variety of appli-
cations, including those whose source codes may not be
available.

(2) �eir proposed scheme is applicable to only systems that
do not perform data migration and would not be useful
for cases when the NM is used as a hardware-managed
cache (Section 4) or when the memory system supports
dynamic page migration (Section 5). However, we show
that BATMAN is useful even if the system is in the cache
or �at mode. �us, BATMAN , which is applicable to a

10

much wider range of systems, is not restricted to systems
with static page mapping.

We compare BATMAN to the prior work and show the per-
formance in Figure 13. We model a system in the �at mode, and
the baseline is a static page placement policy that places memory
pages in the NM until the NM is full. (�is baseline is referred to
as LOCAL in the prior work.) We model the prior work that uses
static bandwidth-aware page placement strategy (labeled Static
BW-AWARE), and BATMAN in the �at mode with page migration.
For workloads whose working set �ts in the NM (add-astar), the
performance of BATMAN is very close to that of the prior work (all
within 1%), but BATMAN does not require any so�ware modi�ca-
tion. However, for workloads whose working set is larger than the
NM (milc-bwaves), BATMAN signi�cantly outperforms the prior
work for two reasons: First, static page placement is ine�ective
when the working set that accounts for 80% of memory accesses
is larger than the NM size. For example, we found that lbm and
Gems have such working set larger than 4GB. Second, BATMAN is
a runtime mechanism that is able to capture phases in programs
and adjust the control of data movement. On average, the prior
work improves performance by 14% while BATMAN provides a
speedup of 29% over the baseline.

 0

 1

 2

 3

ad
d

tri
ad

co
py

sc
al
e

re
ad

hp
c1

hp
c2

hp
c3

hp
c4

hp
c5

so
pl
ex

om
ne

tp
p

lib
q

le
sl
ie

as
ta

r
m

ilc lb
m

G
em

s
m

cf

bw
av

es
AVG

S
p
e
e
d
u
p

Static BW-AWARE
BATMAN

Figure 13: Performance comparison of prior work (labeled Static
BW-AWARE) and BATMAN.

7.2 DRAM Cache
To use the FM bandwidth, Sim et al. proposes mostly-clean DRAM
cache [42], which uses a cache-miss predictor and accesses the
FM in parallel with the cache access. �e goal of their work is to
mitigate the high cache-miss latency in case the cache has signif-
icant amount of contention. However, as their scheme accesses
both DRAM cache (NM) and the memory (FM) for one memory re-
quest, it does not save the NM tra�c. In fact, the scheme increases
the memory tra�c and consumes more memory bandwidth (two
accesses per request). �us, their proposal does not increase the
aggregate memory bandwidth of the system. In contrast, BATMAN
avoids the tag lookup when the cache set is disabled and incurs only
one access for each such request, thereby increasing the overall
bandwidth of the system.

7.3 So�ware Optimization
In the context of multi-node systems, several page migration poli-
cies have been proposed in the last decades to improve the perfor-
mance of non-uniform memory architecture (NUMA), where the
local nodes are an order of magnitude faster in terms of latency
than the remote nodes [5; 6; 29; 30; 35; 46]. As node traversal in-
curs a signi�cant overhead in a multi-node system, optimizing the
locality of compute (threads) and data (memory page allocation)
e�ectively improves performance [30; 46]. However, in the context
of tiered-memory system, all data are in the same node but di�erent
memory component. Meswani et al. proposes a hardware-so�ware
mechanism that tracks the hot pages in the FM and moves the pages
to the NM to maximize the NM access rate. In constrast, BATMAN
optimizes data allocation between two memory components in a
single-node system to improve overall bandwidth. However, the
studies in multi-node systems are orthogonal to BATMAN, and fu-
ture studies of multi-node systems should account for a multi-node
system, where each node has two memory components.

Other studies propose so�ware optimization that optimizes for
latency reduction in a NUMA environment. Golub and Van Loan
uses cache blocking mechanism to �t the working set size in the
NM [15] , while Blagodurov and Fedorova propose use-level thread
scheduling to align compute and data in the same node [3]. How-
ever, in the case of tiered-memory systems with a high-bandwidth
NM, which has a similar latency to that of the FM, we show that
computer and system architects may need to revisit these propos-
als. For example, although cache-blocking for the NM is useful, an
intentional placement of certain part of the blocked working set in
the FM improves performance.

8 CONCLUSION
Emerging 3D-DRAM technology, such as HBM and HMC, provides
as 4x to 8x high bandwidth as the commodity DDR-based DRAM.
�e technology is used in tiered-memory systems, in which the
near memory (NM) is a high-bandwidth memory and the far mem-
ory (FM) is a high-capacity DDR-based memory. In such systems,
conventional management approaches for tiered-memory systems
focus on improving the number of memory requests serviced by
the NM. However, such techniques under-utilize the FM bandwidth,
especially when the frequently-accessed working set �ts into the
NM. We show that system bandwidth and performance are maxi-
mized when memory accesses are split between the NM and the
FM proportional to the bandwidth of each memory. To this end,
this paper makes the following contributions:

(1) To the best of our knowledge, this is the �rst study that
proposes a runtime mechanism to maximize system band-
width for tiered-memory systems. We leverage the key
insight that the control of data movement can regulate
the NM access rate and propose Bandwidth-Aware Tiered-
MemoryManagement (BATMAN), which explicitly controls
the data movement between the NM and the FM to achieve
the desired NM access rate.

(2) We apply BATMAN to systems that use the NM as a
hardware-managed cache (cache mode). BATMAN tracks
the NM access rate at runtime and disables a fraction of the
cache sets to obtain the target access rate. We show that

11

adjusting the DSIndex at runtime regulates the NM access
rate and also adapts to dynamic phases of workloads.

(3) We also apply BATMAN to systems that use the NM as
part of memory space and migrate pages between the NM
and the FM (�at mode). Monitoring the NM access rate
at run-time and dynamically controlling the direction of
page migration is highly e�ective at reaching the target
access rate, thus improving performance.

We demonstrate that BATMAN are applicable to systems in both
modes, and our proposed implementation is simple and highly
e�ective at maintaining the NM access rate at the TAR. BATMAN
incurs a storage overhead of only eight bytes and requires negligible
so�ware support. Our studies on a 16-core system with a 4GB NM
and a 32GB FM show that BATMAN improves performance for
systems in the cache and �at mode by an average of 11% and 10%,
respectively; also, BATMAN improves the system energy-delay-
product by 13% for systems in the cache mode and 11% for systems
in the �at mode.

ACKNOWLEDGEMENTS
�is work was supported in part by NSF grant 1319587 and the
Center for Future Architecture Research (C-FAR), one of the six
SRC STARnet Centers, sponsored by MARCO and DARPA.

REFERENCES
[1] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and Stephen W.

Keckler. 2015. Page Placement Strategies for GPUs Within Heterogeneous
Memory Systems. SIGARCH Comput. Archit. News 43, 1, 607–618. h�ps://doi.
org/10.1145/2786763.2694381

[2] Frank Bellosa. 2004. When physical is not real enough. In Proceedings of the
ACM SIGOPS European workshop.

[3] Sergey Blagodurov and Alexandra Fedorova. 2011. User-level Scheduling on
NUMA Multicore Systems under Linux. In in Proc. of Linux Symposium.

[4] Jag Bolaria. 2011. Micron Reinvents DRAM Memory. Microprocessor Report
(2011).

[5] William J. Bolosky, Michael L. Sco�, Robert P. Fitzgerald, Robert J. Fowler, and
Alan L. Cox. 1991. NUMA Policies and �eir Relation to Memory Architecture.
In Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV). ACM, New York,
NY, USA, 212–221. h�ps://doi.org/10.1145/106972.106994

[6] Rohit Chandra, Sco� Devine, Ben Verghese, Anoop Gupta, and Mendel Rosen-
blum. 1994. Scheduling and Page Migration for Multiprocessor Compute Servers.
In Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VI). ACM, New York,
NY, USA, 12–24. h�ps://doi.org/10.1145/195473.195485

[7] D. W. Chang, G. Byun, H. Kim, M. Ahn, S. Ryu, N. S. Kim, and M. Schulte. 2013.
Reevaluating the latency claims of 3D stacked memories. In Design Automation
Conference (ASP-DAC), 2013 18th Asia and South Paci�c. 657–662.

[8] Niladrish Cha�erjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth H.
Pugsley, Aniruddha N. Udipi, Ali Sha�ee, Kshitij Sudan, and Manu Awasthi.
2012. USIMM. University of Utah.

[9] Chiachen Chou, Aamer Jaleel, and Moinuddin �reshi. 2015. BATMAN: Max-
imizing Bandwidth Utilization of Hybrid Memory Systems. Technical Report.
School of Electrical and Computer Engineering, Georgia Institute of Technology.

[10] Chiachen Chou, Aamer Jaleel, and Moinuddin K. �reshi. 2014. CAMEO: A
Two-Level Memory Organization with Capacity of Main Memory and Flexibility
of Hardware-Managed Cache. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-47). IEEE Computer Society,
Washington, DC, USA, 1–12. h�ps://doi.org/10.1109/MICRO.2014.63

[11] Chiachen Chou, Aamer Jaleel, and Moinuddin K. �reshi. 2015. BEAR: Tech-
niques for Mitigating Bandwidth Bloat in Gigascale DRAM Caches. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 198–210. h�ps://doi.org/10.1145/2749469.
2750387

[12] S.K. De, R.A. Stewart, G.C. Cascaval, and D.T. Chun. 2015. System and method
for allocating memory to dissimilar memory devices using quality of service.
(July 28 2015). US Patent 9,092,327.

[13] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P. Jouppi. 2010.
Simple but E�ective Heterogeneous Main Memory with On-Chip Memory
Controller Support. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’10). IEEE
Computer Society, Washington, DC, USA, 1–11. h�ps://doi.org/10.1109/SC.2010.
50

[14] Magnus Ekman and Per Stenstrom. 2004. A Case for Multi-level Main Memory.
In Proceedings of the 3rd Workshop on Memory Performance Issues: In Conjunction
with the 31st International Symposium on Computer Architecture (WMPI ’04).
ACM, New York, NY, USA, 1–8. h�ps://doi.org/10.1145/1054943.1054944

[15] G.H. Golub and C.F. Van Loan. 1996. Matrix Computations. Johns Hopkins
University Press.

[16] Darryl Gove. 2007. CPU2006 Working Set Size. SIGARCH Comput. Archit. News
35, 1 (March 2007), 90–96.

[17] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan. 2014. Bi-Modal
DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. 38–50. h�ps:
//doi.org/10.1109/MICRO.2014.36

[18] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17. h�ps://doi.org/10.1145/1186736.
1186737

[19] John L. Henning. 2007. SPEC CPU2006 Memory Footprint. SIGARCH Comput.
Archit. News 35, 1 (March 2007), 84–89.

[20] HMCC. 2013. HMC Speci�cation 1.0. h�p://www.hybridmemorycube.org
[21] M. A. Holliday. 1989. Reference History, Page Size, and Migration Daemons in

Local/Remote Architectures. In Proceedings of the �ird International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS III). ACM, New York, NY, USA, 104–112. h�ps://doi.org/10.1145/70082.
68192

[22] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. 2003. Design and Implemen-
tation of Power-aware Virtual Memory. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference (ATEC ’03). USENIX Association, Berke-
ley, CA, USA, 5–5. h�p://dl.acm.org/citation.cfm?id=1247340.1247345

[23] Intel. 2013. Intel Core i7 Processor. h�p://www.intel.com/processor/corei7/
speci�cations.html

[24] JEDEC. 2013. DDR4 SPEC.
[25] JEDEC. 2014. High Bandwidth Memory (HBM) DRAM, Gen 2.
[26] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsa�. 2014. Unison Cache: A Scalable

and E�ective Die-Stacked DRAM Cache. In 2014 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. 25–37. h�ps://doi.org/10.1109/MICRO.
2014.51

[27] Djordje Jevdjic, Stavros Volos, and Babak Falsa�. 2013. Die-stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA ’13). ACM, New York, NY, USA, 404–415. h�ps://doi.org/10.
1145/2485922.2485957

[28] Dimitris Kaseridis, Je�rey Stuecheli, and Lizy Kurian John. 2011. Minimal-
ist Open-page: A DRAM Page-mode Scheduling Policy for the Many-core
Era. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-44). ACM, New York, NY, USA, 24–35. h�ps:
//doi.org/10.1145/2155620.2155624

[29] Richard P. Larowe, Jr. and Carla Schla�er Ellis. 1991. Experimental Comparison
of Memory Management Policies for NUMA Multiprocessors. ACM Trans.
Comput. Syst. 9, 4 (Nov. 1991), 319–363. h�ps://doi.org/10.1145/118544.118546

[30] Baptiste Lepers, Vivien �éma, and Alexandra Fedorova. 2015. �read and
Memory Placement on NUMA Systems: Asymmetry Ma�ers. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC ’15). USENIX Association, Berkeley, CA, USA, 277–289. h�p://dl.acm.org/
citation.cfm?id=2813767.2813788

[31] Gabriel H. Loh and Mark D. Hill. 2011. E�ciently Enabling Conventional Block
Sizes for Very Large Die-stacked DRAM Caches. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM, New
York, NY, USA, 454–464. h�ps://doi.org/10.1145/2155620.2155673

[32] Gabriel H. Loh, Nuwan Jayasena, Jaewoong Chung, Steven K. Reinhardt,
J. Michael OConnor, and Kevin McGrath. 2012. Challenges in Heterogeneous Die-
Stacked and O�-Chip Memory Systems. In 3rd Workshop on SoCs, Heterogeneous
Architectures and Workloads.

[33] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190–200.
h�ps://doi.org/10.1145/1065010.1065034

[34] John D. McCalpin. 1991. STREAM: Sustainable Memory Bandwidth in High
Performance Computer. h�p://www.cs.virginia.edu/stream/

12

https://doi.org/10.1145/2786763.2694381
https://doi.org/10.1145/2786763.2694381
https://doi.org/10.1145/106972.106994
https://doi.org/10.1145/195473.195485
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1145/2749469.2750387
https://doi.org/10.1109/SC.2010.50
https://doi.org/10.1109/SC.2010.50
https://doi.org/10.1145/1054943.1054944
https://doi.org/10.1109/MICRO.2014.36
https://doi.org/10.1109/MICRO.2014.36
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://www.hybridmemorycube.org
https://doi.org/10.1145/70082.68192
https://doi.org/10.1145/70082.68192
http://dl.acm.org/citation.cfm?id=1247340.1247345
http://www.intel.com/processor/corei7/specifications.html
http://www.intel.com/processor/corei7/specifications.html
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1145/2485922.2485957
https://doi.org/10.1145/2155620.2155624
https://doi.org/10.1145/2155620.2155624
https://doi.org/10.1145/118544.118546
http://dl.acm.org/citation.cfm?id=2813767.2813788
http://dl.acm.org/citation.cfm?id=2813767.2813788
https://doi.org/10.1145/2155620.2155673
https://doi.org/10.1145/1065010.1065034
http://www.cs.virginia.edu/stream/

[35] M.R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G.H. Loh.
2015. Heterogeneous memory architectures: A HW/SW approach for mixing die-
stacked and o�-package memories. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on.

[36] Micron. 2010. 1Gb DDR3 SDRAM.
[37] Micron. 2012. Calculating DDR Memory System Power Introduction.
[38] Micron. 2014. HMC Gen2. Micron.
[39] NVIDIA. 2014. NVIDIA Pascal. h�p://blogs.nvidia.com/blog/2014/03/25/

gpu-roadmap-pascal/
[40] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,

and Brad Calder. 2003. Using SimPoint for Accurate and E�cient Simulation.
In Proceedings of the 2003 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS ’03). ACM, New York,
NY, USA, 318–319. h�ps://doi.org/10.1145/781027.781076

[41] Moinuddin K. �reshi and Gabe H. Loh. 2012. Fundamental Latency Trade-o�
in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with a
Simple and Practical Design. In Proceedings of the 2012 45th Annual International
Symposium on Microarchitecture. 12. h�ps://doi.org/10.1109/MICRO.2012.30

[42] Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike O’Connor, and Mithuna
�o�ethodi. 2012. A Mostly-Clean DRAM Cache for E�ective Hit Speculation
and Self-Balancing Dispatch. In Proceedings of the 2012 45th Annual International
Symposium on Microarchitecture. 11. h�ps://doi.org/10.1109/MICRO.2012.31

[43] Avinash Sodani. 2015. Knights Landing (KNL): 2nd Generation Intel Xeon Phi
Processor. (Hot-Chips 2015). h�p://tinyurl.com/hotchips-2015-sodani

[44] Avinash Sodani. 2016. Knights Landing Intel Xeon Phi CPU: Path to Parallelism
with General Purpose Programming. (Keynote Address HPCA 2016).

[45] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y. C. Liu. 2016. Knights Landing: Second-Generation Intel Xeon
Phi Product. IEEE Micro 36, 2 (Mar 2016), 34–46.

[46] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2015. Data Sharing
or Resource Contention: Toward Performance Transparency on Multicore Sys-
tems. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC ’15). USENIX Association, Berkeley, CA, USA, 529–540.
h�p://dl.acm.org/citation.cfm?id=2813767.2813807

[47] Kevin Tran. 2016. �e Era of High Bandwidth Memory. In Hot Chips: A Sympo-
sium on High Performance Chips.

[48] �omas Vogelsang. 2010. Understanding the Energy Consumption of Dynamic
Random Access Memories. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’43). IEEE Computer
Society, Washington, DC, USA, 363–374.

13

http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/
http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/
https://doi.org/10.1145/781027.781076
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2012.31
http://tinyurl.com/hotchips-2015-sodani
http://dl.acm.org/citation.cfm?id=2813767.2813807

	Introduction
	Background and Motivation
	3D-DRAM in a Tiered-Memory System
	Conventional Wisdom: Optimize for the NM Access Rate
	Optimize for the Overall System Bandwidth
	Goal: Optimum Split at Runtime

	Experimental Methodology
	System Configuration
	Workloads
	Figure of Merit

	BATMAN in the Cache Mode
	Idea: Controlling the NM Access Rate by Partially Disabling the Cache
	Design of BATMAN for DRAM Caches
	The NM Access Rate with BATMAN
	Performance Improvement from BATMAN

	BATMAN in the Flat Mode
	Idea: Regulate Direction of Migration
	BATMAN Design for Flat Mode Systems
	Effectiveness of BATMAN at Reaching TAR
	Performance Improvement from BATMAN

	Results and Analysis
	Sensitivity Study for Bandwidth Ratio
	Power and Energy Analysis

	Related Work
	Bandwidth Optimization
	DRAM Cache
	Software Optimization

	Conclusion

