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As memory systems scale, maintaining their Reliability Availability and Serviceability (RAS) is becoming
more complex. To make matters worse, recent studies of DRAM failures in data centers and supercomputer
environments have highlighted that large-granularity failures are common in DRAM chips. Furthermore,
the move toward 3D-stacked memories can make the system vulnerable to newer failure modes, such as those
occurring from faults in Through-Silicon Vias (T'SVs). To architect future systems and to use emerging tech-
nology, system designers will need to employ strong error correction and repair techniques. Unfortunately,
evaluating the relative effectiveness of these reliability mechanisms is often difficult and is traditionally
done with analytical models, which are both error prone and time-consuming to develop. To this end, this
article proposes FauLrSiv, a fast configurable memory-reliability simulation tool for 2D and 3D-stacked
memory systems. FaultSim employs Monte Carlo simulations, which are driven by real-world failure statis-
tics. We discuss the novel algorithms and data structures used in FaultSim to accelerate the evaluation
of different resilience schemes. We implement BCH-1 (SECDED) and ChipKill codes using FaultSim and
validate against an analytical model. FaultSim implements BCH-1 and ChipKill codes with a deviation of
only 0.032% and 8.41% from the analytical model. FaultSim can simulate 1 million Monte Carlo trials (each
for a period of 7 years) of BCH-1 and ChipKill codes in only 34 seconds and 33 seconds, respectively.
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1. INTRODUCTION

Fast and accurate simulation tools are vital for computer architects to analyze a prob-
lem and to compare the effectiveness of different solutions. Such tools become even
more critical when the community is trying to address a new set of constraints in
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designing the system or trying to incorporate an emerging technology that has widely
different properties than traditional technologies. For example, Waittch [Brooks et al.
2000] was instrumental in driving power-related architecture research when power
became the primary constraint in system design. Similarly, CACTI [Muralimanohar
et al. 2007] equipped architects to study the timing and area of different cache organi-
zations without relying on circuit designers. As the era of multicore systems dawned,
McPAT [Li et al. 2009] enabled an integrated power, area, and timing modeling frame-
work for multicore and many-core architectures. The multicore era also saw the advent
of many core performance simulators such as Graphite and Sniper [Miller et al. 2010;
Carlson et al. 2011]. In this article, we assert that memory reliability is becoming a
growing concern, and that there is a pressing need for a toolset that can compare the
effectiveness of different memory reliability solutions quickly and accurately.

Memory reliability has always been a major concern for HPC systems as the large
number of memory components in such systems can lead to frequent errors [Bergman
et al. 2008]. With technology scaling, the error rates of memory modules are likely to
increase significantly [Nair et al. 2013; Son et al. 2015], which makes maintaining re-
liability a concern even for small- and medium-scale systems [Li et al. 2011; Kim et al.
2007; Thomasian and Menon 1997; Chung 2013]. Furthermore, emerging devices such
as 3D-stacked memories present new points of failure such as Through-Silicon Vias
(TSVs) [Jiang et al. 2012]. Reliability estimation is also essential to investigate appli-
cations for new memory technologies such as PCM, ReRAM, and STT-MRAM [Qureshi
2011]. To aid system reliability modeling, several studies have collected failure data
for large systems [Schroeder et al. 2009; Schroeder and Gibson 2010]. They found that
individual DRAM chips exhibit both large-granularity failures (such as bank failures)
and bit failures at different failure rates [Sridharan and Liberty 2012; Sridharan et al.
2013, 2015]. A system designer may provision the memories with one of several mitiga-
tion techniques such as error correction codes, spare memories, RAID, Chipkill, scrub-
bing, and so forth. Given that the interaction between fault models and the mitigation
techniques is quite complex, it is not straightforward to estimate the effectiveness of
any ECC technique even when they are applied alone.

Designers can estimate memory system reliability by applying analytical mod-
els [Jian et al. 2013]. Unfortunately, developing an analytical model is quite time-
consuming and relies on several simplifying assumptions to make the model tractable.
Furthermore, analytical models are often prone to errors, and any changes in the mem-
ory system may require a new model. To make matters worse, modern memory systems
may perform periodic memory scrubbing, which becomes quite complex to incorporate
into an analytical model [Awasthi et al. 2012]. Therefore, the realm of analytical mod-
els has focused on only a few schemes such as SECDED or Chipkill [Jian et al. 2013].
Extending these models to incorporate newer failure modes (such as those arising
from 3D memories) or to an arbitrary mitigation technique is quite challenging and
cumbersome, if not impractical.

An alternative method to assess reliability of the system is via Monte Carlo simula-
tion [Kamat and Riley 1975]. In Monte Carlo simulations, to determine the probability
of a memory device failure at a certain point in time, the device lifetime is divided into
equal-sized intervals and faults are injected with a precomputed probability. Error
correction is then invoked periodically (at the scrubbing interval or on reads) on the
simulated system to determine whether an error can be detected, corrected, or repaired
using the underlying ECC scheme [Silicon Power 2010; Chen and Hsiao 1984; Chien
1964; Fyjiwara and Pradhan 1989]. By performing a large number of trials, the out-
come can be expected to converge to the system failure probability. Running repeated
trials for the entire system lifetime tends to be a compute-intensive process, spanning
several hours or days. A recent work, MEMRES, uses motivations from a prior work-
shop version of this article to model application and link effects. However, we are not
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Fig. 1. FaultSim uses novel data representations and algorithms that provide very high simulation speed
and accuracy.

aware of any existing publications detailing the data structures and algorithms that
help in mitigating the simulation time of this process to a few seconds [Wang et al. 2015;
Roberts and Nair 2014]. The large simulation times of a Monte Carlo simulator pre-
vents quick design space exploration. To this end, this article proposes Fault Simulator
(FaurLtSimm), a fast Monte Carlo simulator that uses novel fault representations and
reliability estimation techniques to reduce the simulation time by three to four orders
of magnitude.

The key parameters in memory reliability simulation are the fault rates and fault
granularity for every memory device. Representing and tracking these multigranu-
larity faults in a simulator is quite challenging. FaultSim uses space-efficient repre-
sentations for tracking faults at different granularities and quickly evaluating the
interaction between such faults. These representations also enable new algorithms for
failure detection. These optimizations reduce the simulation time of FaultSim to a few
hours, as shown in Figure 1.

To reduce simulation time even further, we employ the observation that real-world
devices show modest fault rates. At these fault rates, only a few faults occur in the
system lifetime. We leverage this insight and propose a novel Event-Based fault in-
jection framework. Rather than the traditional method of computing faults at every
time interval (which we call Interval-Based simulation) and advancing the time by a
constant value throughout the system lifetime, our Event-Based approach determines
the time between faults and advances time from one fault to the next. This enables
almost 5,000 x lower simulation time compared to the interval-based approach.

We discuss the number of Monte Carlo trials required to meet the desired precision
bounds. We validated FaultSim with analytical models and found the accuracy of BCH-
1 and Chipkill codes to be within 0.032% and 8.41% of the analytical model. We discuss
how FaultSim can be used to evaluate different schemes such as ECC, Chipkill, Sparing,
and TSV sparing (for 3D memories) while incorporating memory scrubbing. This article
demonstrates the ability of FaultSim to explore the reliability design space rapidly and
faithfully. Furthermore, for the benefit of the community, FaultSim is open sourced and
is available for download at the developers’ websites.

2. BACKGROUND AND MOTIVATION
2.1. Need for Memory Resilience Studies

Memory reliability has always been a concern for large-scale HPC systems and is iden-
tified as one of the key challenges in the design of Exascale supercomputers [Bergman
et al. 2008]. Similarly, high-availability servers guard against memory failures by de-
signing memory systems that can support Chipkill or a RAID-like architecture that
can tolerate memory channel failure [Emery 2013]. With technology scaling, memory
cells become inherently less reliable, which means future memory systems will need to
pay even more attention to memory reliability [Nair et al. 2013; Son et al. 2015]. Fur-
thermore, to mitigate bandwidth challenges, DRAM memories are moving toward 3D
die-stacking technology, which uses TSVs to enable high bandwidth. Unfortunately,
such memories are susceptible to TSV failures, which can cause large-granularity
failures, ranging from a column failure to a bank/rank failure. Therefore, mitigating
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Table I. DRAM Failures per Billion Device Hours (FIT)
[Sridharan and Liberty 2012]

Fault Rate (FIT)
DRAM Chip Failure Mode | Transient | Permanent

Single bit 14.2 18.6
Single word 14 0.3
Single column 14 5.6
Single row 0.2 8.2

Single bank 0.8 10
Multibank 0.3 14
Multirank 0.9 2.8

reliability challenges of future memory systems is becoming an important area of re-
search in the architecture community.

2.2. Design-Time Faults Versus Runtime Faults

Broadly, as memory systems scale to lower nodes, two major classes of faults are seen
to occur in DRAM systems. The first class of faults is called design-time faults. These
faults are manifested during the manufacture time of DRAM and primarily occur due
to technology scaling. Consequently, design-time faults tend to be denoted with the
metric Bit-Error-Rate (BER) and can be assumed to remain constant with time. For
instance, two state-of-the-art article, CiDRA and ArchShield, model this phenomenon
by preselecting bits from the memory chip [Son et al. 2015; Nair et al. 2013].

In contrast, the second class of faults, called runtime faults, occur while the DRAM
device remains in the field and gets accrued over time. Runtime faults have both a
space (Bank, Rank, etc.) and a time component. For instance, a DRAM DIMM sys-
tem in the field may start developing faults of different granularities after months or
years, denoted by the metric Failures-in-Time (FIT) rate [Sridharan and Liberty 2012;
Sridharan et al. 2013, 2015].

The effects of runtime faults cannot be captured by design-time fault simulators. For
instance, a word can develop two transient bit faults in its lifetime. In such cases, the
first fault may occur in the second year and the second fault may occur in the third
year. Design-time fault simulators will detect these as two bit faults, and if the ECC
cannot handle two bit faults, it will lead to a system failure. In contrast, a runtime
fault simulator such as FaultSim models scrubbing, and these faults get scrubbed
and removed. Compared to design-time fault simulations, this article aims to provide
fundamental principles for efficient runtime multigranularity fault simulations. The
techniques proposed in this article are thus orthogonal to design-time fault simulations
and can be used alongside these simulators.

2.3. Common ECC Schemes Used for Mitigating Runtime Faults

High-reliability memories are often designed with ECC DIMMs that support Single
Error Correction and Double Error Detection (SECDED) codes, which we refer to as
BCH-1 codes. While these modules are capable of correcting one error at any point in
time, they are unable to handle large-granularity failures, such as a chip failure or a
row failure. One may think that the rate of large-granularity failure is negligibly small;
however, recent field studies [Sridharan and Liberty 2012; Sridharan et al. 2013, 2015;
Schroeder et al. 2009; Schroeder and Gibson 2010] show that large-granularity failures
are almost as common as bit failures in DRAM memories. Table I depicts the various
chip failure probabilities from one of the recent field studies [Sridharan and Liberty
2012].
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While single-bit failures can be tolerated with ECC DIMMs, tolerating large-
granularity failures often requires more complex schemes such as Chipkill, sparing,
and RAID. As these schemes typically incur significant area and power overheads, a
system designer would want to know the effectiveness of different schemes at reducing
the system failure rate in order to choose the most efficient schemes that can deliver
the system reliability requirements. Unfortunately, evaluating the efficacy of different
reliability schemes is an arduous task, and there are no publicly available evaluation
tools that can perform such evaluations quickly and accurately.

2.4. Analytical Models for Runtime Faults: Uses and Shortcomings

For a relatively simple system such as that with BCH-1 code, we may be able to develop
a straightforward analytical model for time-based faults and estimate the reduction
in the probability of system failure due to BCH-1. Unfortunately, scaling such ana-
lytical models to more complex schemes such as Chipkill, sparing, and RAID tends to
be an arduous task. To make matters worse, these mitigation schemes often appear
in combination with other mitigation schemes (such as scrubbing). Furthermore, the
effectiveness of these solutions also depends on different memory parameters such as
row size, bank size, and number of DIMMs in the systems. Incorporating a large num-
ber of system parameters in an analytical model becomes impractical, so often there
are several simplifying assumptions made to keep the model tractable. Even with such
simplifications, the models tend to be quite complex. For example, the analytical model
for Chipkill proposed by Jian et al. [2013] spans several pages. The main challenge
with analytical models is not only that they tend to be quite time-consuming to develop
but also that every new scheme or combination of multiple existing schemes requires
development of a new model, with even more simplifications and potential for inaccura-
cies. Ideally, we want an evaluation framework that can easily incorporate the details
of different system components and can evaluate a wide array of mitigation techniques
accurately and quickly. One approach to do this is to use Monte Carlo simulations.

2.5. Monte Carlo Simulation for Runtime Faults: Overview and Challenges

Monte Carlo simulation is a stochastic technique that uses random sampling to evalu-
ate the failure probability of the system. The various components of the system (such
as rows, banks, and channels) can be modeled and faults can be injected in this system
depending on the failure rate (FIT) of each component. Each trial can be run for a
desired system lifetime (say, 7 years) or until the first uncorrectable or undetectable
error is encountered. These trials can be repeated a large number of times to get an
accurate estimate of the system failure probability. Such an evaluation framework is
general enough to support any arbitrary error mitigation policies and system com-
ponents. Compared to Monte Carlo simulations for design-time faults, Monte Carlo
simulations for runtime faults have the following three key differences:

—Runtime faults occur at different rates in time and at multiple granularities. The
Monte Carlo simulator must iterate over time considering all fault granularities and
rates.

—Time-based events such as scrubbing cycles occur periodically. The Monte Carlo
simulator must operate at a time granularity that captures these events in detail.
—At higher fault rates, multigranularity faults will require storing large fault infor-
mation at multiple instances of time. Thus, these time-dependent studies must also

have space-efficient representation of faults.

Subsequently, during a Monte Carlo simulation, the underlying ECC scheme in
the memory system is consulted whenever faults are inserted. If the errors are
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Fig. 2. Operation of FaultSim. FaultSim divides time into intervals at which faults get injected and ECC
checks are performed.

uncorrectable or undetectable, the simulation is terminated and the error is reported.!
To reduce simulation time, it is important for the Monte Carlo simulator to quickly
determine if the fault(s) can be corrected or detected by ECC. While Monte Carlo simu-
lators have been used in the past for validating analytical models [Jian et al. 2013], we
are not aware of any prior work detailing the data structures and techniques to reduce
the simulation time of time-dependent memory fault evaluations.

The goal of this article is to outline a set of principles and to describe a tool that can
perform evaluations of complex error mitigation schemes for both 2D and 3D memory
systems with negligible space overheads and with simulation time that is several orders
of magnitude faster than a traditional Monte Carlo-based simulation. To this end, we
present FaultSim, a fast and accurate memory-data resilience simulator.

3. AN OVERVIEW OF FAULTSIM

Figure 2 shows the basic FaultSim operation. The system lifetime (say, 7 years) is
divided into smaller time intervals (say, 3 hours) during which faults are inserted
and ECC checked. This process is repeated over a large number of trials before the
simulation ends.

The time intervals are kept relatively small to increase accuracy. A smaller interval
also allows simulating memory scrubbing. The timing model of FaultSim takes the
memory organization, fault model, ECC, and scrubbing scheme options as parameters.
These blocks provide the core functionalities for a reliability simulator and they form
the FaultSim core, as shown in Figure 3. The FaultSim core determines how the faults
interact with the ECC schemes for a memory organization. We describe each of these
components briefly.

The memory organization and interconnection graph block allow the user to specify
the parameters of the memory system including chips per rank and an option to en-
able 3D-stacked memory. For complex memory systems, FaultSim has a graph option to

IWe do not distinguish between faults and errors in this article. We terminate the simulation as soon as
an uncorrectable or undetectable fault is encountered, and the assumption is that this fault would have
eventually led to an error during the remaining lifetime of the system. If the application is tolerant to data
errors, then the exact timing of a fault being converted into an error can be delayed.
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Fig. 3. Top-level block of FaultSim has interactions between the memory system, fault model, ECC, and
scrubbing schemes.

represent the interconnect between multiple memory devices and a host processor. Dur-
ing initialization, FaultSim loads the configuration parameters and constructs “Fault
Domains” that represent dies and “Group Domains” that represent channels. Multiple
Group Domains can be instantiated and interconnected as a memory system.

The fault model can be selected from a number of alternatives and specifies the
statistical distributions governing when the various fault granularities occur in the
memory devices. Since devices are composed of banks, rows, columns, words, and bits,
field studies have pointed out that device failures occur at various granularities. Fur-
ther, these device failures can be transient or permanent. For instance, a faulty chip
may have a transient word fault alongside a permanent bank fault. We use “failures per
billion hours” (FIT rates) from field studies to generate fault distributions for known
failures. FaultSim also has an option to consider a uniform FIT rate for all granulari-
ties, making it oblivious of field studies. The fault probabilities may be constants when
considering a fixed failure rate, or they may vary over time, for example, to model the
wear-out of nonvolatile memories [McCool 2012]. The FIT rates for Fault Domains are
specified during initialization.

An ECC and/or repair scheme is selected for each Fault Domain, along with a scrub-
bing interval. It can also support complex parity-based ECC such as RAID and Three-
Dimensional Parity [Nair et al. 2014; Thomasian and Menon 1997]. The scrubbing
operation removes all correctable transient faults at each scrubbing interval. To avoid
repeated permanent errors, repair schemes such as memory page decommissioning can
be modeled. Such schemes are invoked when errors are corrected or during memory
scrubbing. The core Monte Carlo simulator calls the ECC and repair schemes when
any Fault Domain develops a fault.

The simulation of FaultSim consists of three phases. The first phase is the initializa-
tion phase, which sets values for failure rates and also describes the memory system
organization. The second phase is the instantiation phase, which creates the Fault Do-
mains and Group Domains. During the third phase, the timing-interval-based Monte
Carlo simulator operates on the memory system.

FaultSim is written in C++ and simulation parameters can be input at the command
line or using a config file. The components of FaultSim can be classified broadly into
four categories: first, the fault injection framework that determines when a particular
faulty type is injected in the system; second, the data structures and algorithms used
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to represent faults and determine correctability or detectability based on the memory
system organization; third, modeling of different mitigation techniques; and fourth,
techniques aimed to explicitly reduce the simulation time (such as Event-Based fault
injection and limiting the number of Monte Carlo trials for the desired precision). The
following sections describe each of these four topics in detail.

4. FAULT INJECTION: INTERVAL BASED

The interval-based simulation divides the lifetime of the system into equal-sized in-
tervals for every Monte Carlo trial. At the end of each time interval, random number
generators are consulted to decide the insertion of faults. For accuracy, the time inter-
val is very small compared to the lifetime of the system. A large number of intervals
ensures that the random number generators are consulted a sufficient number of times
during one trial. This process is then repeated for a very large number of trials and the
results are averaged out.

FaultSim uses failure in billion hours (FIT rates) to denote the fault rates of its
devices. These FIT rates are used as parameters to a simulated exponential distribution
in time (t) [Zacks 1992]. A device may have multiple types of faults with different FIT
rates (A). Due to this, the random number generator is consulted for every fault type
at the end of every interval. For any fault type, the probability density function p,q/(¢)

for an exponential distribution is described by Equation (1):2
Ppar®) = -e " (1)

The probability of inserting a fault at the end of time interval T is a cumulative
distribution (P ¢, (T)) of Equation (1) and is described by Equation (2):

T T
Prou(T) = / DPpar(t)dt = / A-e Mt (2)
0 0

e*/\-t

Since [ e *!dt = =, Equation (2) becomes Equation (3):

Praar(T)=1—e*T. 3)

Prau(T) is computed for every type of fault during the initialization of FaultSim. At
the end of time interval T', a uniform random generator rand(U(0,1)) is consulted and
the random number is compared with Pfqu(T). The decision to insert faults is made
using Equation (4):

Insert Fault, if rand(U(0, 1)) < Ppqu(T)
No Fault, otherwise.

(4)

decision = {

FaultSim operates on a large number of time intervals to provide accuracy. For
instance, consider a memory system operating for 7 years. For reasonable accuracy,
faults are inserted at every 3-hour interval.? This translates to approximately 20,000
intervals in 7 years for every trial.

2Wear-out failures follow a Weibull distribution [McCool 2012]. A Weibull distribution is characterized by
a change in A over time. Rather than modeling this complex behavior, we can approximate the Weibull
distribution as piecewise exponential distribution.

3In the limiting case, if the faults were inserted every 12 hours (43,200 seconds), then there is only a 63.2%

(ie., [1— m)%]) confidence that the fault will be inserted before scrubbing. However, if faults are

inserted at 3 hours and scrubbed every 12 hours, then there is a 98.2% (i.e., [1 — Wloo )%400 1) confidence that

faults are inserted before scrubbing.
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Fig. 4. A memory block is composed of Fault Domains (physical memory die) and Fault Ranges (faults per
die).

5. ALGORITHMS AND DATA STRUCTURES FOR EFFICIENT TRACKING
OF MULTIGRANULARITY FAULTS

The simulation core engine inserts new faults into chips according to their failure
probabilities. Even at low FIT rates (such as those shown in Table I), the effect of fault
representations can aggravate the complexity of computation. For instance, a faulty
chip, if represented by billions of faulty bits, will increase the complexity of computa-
tion. Furthermore, at high FIT rates (say, >100,000), used for evaluating areas such as
approximate computing with faulty memories, row hammering, coding theory-assisted
read optimization, and optimizing DRAM refresh operations [Kim et al. 2014, 2015;
Nair et al. 2015; Qureshi et al. 2015; Chou et al. 2015], an efficient fault representation
can help in data management. Thus, faults must be represented efficiently to reduce
space and time to evaluate ECC schemes. The faults are compared across chips to check
for those which affect the same codewords (fault intersection) during the ECC check.

5.1. Fault Representation

The FaultSim memory representation is shown in Figure 4. The memory is represented
as a collection of Fault Domains (FDs) and Fault Ranges (FRs). An FD represents a
physical memory die, while an FR represents a range of the address space that exhibits
a permanent or transient fault. Each FD contains a list of FRs that accrue over time.

To demonstrate fault representation inside an FD, consider the example of a hypo-
thetical memory die that contains 64 bits in two banks (bank 0 and bank 1). Let us
assume that such a hypothetical die develops three faults, a column fault A and row
fault B in bank 0 and a row fault C in bank 1. Figure 5 shows how column (fault A)
and row faults (faults B and C) are represented.

For fault A, column 1 (the second column, assuming indexes starting from 0) in
bank 0 is faulty. For fault B, row 2 of bank 0, and for fault C, row 3 of bank 1 are
faulty. Each fault is stored as a single FR object. In this example, an FR contains an
address (ADDR) and mask (MASK) field, each of which is 64 bits wide, along with a
bit indicating transient or permanent. Bit positions in these fields represent bits in the
physical device address map (in descending order from MSB) of (bank, row, column,
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Fig. 5. A memory die (Fault Domain) can contain column (A) and row (B and C) faults in different memory
banks.

Table Il. Fault Range with Its
Address and Mask

‘ FR ‘ mask addr

A | 011000 | 000001

B 000111 | 010000

C 000111 | 110000

bit). Any MASK bit set to 1 indicates that all addresses (with a 0 or 1) in this bit position
are faulty. The ADDR bits in a position in which MASK is 0 specify a fixed part of the
fault address. In this way, MASK acts as a wildcard so that ranges of faulty bits can
be represented in a compact form that can be compared with other FRs. By counting
the number of faulty bits or symbols in an ECC codeword, we can conservatively
determine whether the error count exceeds the capability of the detection or correction
code, determined by the minimum Hamming distance. Restricting the analysis to the
bits in the FRs greatly reduces the search space for the analysis (as contrasted with a
naive method in which faults are recorded as an array of bits that must be scanned).
Due to this, all fault granularities (bit, word, column, bank, rank) are represented by
a single FR for any failure rate model.

5.2. Fault Intersection

Faults accumulate in the memory FDs as FRs. The basic operation intersect(X,Y) deter-
mines if the FRs share any of their addresses within a chip. FaultSim traverses the FDs
and checks the number of errors to be corrected or detected depending on the correction
and detection capability of ECC. Equation (5) describes the function intersect(X,Y) as
bitwise operations, where n is the number of bits in the address:

Vicon 1 : (Xmask + Y.mask;) + (X.addr,- o Y.addr,-) . (5)

Tables II and III illustrate the use of Equation (5) in determining intersection. The
term involving the masks determines that FRs X and Y could intersect because at least
one FR contains all possible addresses determined by that bit position. However, to be
certain of an overlap, the addresses of X and Y must match precisely where MASK is
zero, in case only a specific address bit value is faulty.
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Table Ill. Fault Range Intersection Example
| XY | Xmask +Y.mask | Xaddr & Y.addr | Intersects

AB 011111 101110 1
AC 011111 001110 0
BC 000111 011111 0

Bank - 0 TSVs Bank-N

v
<
Logic Die Memory Dies

Fig. 6. A high-bandwidth stacked memory (HBM) with TSVs connecting all dies to the logic layer.

5.3. Modeling TSV Faults for 3D Memory Systems

In a 3D-stacked memory, TSVs act like conduits for addresses, data, command, and
power to every level in the stack.* Figure 6 shows a stacked memory® that is organized
similarly to the high-bandwidth memory standards (HBM) [Standard 2013]. In HBM,
every memory die acts as an independent channel(s), consisting of banks that are
connected to the logic die using TSVs.

In 3D memory, data, address, command, or power TSVs can be faulty. We describe
how to model each such fault.

5.3.1. Address TSV Faults. An address TSV in HBM will addresses a cache line in a
bank that belongs to a channel. The address TSV is connected to row and column
decoders in a bank to select the appropriate content in the row. A faulty address TSV
will make a single bit in the address erroneous. Due to this, half of the memory will be
incorrectly addressed. So, a faulty address TSV can be modeled as a half-bank fault.

5.3.2. Data TSV Faults. A data TSV in HBM transfers data from one or more banks in a
channel. A single 64B cache line is transferred in two DDR cycles. Thus, the number of
data T'SVs can be limited to the size of the cache line (512 bits) divided by the number
of flits (4). Hence, a channel in HBM consists of 128 data TSVs. A faulty data TSV
causes 4 bits in a cache line to fail for the given channel. Therefore, data TSV failures
can be modeled as multicolumn failures.

5.3.3. Command TSV Faults. Command TSVs transfer the memory commands to the
appropriate channel. These commands are used to read, write, activate, precharge,

4TSVs in stacked memories can be envisioned similarly to metal and IO pad connections in 2D DIMMs with
one key difference. In this article, we assume that the TSV technology usually does not discriminate between
address and data TSV lengths and widths and tends to be uniform. Metal connections, on the other hand,
are routed in different layers and can have different characteristics and may result in different fault models.
Furthermore, just changing the layout of TSVs enables various data organizations in the address and data
space.

5Memory stack may also be organized as per-hybrid memory cube or tezzaron models [Pawlowski 2011;
Tezzaron Corp. 2010]. The fundamental principles for modeling address and data faults will not change with
a change in organization. These organizations only provide different address, data, command, and power
TSV mappings.
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Table IV. Distribution of Faults Encountered in a 7-Year period
No. Faults Encountered | 1x FIT Rate | 10x FIT Rate

0 92.9% 48.3%
1 6.7% 35.1%
2 0.2% 12.9%
3+ 0.2% 3.7%

and refresh the memory system. A faulty command TSV usually results in jumbled
DRAM operations and results in functional failures. These are usually catastrophic
failures and can be denoted as channel (multibank) faults.

5.3.4. Power TSV Fault. Power TSVs supply power to the memory channel and contain
voltage and ground lanes. Any failure in power TSVs will result in lower power, possibly
resulting in a system shutdown. Such failures are fatal and can be modeled using
channel (multibank) faults.

6. RAPID SIMULATION VIA EVENT-BASED FAULT INJECTION
AND BOUNDING MAXIMUM TRIALS

Thus far, we have assumed the notion of interval-based fault injection, as it is the
intuitive way in which a typical fault simulator would get built. For each interval, we
would consult a random number generator to determine if a fault must be injected
or not for each component. For such a Monte Carlo simulation to evaluate a system
lifetime of 7 years, the total number of calls to the random number generator is equal
to 20,000 (3-hour intervals each) times the number of components. We found that this
was the key reason for the simulation to take several hours. Fortunately, real-word
devices have modest FIT rates and a memory system experiences only a few faults
during its lifetime. To corroborate this hypothesis, we measured the average number of
faults (of any type) that got injected in a system with 18 chips (two DIMMs each with
nine chips). We performed this study both at a nominal FIT rate and at a 10x higher
FIT rate. Table IV shows the distribution of number of faults in this system, for the
nominal FIT rate (1x) and higher FIT rate (10x).

For anominal FIT rate, in 99.8% of the cases only fewer than three faults get injected.
In fact, even if the FIT rate was 10x higher, still in more than 96% of the cases fewer
than three faults get injected. Therefore, it is wasteful to consult the random number
generator several tens of thousands of times to get these three faults. If instead of
asking the question “Is there a fault in this interval?” we asked, “What is the time
duration between consecutive faults?”, then we can improve simulation time by several
orders of magnitude. Fortunately, the duration between faults can be estimated easily:
for events that occur independently with a constant average rate, the distance between
events tend to be exponentially distributed [Balakrishnan 1996]. Therefore, instead of
consulting the uniform random number generator many times (20K), we can instead
consult the exponential random number generator only a few times (less than three
in the common case). This is the key insight behind the Event-Based Fault Injection
framework, as shown in Figure 7.

6.1. Incorporating Event-Based Fault Injection
The distance in time between faults is derived from the expression Prqyu(t) = 1 —
e~ (i.e., Equation (3)) and solving for ¢. The time distance for a fault is depicted by
Equation (6):

log(1 — Praws(t))

: (6)
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Fault 1 Fault 2 Fault 3 (Discard)

distance=2yrs distance=3yrs distance=3yrs
@ = = .
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Fig. 7. Event-Based fault injection estimates the distance in time between faults (faults appearing at
>7 years get ignored).

Table V. Simulation Time Comparison (for 1 Million Trials)

Simulation Time (Wall Clock)

ECC Scheme | Interval Based | Event Based
BCH-1 49.5 hours 34 seconds
Chipkill 49.2 hours 33 seconds

Since P fq(t) can have any value between 0 and 1, we compute the distance in time
for faults during a trial as shown in Equation (7):

_log(1-U(0, 1)
—

For each component in the system, we first obtain the timestamp of all the faults (if
any) encountered by that component in the 7-year period, depending on the failure rate
of the component. Then, we merge the timestamps of all the faults of all the components
(as there are fewer than three faults in total in the common case, this step incurs
negligible time). Once the global list of timestamps of all the faults is available, the
simulation time is advanced from O to the time of the first fault, to the time of the second
fault, and so on, until the 7-year time limit is reached. Given that most trials have fewer
than three faults, the memory system usually performs fewer than three evaluations for
a 7-year simulation, instead of approximately 20,000 steps in the interval-based fault
injection model, resulting in a significant reduction in simulation time. We validated
that the results obtained from the Event-Based model are virtually identical (within
0.18%) to the results obtained from the Interval-Based model.

(7

6.2. Simulation Time: Interval Based Versus Event Based

We use the “wall clock” simulation time to provide a fair comparison for Interval-
Based and Event-Based simulation engines. All of our experiments are performed
on an AMD Opteron® Processor 6276 operating at 2.3GHz. Table V shows the time to
complete 1 million Monte Carlo trials, each for a system lifetime of 7 years, for Interval-
Based and Event-Based fault injection. We compare two ECC techniques: BCH-1 and
Chipkill. Event-Based simulation is approximately 5,000 x faster than Interval-Based
simulation for both BCH-1 and Chipkill. Event-Based simulation benefits from having
only a few (usually less than three) events against approximately 20,000 intervals
for Interval-Based simulation. The simulation time for BCH-1 is slightly higher than
Chipkill, because unlike Chipkill, the intersection algorithm of BCH-1 loops multiple
times over the same FDs.

6.3. Determining the Number of Monte Carlo Trials

Every trial in FaultSim can have only two outcomes: system operational or system
failure. In a trial when the system works, the system ECC corrects all the faults and
this trial occurs with a probability q. During a trial when the system fails, the system
ECC cannot correct the errors with a probability p. Events with two exclusive outcomes
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Fig. 8. Number of Monte Carlo trials required to achieve a desired precision for BCH-1 and Chipkill.

depict Bernoulli trials and follow a binomial distribution. Therefore, for n trials, the
mean number of failures (1) and their deviation (o) in FaultSim can be determined by
Equation (8):

w=n-p

(8)
o= Jn-p-q.
Since ¢ = 1 — p and since p is very small for real-world failures, Equation (8)
degenerates to Equation (9):

The value of 1 can be estimated to obtain a desired level of precision. For example,
for a given value of n, u is 400 failures. Then, we can conclude that subsequent runs
with the same n will lie between 360 failures and 440 failures with 95% confidence
(i.e., u £ 20), or between 340 failures and 460 failures with 99.7% confidence (i.e
u £ 30). Thus, the experiment with 400 total system failures can be deemed to have
90% precision with 95% confidence, or 85% precision with 99.7% confidence. FaultSim
can be simulated either for a fixed number of trials irrespective of the precision or until
a given precision bound is reached.

Figure 8 shows the number of trials required for BCH-1 and Chipkill codes for
providing a given level of precision at different confidence levels. At higher precision,
the number of trials increases rapidly and is influenced by the underlying ECC scheme.
Our analysis enables the user to tailor precision to his or her own compute resources
and application. For example, one can run only 100K trials for BCH-1 but 1 million for
Chipkill for the same precision levels.

7. MODELING DIFFERENT REPAIR ALGORITHMS

The ECC and repair algorithms determine the resilience of the memory system to
faults. We illustrate the algorithms for single-error-correcting BCH-1 [Chen and Hsiao
1984] and Chipkill [Dell 1997] in the following subsections.® Additional repair schemes
can be added to FaultSim easily by creating a new C++ class.

6We have also implemented RAID-like schemes and sparing schemes. However, due to space limitations, we
only discuss the two schemes that we validate analytically. Other schemes, or combinations of schemes, can
easily be incorporated in FaultSim as well.
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FR-B = FD-0 row fault
Group Domain (ECC-DIMM) | FR—A =FD-1 column faulf

Allmmmm

Fault Domain O Fault Domain 1 Fault Domain 8
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Fig. 9. A memory die (Fault Domain) can contain column (A) and row (B) faults in different memory banks.

7.1. Error Correction and Detection in FaultSim

Figure 9 shows the ECC-DIMM organization (memory block) with chip-0 (FD-0) having
a faulty row ( FR-B) and chip-1 (FD-1) having a faulty column (FR-A).

The intersect function compares FRs across chips and will show that FR-A and
FR-B have overlapping addresses. The intersect function finds only those FRs that
overlap and provides a very fast comparison. A codeword read from an ECC-DIMM is
distributed across DRAM dies and has the same address in each die. Therefore, any
codeword read from the region of intersection of FR-A and FR-B will show bit errors
spanning two devices.

7.2. Efficiency in Space

A common task of the ECC algorithm is to read fault locations from the FDs. To
maximize performance, these FDs must store faults with minimum memory overhead.
A naive approach is to represent multigranularity faults using an array of bits to depict
rank, bank, row, and column faults. Unfortunately, rows, columns, banks, and ranks
contain many bits (several thousands to several billion), and this implementation would
be inefficient in space. For instance, in an ECC-DIMM with 8Gb dies and eight banks
per die, a single faulty bank contains a billion faulty bits, resulting in unreasonable
memory overheads. FaultSim addresses this inefficiency by representing a fault with
only a single FR. This enables FaultSim to represent numerous multigranularity faults
in multiple chips with negligible memory overhead.

7.3. Efficiency in Time

An important task performed by the ECC algorithm is the intersect function. To de-
termine the number of faulty bits in a codeword using the naive algorithm, every
bit in every codeword must be scanned and counted. The leads to a time complexity
of O(n), where n is the total number of faulty bits in a fault granularity (e.g., bank,
row, column, bit, etc.). FaultSim performs considerably better than the naive scanning
algorithm since it uses a fast O(1) intersect function.

7.4. ECC Algorithms

Common DRAM ECC algorithms use parity to detect and correct errors. When a cache
line is read, data and parity are fetched over several bus cycles, with one or more cycles
forming a codeword. Each chip typically provides 8- or 4-bit chunks of the codeword. We
briefly describe the ECC algorithms for two commercial schemes: BCH-1 and Chipkill.

7.4.1. BCH-1. Consider an ECC-DIMM with nine (x8) chips (single rank) and code-
words spanning the width of the data bus (typically 64 + 8 = 72 bits). Algorithm 2
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(shown in the Appendix) considers every FR in each chip as a reference (FRO). The
algorithm then counts faulty bits in codewords covered by the same FR. Additionally,
it also counts FRs in any other chips (FR1) that intersect with codewords covered by
the first FR. Bit counting is achieved by manipulating the mask and addr bits of a tem-
porary FR to test each bit position on the bus individually. To avoid double-counting
intersecting faults within the nested loops, care is taken that the bit intersection count
(n_intersections) is reset for each reference FRO.

If the user is interested in error detection capability, the simulation must continue
after finding uncorrectable errors, until the first undetectable error is found.

7.4.2. Chipkill. Symbol-based ECC schemes such as Chipkill can be implemented using
Algorithm 1 (shown in the Appendix). The variant of Chipkill we consider does not count
individual bits and instead counts 8-bit symbols in overlapping address ranges between
chips. Symbol-level comparison is easily achieved by setting the least significant mask
bits to span the symbol size.

7.5. Scrubbing and Repair

FaultSim simulates periodic scrubbing and removes correctable transient faults by
deleting such FRs from FDs. By allocating spare capacity, FaultSim can model repair
schemes that use remapping or spare resources [Nair et al. 2013]. In such repair
schemes, during the scrubbing interval, all correctable data errors get remapped into
a spare region.

8. VALIDATION WITH ANALYTICAL MODELS

It is possible to derive approximate analytical failure models’ BCH-1 code and Chipkill
using FIT data from field studies. However, the use of different probabilities for various
fault granularities complicates the analysis.

8.1. BCH-1 Code Analytical Model

BCH-1 code can correct single-bit errors and detect double-bit errors. Fortunately,
memory systems have large capacities relative to the failure rates and the BCH-1 code
tolerates all isolated 1-bit errors. Due to this, there is a low probability of single-bit
faults accumulating in the same codeword. Therefore, we can ignore the impact of
single-bit faults. However, any multibit fault results in uncorrectable errors. Let the
probability of failure of a chip due to multibit faults be Pggy;;—prusigi:- The probability
that the n-chip system experiences a multibit fault in a system with BCH-1 code
(PsysFail—pcH1) is given by Equation (10):

n
Pgsyspaii-Bcm1 ~ 1 — (0> PPt srasinie < (U — Prai—muisit)"™- (10)

8.2. Chipkill Analytical Model

Chipkill can tolerate failure of one chip. Chipkill can also tolerate bank, column,
row, and bit faults in different codewords across multiple chips. Field studies show
that large-granularity faults are nearly as likely as small-granularity faults. Large-
granularity faults that occur with a relatively high failure probability are likely to
coincide with other faults. To a first order, this implies that the large-granularity faults
such as rank, multibank, and single-bank faults determine Chipkill resilience. To a
first order, the failures in Chipkill occur due to two phenomena. First, in a memory
system with a multibank or multirank faulty chip there occurs another faulty chip with
any other failure. Second, if a single-bank faulty chip has addresses that coincide with
any chip that has a small-granularity fault.
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8.2.1. Influence of Multibank and Multirank Faults. For an n-chip system, let probability
of any faulty chip be Prgi;—any, and multibank or rank faults be Prgi—puz. Let the
probability of chip failure due to a single-bank fault be Pguii— 0neBank- The probability of
chip failure due to nonmultibank or rank faults (i.e., bit, word, column, row, or bank) is
given by Pruir- Nonnui- The probability of precisely one chip with a multibank or rank
fault is given by Equation (11):

PonemuttiBank = ( ’11 )P}ail_ e X (1= Praitapuas)" " (11)

The probability of system failure (Pgysrqi1)) when one multibank or a rank fault
(PoneMuitiBank) occurs along with with any other faulty chips is given by Equation (12):

-1
Psysraitty = PoneMuitiBank X [1 - (n 0 )P Pait—any X (1= PFail—Any)n1:| : (12)

8.2.2. Influence of Single-Bank Faults. The probability of failure when one single-bank
fault (PonechipBank) occurs in one chip is given by Equation (13):

PonechipBank = (’{)Ppl‘ail_owgank x (1 = Prail—OneBank)™ " (13)

The probability of system failure (Pgysrai2)) when one single-bank fault occurs along
with any fault contained within a single bank on another chip (Pry;;— Nonmuwisi) 1S repre-
sented by Equation (14). Note that we divide by eight to account for eight banks in the
chip:

-1
PSysFail(Q) = (1/8) X POneChipBank X |:1 — (n 0 )Plg'ail—NonMulti x (1— PFail—NonMulti)n_l:|.

(14)

8.2.3. Total System Failure Probability. The probability that the system fails for Chipkill
(PsysFail—chiprinr) is the sum of Equations (12) and (14) and is given by Equation (15):

Psyspait—chipkitt X Psysraii1) + PsysFail@)- (15)

8.3. Validation

FaultSim uses FIT rates for DRAM chips to insert faults into the memory system (from
Table I). The error correction capability of BCH-1 code and Chipkill is compared over
a 7-year lifetime. We simulate an 18-chip one-rank system with a bus width of 4 bits
per chip. To maintain accuracy, we ran these simulations for 2.5 million iterations. The
time-interval-based simulation has a 3-hour time step (interval). Memory scrubbing
was disabled in FaultSim as the analytical model does not model memory scrubbing.
Figure 10 shows that FaultSim reports a system failure probability of 3.45x 102 and
4.15x10~* after 7 years for BCH-1 and Chipkill, respectively. The analytical model for
BCH-1 and Chipkill has a difference of only 0.032% and 8.41% versus the simula-
tion results. Note that the analytical model is approximate, so the deviation does not
necessarily indicate an inaccuracy in simulation results. Furthermore, for the Chip-
kill system, the system failure rate is fairly low (415 parts per million), so an 8.41%
deviation results in a very small change in absolute numbers (35 parts per million).

9. RESULTS AND ANALYSIS
9.1. Sensitivity to Number of Devices

As memory systems scale, they are likely to be interconnected using complex networks
that have multiple devices. Intuitively, a memory system with more devices will exhibit
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Fig. 10. Probability of memory system failure with elapsed time for BCH-1 code and Chipkill shows that
curves from “Analytical Models” and FaultSim closely follow each other.

Table VI. Variation in Number of Faults with Number of Chips

18 Chips 36 Chips 72 Chips 144 Chips
Total Faults | (2 DIMMs) | (4 DIMMs) | (8 DIMMs) | (16 DIMMs)
No Fault 92.98% 86.45% 74.68% 55.79%
1 Fault 6.77% 12.59% 21.79% 32.62%
2 Faults 0.24% 0.92% 3.2% 9.45%
3+ Faults 0.01% 0.05% 0.32% 2.15%

Table VII. FIT Rate Versus Sim. Time: 1 Million Systems (7 Years Each)
Simulation Time (Wall Clock)

1x FIT | 2x FIT | 4x FIT | 8x FIT
BCH-1 Interval Based | 49.5 hrs | 47.9 hrs | 47.1 hrs | 43.6 hrs
Event Based 34s 33.9s 34.1s 34.1s
. Interval Based | 49.2 hrs | 48.6 hrs | 48.5 hrs | 48.4 hrs
Chipkill
Event Based 33s 32.9s 33s 33.1s

a larger number of faults. Table VI shows the variation in the probability of faults with
an increase in the number of chips in a memory system. An increase in memory chips
results in a nonlinear scaling in the number of systems with one or two faults. However,
even for a modestly large system, the episode of three or more faults occurring during
the system lifetime remains uncommon (2.15%).

9.2. Sensitivity to FIT Rates

As memory technologies scale to lower nanometer nodes, the fault rate tends to in-
crease [Nair et al. 2013]. Factors such as altitude and temperature also influence the
failure rates [Sridharan et al. 2013; White et al. 2011]. Ideally, FaultSim must perform
evaluations for higher device failure rates without incurring any additional simula-
tion time. Table VII shows the sensitivity simulation time to FIT rate. As FIT rates
increase, faults start appearing earlier in the memory system lifetime and this leads to
uncorrectable errors, which causes Interval-Based simulation to terminate early and
its simulation time to be reduced. As Event-Based simulation performs ECC checks
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Table VIII. Reliability Analysis of Scrubbing

Probability of System Failure

ECC Scheme | With Scrubbing | Without Scrubbing

BCH-1 3.43 x 102 3.45 x 10~2

Chipkill 3.22 x 1074 4.15 x 1074
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Fig. 11. Using FaultSim for analyzing the impact of TSV faults and dynamic TSV sparing in 3D memories.

after the faults in a system lifetime are injected, Event-Based simulation time is almost
insensitive to FIT rates.

9.3. Effect of Memory Scrubbing

High-reliability systems also employ periodic memory scrubbing. FaultSim can incor-
porate scrubbing with any memory reliability scheme. Table VIII shows the resilience
from scrubbing when compared to a baseline scheme that does not employ scrubbing.
Scrubbing is invoked once every 12 hours. Since BCH-1 code is vulnerable to fre-
quently occurring large-granularity failures, scrubbing shows negligible benefits for
BCH-1 code. On the contrary, Chipkill is robust against large and small-granularity
faults and scrubbing helps remove some correctable transient failures.

9.4. Effect of Dynamic TSV Sparing for 3D Memories

FaultSim can also be used to analyze newer failures modes, such as TSV faults in
3D-stacked DRAM. As TSV faults can cause large-granularity failures, the impact
depends on the policy for placement of cache line, whether the line is the same bank,
across banks, or across channels. Faulty TSVs can be mitigated by using spare TSVs.
We use FaultSim to analyze the impact of TSV failures and TSV sparing on system
reliability assuming a TSV failure rate of 1,430 FIT [Nair et al. 2014]. Figure 11
shows the probability of system failure for different data striping policies for three
systems: no TSV faults, TSV faults but no TSV sparing, and dynamic TSV sparing.
By performing dynamic sparing, the chances of incurring uncorrectable failures due to
TSVs are reduced significantly.

10. RELATED WORK

Several studies in academia have looked at improving the reliability of SRAM, DRAM
Cache, DRAM-based memories, and Flash memories [Kim et al. 2007; Nair et al.
2013; Udipi et al. 2012; Sim et al. 2013; Chen and Zhang 2014; Cai et al. 2015]. A
recent study has investigated the impact of TSV and large-granularity faults in stacked
memory systems [Nair et al. 2014]. Although these techniques present stronger RAS
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schemes and architectural techniques, they do not talk about how to build an integrated
framework for estimating RAS.

Field studies on supercomputing and server clusters help obtain real-world data.
Some studies on DRAM-based main memory systems have investigated data errors
[Schroeder et al. 2009; Schroeder and Gibson 2010]. However, contrary to reporting
fault rates, these studies report data error rates, which depend on the application that
the system executes and its memory mapping. For instance, a memory system with a
single bit with permanent fault can result in billions of errors if the bit remains un-
corrected and if the application frequently accesses the faulty memory bit. Similarly,
systems can also report billions of errors if the OS naively maps pages into such faulty
locations without decommissioning the region. However, to evaluate reliability, fault
statistics provide a clear metric when compared to error statistics. To address this,
Sridharan and Liberty [2012] and Sridharan et al. [2013] present a clearer distinc-
tion between errors and faults and report memory faults and their positional effects
by studying supercomputer clusters. Although these studies present detailed failure
data, they do not use this data to suggest quick reliability exploration techniques.
Commercial solutions like Chipkill present specific results for certain FIT rates; how-
ever, they do not estimate memory reliability as these systems scale [Dell 1997]. In an
attempt to estimate reliability, recent studies have investigated integrating field data
into analytical models [Jian et al. 2013]. Although this is a significant step forward,
complex analytical models are required to investigate memory reliability. Studies that
use analytical methods for estimating faults use Monte Carlo techniques to verify
their model [Jian et al. 2013; DeBardeleben 2013]. However, none of these studies
present techniques to simplify and reduce the simulation time for Monte Carlo-based
simulations.

FPGA-based fault-tree analysis has been proposed for circuit-level fault simula-
tions. This analysis constructs a time-to-failure tree for the system based on the failure
times of individual components. FPGAs are used to accelerate the Monte Carlo process
to simulate individual components. We believe that the fundamentals of FaultSim in
accelerating Monte Carlo simulation can enable making this event-based simulation
and reduce the simulation time [Ejlali and Miremadi 2004]. Crashtest tests logic re-
siliency and evaluates how the design reacts to faults [Pellegrini et al. 2008]. Along
similar lines, GangES and Relyzer provide frameworks to evaluate errors in execution
states [Hari et al. 2014; Sastry Hari et al. 2013]. From a different perspective, the
performance of parallel runs in the Monte Carlo simulator can be improved by running
them on GPGPUs [Braun et al. 2012]. FaultSim improves the performance of a single
run and these techniques are orthogonal to the techniques employed by FaultSim.

11. SUMMARY

Memory reliability is a growing concern for all systems, ranging from HPC to servers to
commodity systems. The increase in failure rate with smaller technology nodes, and the
newer failure modes from emerging technologies (such as 3D DRAM) have made the
investigation of efficient solutions to enhance memory reliability a key area of research.
While simple mitigation schemes can be evaluated using analytical models, such mod-
els become quite complex for more advanced schemes and are not easily extendable
to new schemes, or even a combination of schemes. A tool set that can quickly and
accurately estimate the effectiveness of different reliability solutions will accelerate
research in this area. To that end, this article makes the following contributions:

(1) We present FaultSim, a fast and accurate Monte Carlo simulator. We describe
novel data structures for efficient tracking of faults that can occur at multiple
granularities.
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(2) We propose an Event-Based Fault Injection framework, which improves the simu-
lation speed by a factor of 5,000 x compared to Interval-Based simulation.

(3) We also discuss how to set the number of trials based on precision bounds. The
simulation can be run for a fixed number of iterations to be within bounds.

(4) We show how FaultSim can be used to model a variety of fault mitigation schemes
such as BCH-1, Chipkill, TSV Sparing for 3D Memories, and Scrubbing.

We successfully validate FaultSim using analytical models. As emerging memories
come to market and knowledge of failures is gained through field studies, FaultSim will
aid in rapid evaluation of evolving failure rates and resilience schemes. We continue
to develop this tool via implementation of recently published fault models. This tool
is now available for researchers as an open-source framework using a BSD3 licence
agreement.

APPENDIX: PSEUDO-CODE FOR REPAIR SCHEMES

ALGORITHM 1: Chipkill ECC algorithm for a single Monte Carlo run. N is the number of chips
in a rank
for FRO in FR[0..N-1] do
FR..,, = FRO
n_ntersections = 0
SET lower 3 bits of F Ry,,,,.mask
for FR1 in FR/0..N-1] do
if FR,,,,, intersects FR1 then
| n_intersections++
end
end
if n_intersections > correctable errors then
| terminate simulation;
end
end

ALGORITHM 2: BCH ECC algorithm for a single Monte Carlo run. N is the number of chips
in the rank
for FRO in FR[0..N-1] do
FR..,, = FRO
n_intersections = 0
CLEAR lower 2 bits of F Ry,,,,.addr
CLEAR lower 2 bits of F Ry,,,.mask
for bit_addrin (0..3) do
for FR1 in FR/0..N-1] do
if FR,.,,, intersects FR1 then
| n_intersections++
end
end
F Ryeppp.addr++
end
if n_intersections > correctable errors then
| terminate simulation;
end
end
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ALGORITHM 3: Pseudo-Code for Dynamic TSV Sparing

spareTSV=inactive
while simulation==active do
if ECC Check == TSV Fault then
if spareTSV == active then
simulation=inactive

end
end
spareTSV=active

end
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