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ABSTRACT

Covert-channel attacks exploit contention on shared hardware

resources such as processor caches to transmit information be-

tween colluding processes on the same system. In recent years,

covert channels leveraging cacheline-flush instructions, such as

Flush+Reload and Flush+Flush, have emerged as the fastest cross-

core attacks. However, current attacks are limited in their applica-

bility and bit-rate not due to any fundamental hardware limitations,

but due to their protocol design requiring flush instructions and

tight synchronization between sender and receiver, where both

processes synchronize every bit-period to maintain low error-rates.

In this paper, we present Streamline, a flush-less covert-channel

attack faster than all prior known attacks. The key insight behind

the higher channel bandwidth is asynchronous communication.

Streamline communicates over a sequence of shared addresses

(larger than the cache size), where the sender can move to the next

address after transmitting each bit without waiting for the receiver.

Furthermore, it ensures that addresses accessed by the sender are

preserved in the cache until the receiver has accessed them. Finally,

by the time the sender accesses the entire sequence and wraps

around, the cache-thrashing property ensures that the previously

transmitted addresses are automatically evicted from the cache

without any cacheline flushes, which ensures functional correctness

while simultaneously improving channel bandwidth. To orchestrate

Streamline on a real system, we overcome multiple challenges,

such as circumventing hardware optimizations (prefetching and

replacement policy), and ensuring that the sender and receiver

have similar execution rates. We demonstrate Streamline on an

Intel Skylake CPU and show that it achieves a bit-rate of 1801 KB/s,

which is 3x to 3.6x faster than the previous fastest Take-a-Way (588

KB/s) and Flush+Flush (496 KB/s) attacks, at comparable error rates.

Unlike prior attacks, Streamline only relies on generic properties

of caches and is applicable to processors of all ISAs (x86, ARM, etc.)

and micro-architectures (Intel, AMD, etc.).
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1 INTRODUCTION

Covert-channels allow colluding processes to communicate with

each other without detection. One of the most commonly exploited

channels are cache covert-channels, that emanate from timing dif-

ferences between accesses to processor caches (tens of ns) and

DRAM (~100 ns). As caches are typically shared between processes,

VMs, and even multiple processor cores, a sender process can easily

influence whether an address shared with a co-running receiver

process is in the cache or not, and modulate the latency observed

by the receiver for accesses to that address. Consequently, cache

covert-channel attacks are one of the fastest and most robust micro-

architectural covert channels and have been heavily used to trans-

mit information in several recent transient execution attacks such

as Spectre [18], Meltdown [21], ExSpectre [34], etc., in comparison

to other micro-architectural covert-channels [2, 8, 11].

To understand the potential for information leakage via caches,

it is important to bound the bit-rate achievable for cache covert-

channel attacks (the maximum covert-channel bit-rate is typically

an upper bound on potential information leakage via a side-channel).

Additionally, higher bit-rate covert-channels can allow exfiltration

of payloads in shorter times. Consequently, this paper focuses on

understanding the limitations in bit-rate for state-of-the-art cache

covert-channel attacks and exploring the construction of newer

attacks achieving higher bit-rates. Our default focus is on cross-

core cache attacks, where a malicious sender and a receiver process

execute on two different processor cores and attempt covert commu-

nication via accesses to the shared LLC, as such a setting is typical

for a virtualized environment with a per-core resource allocation.

The current fastest cross-core covert-channels are flush-based

attacks, such as Flush+Reload [40] and Flush+Flush [13]. In these

attacks, the sender and the receiver operate synchronously and
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Figure 1: (a) Cache covert-channel attacks allow the colluding sender and receiver processes to transmit information via timing

differences on accesses to shared caches. (b,c) Prior covert-channel attacks require synchronized transmission and flushes (F)

in addition to loads (L) for each bit sent between the sender and the receiver: both requirements limit the channel bit-rates to

298 KB/s (Flush+Reload) and 498 KB/s (Flush+Flush). (d) In Streamline, the sender and receiver asynchronously communicate

on a large sequence of addresses without flushes (each bit transmitted on a new address), achieving a bit-rate of 1801 KB/s.

transmit information within each bit period using the timing differ-

ence between LLC hits and misses on a read-only shared address

(available in shared-libraries or via deduplication of pages across

processes by Linux KSM [3]). In a Flush+Reload attack shown in

Figure 1(b), within each bit-period, the receiver uses a cache-line

flush instruction (e.g. clflush in x86 systems) to evict a shared ad-

dress from the cache, then waits for the sender to access it, and then

reloads the address. If the receiver observes a fast cache-hit (due to

the sender accessing it), it decodes a 0, whereas a slow access indi-

cates a 1. The Flush+Flush attack, shown in Figure 1(c), is a faster

attack where the receiver measures the latency of the clflush on

the shared address, which executes faster on an address installed

into the cache by the sender; a faster flush indicates the sender sent

a 0, whereas a slower flush indicates a 1. Gruss et al. [13] showed

these attacks achieve bit-rates of 298 KB/s (Flush+Reload) and 496

KB/s (Flush+Flush) at less than 1% bit-error-rate.

The transmission rate of these channels is limited by two re-

quirements: (1) synchronous communication between the sender

and receiver, with each bit being transmitted during a coordinated

time window, and (2) having to execute at least one flush and (one

or two) load operations within the synchronous window for each

bit. With such channels, it is difficult to obtain bandwidths higher

than 1 MB/s (i.e. bit-period <125 ns) because the latency of flush

is typically 50ś70 ns and the latency of memory is approximately

100 ns. A bit period less than 150 ns breaks down the channel due

to loss of synchronization. Additionally, attacks requiring cache-

line flush instructions are not universally applicable, especially for

several ARM processors [12] where the unprivileged use of flush

instructions is disabled by default (in ARM v8 ISA) or completely

unsupported (in ARM v7 ISA).

Towards investigating the feasibility of a more universal covert-

channel attack, we enable Streamline, a flush-less attack that is also

faster than all known covert-channel attacks. The key idea behind

this attack is to enable the sender and receiver to communicate

asynchronously over a large number of lines by using the cache

to buffer data between the sender and the receiver, and relying

on cache thrashing to naturally evict the resident lines (instead of

using expensive clflush operations to explicitly evict lines).

The protocol starts with the sender and receiver sharing a large

shared array a few tens of MBs in size (larger than the size of the

LLC), rather than a single or a small number of addresses1, like in

prior attacks. The sender and the receiver have a pre-determined

sequence of addresses within the array over which they transmit

successive bits. The sender transmits on successive addresses with-

out waiting for the receiver as long as the receiver follows behind

accessing the same addresses in a streamlined manner, as shown

in Figure 1(d). The encoding is similar to prior works, wherein the

sender accesses an address to transmit Bit-0 and does not access it

to transmit Bit-1, allowing the receiver to infer a 0 or 1 based on

whether it observes an LLC-Hit/LLC-Miss respectively. If the shared

array is sufficiently larger than the LLC capacity, by the time the

sender wraps around to the beginning of the array, the addresses

installed during the previous iteration are automatically evicted

due to cache-thrashing. Such an attack is significantly faster than

previous attacks [13, 40], as it does not require synchronization

every bit-period between the sender and receiver and only requires

a single operation (one load) per bit. The bit-rate of this attack is

only limited by how fast loads can be executed and measured.

To orchestrate Streamline with low error-rates, we face and

address two key challenges unique to asynchronous protocols:

Challenge-1. Ensuring the sequence of addresses maps to

and occupies a significant fraction of the cache: It is critical

that the addresses accessed by the sender map to diverse locations

in the cache. Otherwise, successive addresses accessed by the sender

may evict previous addresses before the receiver can access them,

causing errors. The access sequence also needs to circumvent hard-

ware optimizations, like the prefetcher, designed to predict memory

access patterns and preemptively install lines in the cache, and the

cache replacement policy, which preemptively evicts lines with low

reuse from the cache. We present a general approach to generate

an address sequence that occupies a significant fraction of the LLC,

fools the prefetcher, and is resilient to the replacement policy, that

is applicable to any asynchronous attack.

Challenge-2. Ensuring a bounded gap between the sender

and receiver: For Streamline to succeed, it is critical that the sender

remain ahead of the receiver, and both execute at similar rates. If

1Perceival’s [26] pioneering work on covert-channels also used a sequence of array-
entries as large as the L1-cache for communication; but it is more than 4x slower than
our channel because it still relies on synchronous operation (see Section 5.2)
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(a) Flush+Reload Attack (b) Flush+Flush Attack (c) Take-a-Way Attack

Sender Receiver

foreach(bit){
 if(bit == 0)
  load(x)
 wait(end-epoch)
}

foreach(bit){

 t = rdtscp

 load(x)

 T = rdtscp-t

 bit = T<thresh?0:1

 clflush(x)

 wait(end-epoch)

}

Sender Receiver

foreach(bit){
 if(bit== 0)
  load(x)
 wait(end-epoch)
}

foreach(bit){

 t = rdtscp

 clflush(x)

 T = rdtscp-t

 bit = T<thresh?0:1
 wait(end-epoch)
}

Sender Receiver

foreach(bit){
 if(bit== 0)
  load(x)
 wait(end-epoch)
}

foreach(bit){

 t = rdtscp

 load(x_conflict)

 T = rdtscp-t

 bit = T<thresh?1:0
 wait(end-epoch)

}

Figure 2: State-of-the-art covert-channel attacks. All existing covert-channels require the sender and receiver to communicate

each bit in a synchronized epoch, and wait till the epoch ends before communicating the next bit. Cross-core Flush+Reload

attack achieves bit-rate of 298KB/s, cross-core Flush+Flush achieves 496KB/s, same-core Take-a-way attack achieves 588 KB/s.

the receiver is faster, it can overtake the sender and observe a spu-

rious stream of cache misses. Whereas, if the sender goes too far

ahead of the receiver, it can evict its own addresses before the re-

ceiver can access them. We develop strategies to balance the sender

and receiver rates, including a pseudo-random channel encoding

to match the rate of DRAM-accesses executed by the sender and

the receiver, and matching the number of rdtscp executed. While

these optimizations reduce the rate-mismatch, minor differences in

execution speed between processes are expected on a real system

which can cause the gap between the sender and the receiver to

grow unbounded over time. As a fail-safe, we enforce coarse-grain

synchronization (once every 200,000 bits) between them using a

lower bandwidth covert channel, to limit themaximumgap between

the sender and the receiver.

Overall, this paper makes the following contributions:

(1) To our knowledge, this is the first paper to propose a high-

bandwidth cache covert channel without relying on a syn-

chronized protocol to transmit each bit. Our proposal, Stream-

line, uses the cache to buffer data between the sender and

the receiver, and relies on thrashing to naturally evict the

data from the cache post transmission.

(2) We discover and overcome obstacles for high-bandwidth

attacks, such as circumventing hardware optimizations (fool-

ing the prefetcher and replacement policy) and ensuring a

bounded gap between sender and receiver (via rate-matching

and coarse-grained synchronization).

(3) We demonstrate Streamline on Intel Xeon Skylake in a cross-

core setting and achieve a bit-rate of 1801 KB/s at a bit-error-

rate of 0.37%. Our bit-rate is 3.6x higher than Flush+Flush

(496 KB/s), the prior-best cross-core attack, and 3x higher

than Take-a-Way attack [20] (588 KB/s), the prior-fastest

same-core cache attack.

(4) We discover a fundamental limitation of existing load-latency

measurement gadgets that prevents latency measurement of

multiple loads in parallel and limits the potential bit-rate of

Streamline and even other future attacks.

The Streamline attack code is open-sourced at: https://github.

com/gururaj-s/streamline.

2 BACKGROUND

We first provide background on recent cache covert-channel attacks

and then cover their limitations to motivate our work.

2.1 Attack Model for Cache Covert-Channels

Modern processors typically have a multi-level cache hierarchy

with core-private L1 and L2 caches and the L3 or Last-Level-Cache

(LLC) shared among multiple cores. Consequently, a covert-channel

attack can be cross-core [23], where the sender and receiver are

in two separate processes on different cores, or same-core, where

they execute on the same physical core from within two SMT

threads [20] or from within different trust-domains in the same pro-

cess [18, 21]. While our attack is applicable to both attack models,

for simplicity, we assume the cross-core attack model that is com-

monly applicable to a virtualized setting where resource-allocation

typically occurs per core, as our default.

2.2 State-of-the-Art Cache Covert-Channels

State-of-the-art attacks operate the sender and receiver in a syn-

chronous manner, where they communicate each bit within a syn-

chronized epoch (corresponding to a bit-period) and wait till the

epoch ends before communicating the next bit. Within each bit-

period, the sender and receiver execute multiple operations to first

encode a bit, then decode a bit, and finally reset the channel to be

ready to communicate the next bit.

2.2.1 Cross-Core Flush+Reload Attack [40]. This attack (shown

in Figure 2(a)) transmits information using the timing difference

between an LLC-hit and an LLC-miss for a load to a shared address.

The sender encodes each bit by executing/not-executing a load to

the address to convey a bit-0/bit-1. The receiver decodes each bit,

by executing a load to the same address and measuring its latency

using rdtscp before and after the load, decoding bit-0/bit-1 based

on whether it observes a cache-hit/cache-miss. Subsequently, to

reset the channel, the receiver issues a clflush to evict the address

from the cache. The sender and receiver both wait till the end of a

bit-period to ensure the other has finished its operations, typically

synchronizing using rdtscp that provides both a shared notion of

time, before communicating the next bit using the same address.

Gruss et al. [13] showed that this attack can achieve a bit-rate of

298 KB/s at less than 0.05% error-rate.
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2.2.2 Cross-Core Flush+Flush Attack [13]. This attack is the current

fastest cross-core attack and exploits the difference in execution

time for a clflush, based on whether an address is cached or not.

As shown in Figure 2(b), the sender’s operations are identical to the

Flush+Reload attack, i.e. executing/not-executing a load for encod-

ing bit-0/bit-1. To decode a bit, the receiver executes and measures

the latency of a clflush to the same address: a faster execution

implies that the address was accessed by the sender and cached,

and hence a bit-0 transmission, whereas a slower execution implies

bit-1. Note that this attack does not require a separate operation to

reset the channel, as the clflush in the receiver implicitly evicts

the address from the cache, allowing the sender to transmit the

next bit once the current epoch ends. As it requires one less oper-

ation than Flush+Reload, this attack achieves a higher bit-rate of

496 KB/s; but it has a higher error-rate of 0.84%, as clflush has a

smaller timing difference (~10 cycles) compared to that of LLC-hits

and misses (~200 cycles).

2.2.3 Same-Core Take-a-Way Attack [20]. This attack is the fastest

same-core attack and exploits timing-differences arising from the

way-prediction technique used for fast L1-cache accesses in AMD

processors. AMD’s way-predictors are vulnerable to address con-

flicts, where accessing two addresses that map to the same way-

predictor entry results in evictions of each other from the way-

predictor entry and also the L1-cache. Take-a-way proposed a

synchronous covert-channel attack exploiting this, as shown in

Figure 2(c). Every bit-period, the receiver issues a load to prime a

predictor-entry, then allows the sender to execute, and later reloads

the same address. To transmit bit-0, the sender executes a load to

a conflicting-address that evicts the receiver address, causing the

receiver a cache-miss. For bit-1, the sender skips the load, caus-

ing the receiver a cache-hit. The sender and receiver then wait for

the bit-period to end, before resuming transmission with the same

pair of addresses. Take-a-way uses this protocol to launch up to 80

parallel synchronous channels and achieve a bit-rate of 588 KB/s.

2.3 Pitfalls of Existing Attacks

2.3.1 Synchronous Communication. State-of-the-art covert-channel

attacks require a synchronous transfer of bits. The operations to

reset-bit, encode-bit, decode-bit must be executed in a single syn-

chronous window shared between the sender and the receiver, for

each bit before moving on to transmit the next bit. As a result,

the size of the synchronous window has to be sufficiently large

to accommodate all three operations. Any attempt to decrease the

bit-period results in loss of synchronization, and breakdown of

channel communication.

2.3.2 ISA or Micro-architecture Specific Requirements. All existing

fast covert-channel attacks suffer from limited applicability. For

example, Flush-based attacks like Flush+Reload and Flush+Flush,

require the usage of a cacheline flush instruction for transmis-

sion of each bit. While the x86 ISA supports unprivileged usage of

clflush instruction, the ARMv8 ISA disables such unprivileged

by default. ARMv7 and below do not even support such cacheline

flush instructions, making such attacks infeasible on several mo-

bile processors [12]. On the other hand, attacks like Take-a-way

exploit features like L1-cache way-prediction only in AMD proces-

sors, making such attacks infeasible on other micro-architectures.

Finally, although attacks like Prime+Probe [23] that exploit the

generic set-associative structure of caches are widely applicable (as

they do not require flushes or shared-memory), they are consid-

erably slower. For example, Liu et al. [23] achieve a bit-rate of 75

KB/s, that is 7x slower than the fastest known flush-based attacks.

2.4 Goal: A Fast and Universal Attack

Our goal is to investigate whether bit-rate of cache covert-channels

can be significantly improved. To be faster than state-of-the-art, an

attack should not require the synchronous operation of the sender

and receiver while encoding and decoding bits. At the same time,

we investigate if such an attack may be universally applicable to

processors of all architectures and micro-architectures; the only re-

quirements for such an attack must then be the existence of shared

memory and timing difference between fast shared-cache accesses

and slowmemory accesses. Such an attack operating without cache-

line flushes could also highlight the vulnerability of defenses such

as SHARP [37] (that rely on disabling the use of flush instructions)

and inform the design of future defenses. To that end, we design

Streamline as a fast, flush-less and asynchronous covert-channel.

3 STREAMLINE DESIGN

We first intuitively describe Streamline, then the challenges in

enabling it with low error-rates, and how we overcome them.

3.1 High-Level Idea of Streamline

Algorithm: Streamline achieves fast asynchronous communication

by transmitting each bit on a different address of a large shared-

array. As shown in Figure 3, for each bit transmission, the sender

chooses a successive entry (cache line) of the shared array, and

installs the entry into the LLC if the bit is 0, else it skips that entry.

Then, without waiting for the receiver to access that entry, the

sender moves on to the next bit. The receiver follows behind in the

same sequence loading each successive entry. If a load is an LLC-Hit,

that implies the sender installed that entry into the LLC, and hence

the corresponding bit was 0; else if the load is a DRAM-access, that

implies the sender skipped the entry, and the bit was 1.

When the sender wraps around to the beginning of the array,

the addresses used in the previous iteration must be evicted from

the LLC before they can be reused. Unlike prior attacks that ex-

plicitly use conflicts [20, 23] or flush instructions [13, 40] to evict

addresses, the sequential access pattern of Streamline on the large

array (larger than LLC capacity) implicitly induces cache-thrashing,

where the LLC automatically evicts previously accessed addresses

to accommodate new addresses.

Potential Bit-rate: Streamline does not require any extra oper-

ations, such as flushes, to evict previously used addresses because

of the cache-thrashing pattern of its accesses.2 Moreover, for each

bit, the sender or receiver does not have to wait for the epoch to

complete, but can continue to the next bit. As long as the receiver

2Thrash+Reload attack [29] also uses cache-thrashing to evict addresses, but it is a
synchronous attack that waits till thrashing evicts an address before transmitting the
next bit with the same address. Hence it has a bandwidth of only 4 bits/minute, which
is more than a million times slower than Streamline.
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(a) Streamline Attack Algorithm

Sender Receiver

uint8_t arr[len]

foreach(bit_i){
 if(bit_i== 0)
  load(&arr[64*(i++) % len])
}

uint8_t arr[len]

sleep(delayed_start)

foreach(bit_i){

 t = rdtscp

 load(&arr[64*(i++) % len])

 T = rdtscp - t

 bit_i = T<thresh?0:1

}

Sender
Shared Array
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Figure 3: Overview of the Streamline Attack. The sender and receiver communicate asynchronously via accesses to a shared

array arr (larger than the LLC). The sender keeps transmitting on sequential entries of the array, without waiting for the

receiver to decode. By the time the sequential access wraps around to the start of the array, the entries accessed in the previous

iteration are evicted from the LLC due to the cache-thrashing access pattern.

follows behind the sender in a rate-matched manner, the bit-rate

is only limited by the receiver’s throughput in executing and mea-

suring loads. For example, on an Intel Skylake system where a

DRAM access takes ~300 cycles, this channel can potentially exceed

a bit-rate of 1.5 MB/s.

Challenges: Ensuring that the asynchronous communication is

also error-free is challenging for the following reasons:

(1) We need to ensure the sender is consistently ahead

of the receiver: If the sender falls behind the receiver at

any time, the receiver continuously observes spurious LLC-

misses, and erroneously decodes bits as all-1s. We need to

ensure the receiver is slower and always follows the sender.

(2) Weneed to be able to tolerate slack between the sender

and the receiver: If the portion of the cache over which

communication is happening is too small, the sender can self-

evict addresses it previously installed in the LLC via cache-

thrashing, before the receiver can access them, causing bits to

be decoded erroneously. To prevent premature eviction, we

need to ensure the addresses installed by the sender spreads

over the entire LLC, and are protected from the effects of the

replacement policy, and the prefetcher.

(3) Weneed to prevent the sender fromgoing too far ahead

of the receiver: Since the cache (that acts as a buffer for our

communication) is of a limited size, we need to prevent the

sender from wrapping around and lapping the receiver. To

that end, we need coarse-grain synchronization (e.g., once in

hundreds of thousands of bits) to prevent the sender-receiver

gap from growing beyond tolerable limits.

Next, we describe how we address each of these challenges.

3.2 Channel Encoding For Sender-Rate >
Receiver-Rate

Figure 4 shows how a naive algorithm for transmission (sender

issues load for payload-bit 0, and skips the load for payload-bit 1) can

result in burst-errors, due to a payload-dependent rate-mismatch

between the sender and receiver. If the payload bits are mostly 0s,

the sender can slow down due to slow DRAM accesses and fall

behind the receiver. This can cause the receiver to erroneously

decode all-1s, as it gets LLC-Misses for addresses not accessed

yet by the sender. If the payload is mostly 1s, then the sender

can skip several addresses and end up considerably ahead of the

receiver. In this scenario, the addresses installed by the sender

can get evicted even before the receiver can access them, causing

channel breakdown.
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Figure 4: A naive channel encoding scheme causes a rate-

mismatch between the sender and receiver. If the receiver

goes ahead of the sender or falls too far behind, it observes

erroneous LLC-Misses (in red), leading to errors.

To keep the sender and receiver rates payload-independent, we

use a pseudo-random channel encoding. As shown in Figure 5, the

sender uses a pseudo-random number generator (PRNG) whose

seed is known to both sender and receiver, to modulate payload

bits with a sequence of random 0s and 1s. For each payload bit

(PB-𝑖), the sender transmits a bit (TB-𝑖) as TB-𝑖 = PB-𝑖 ⊕ PRNG-𝑖 .

On receiving TB-𝑖 , the receiver is able to reconstruct the payload

(PB-𝑖) as PB-𝑖 = TB-𝑖 ⊕ PRNG-𝑖 , as the PRNG seed is known to it.

The PRNG-based channel encoding equalizes the number of 0s

and 1s transmitted (TB-𝑖) in expectation irrespective of the actual

payload-bit values (PB-𝑖), as long as the PB-𝑖 and PRNG-values are

drawn from independent distributions. In this scenario, the sender

and the receiver have a comparable number of DRAM accesses, as

the sender has a DRAM-access when TB-𝑖 is 0, while the receiver has

a DRAM-access when TB-𝑖 is 1. However, the receiver additionally

incurs LLC-Hits when TB-𝑖 is 0, which makes the receiver execute

at a slower rate than the sender. This ensures that the receiver

always follows behind the sender, and the gap between them grows

at a deterministic rate.
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Figure 5: Modulating payload bits (PB-i) with a random-

sequence (PRNG-i) and then transmitting (TB-i) ensures the

Receiver is slower than Sender (with equal LLC-misses, but

more LLC-Accesses), regardless of payload values.

3.3 Access-Pattern to Tolerate Sender-Receiver
Slack

As the sender transmits at a faster rate than the receiver, the gap

between the address being accessed by the sender and that being

accessed by the receiver, at each moment in time, keeps widening.

As the number of addresses that an LLC can store is limited to

a finite value, the gap between the sender and the receiver can

theoretically increase up to this limit while maintaining a low error-

rate. To tolerate a sender-receiver gap close to this theoretical limit,

we design the sequence of addresses used by Streamline ensuring:

(1) The sequence maps to a large majority of LLC-sets. Addi-

tionally, the sequence should not be predictable by the cache

prefetcher, which can disrupt the channel by prefetching

addresses into the LLC, irrespective of the payload.

(2) The sequence uses all the ways within a particular LLC-set,

and fools the LLC replacement policy. This is essential to

ensure the addresses installed by the sender are not prema-

turely evicted because of replacement decisions.

3.3.1 Achieving High Set Coverage and Fooling Prefetcher. Simple

sequences such as accessing sequentially contiguous cachelines

have high set-coverage, but are easily predicted by the prefetcher

(Intel CPUs have a next-line prefetcher, sequential stream prefetch-

ers, and stride prefetcher [31, 33]) and the channel can be disrupted.

Other sequences used in prior works [13], that access one cacheline

per 4KB page to fool the prefetcher, have very poor cache set cov-

erage. To identify an optimal access pattern with high set coverage

that also fools the prefetcher, we devise the following experiment.

We systematically generate sequences of 𝑁 addresses that access

every 𝑥-th cacheline in a page and lines from 𝑦 pages are accessed

before the next line from the same page, and measure the latency

of each access in the sequence. We repeat this experiment 5 times

for 𝑁 = 1000 and 𝑥,𝑦 = {1, 2, 3, 4, 5}, and report the miss-rate, i.e.

the number of cache-misses observed out of 𝑁 accesses for each

sequence. A higher cache miss rate for a sequence indicates that it

is more effective in fooling the prefetcher.

As shown in Table 1, the prefetcher effectively learns access

patterns (and lowers miss-rates) if accesses are strided within a

single page (𝑦 = 1) for any stride (𝑥 ≥ 1), or if the accesses are

sequential (𝑥 = 1) irrespective of the number of pages (𝑦 ≥ 1)

Table 1: LLC Miss-Rate for a Sequence accessing every 𝑥𝑡ℎ

cacheline within a page, with 𝑦 pages accessed at a time.

(Higher miss-rate implies sequence fools prefetcher better)

x

y
1 2 3 4 5

1 1.8% 3.7% 2.7 % 2.5% 2.2%

2 6.6% 7.3% 6.7% 6.9% 7.0%

3 11.6% 99.5% 98.9% 90.9% 88.0%

4 15.3% 97.5% 97.8% 95.7% 90.5%

5 17.3% 98.8% 91.8% 91.6% 90.6%

across which lines are accessed before the same page is re-accessed.

However a strided access pattern (𝑥 > 2) that is spread across more

than one page (𝑦 ≥ 2) is highly effective in fooling the prefetchers,

with the miss-rate for such a sequence being > 90%. We believe

this is because the stride-tracking mechanism operates at page-

granularity (as prefetched addresses do not cross page boundaries)

and is overwhelmed by the back-to-back accesses across pages.

For Streamline, we pick the access pattern that best fools the

prefetchers, i.e. a stride of 3 spread over 2 pages (𝑥 = 3, 𝑦 = 2).

This pattern covers 1/3rd of the LLC sets as it accesses every 3rd

line within a page, which is significantly better than accessing one

cacheline per 4KB page (as in prior-work [13]). We also empirically

observe that sequences that start from the middle of a 4KB page are

better at fooling the prefetcher stride-tracking (e.g. 14th cacheline).

The exact equation for calculating the index of the shared byte-array

for each bit (𝑖) of the payload is given by Equations 1ś3.

𝑃𝑔-𝑛𝑢𝑚 = 2 ∗ 𝑖𝑛𝑡 (3 ∗ 𝑖/128) + 𝑖%2 (1)

𝐶𝑙-𝑛𝑢𝑚 = (14 + 3 ∗ 𝑖𝑛𝑡 (𝑖/2)) % 64 (2)

𝑎𝑟𝑟𝑎𝑦-𝑖𝑛𝑑𝑒𝑥 = (𝑃𝑔-𝑛𝑢𝑚 ∗ 4096 +𝐶𝑙-𝑛𝑢𝑚 ∗ 64) % 𝑎𝑟𝑟 -𝑠𝑧 (3)

3.3.2 Covering LLC-Ways by Fooling Replacement Policy. To ensure

the addresses accessed in Streamline occupy a majority of the LLC-

ways, and are protected from premature eviction from a set, we

need to fool the LLC replacement policy. Prior work [4] reverse

engineered the LLC replacement policy in Intel CPUs, showing it to

maintain 2-bit age values per cacheline for tracking re-use (similar

to re-use bits in RRIP Replacement [14]). A new line is assigned

an age-value of 2 or 3 (based on CPU generation), and subsequent

LLC-hits to such lines decrements their ages, till they saturate at 0.

A line with age-3 within a set is evicted, when a new line is to be

installed to the set; if no such line exists, all the ages in the set are

incremented till an age-3 line is found.

To fool the replacement policy and avoid premature eviction of

addresses installed by Streamline, we need to prevent them from

being the oldest line in the set. To that end, we engineer extra

LLC hits to the addresses installed by the sender into the LLC, to

decrement their age and protect them from preemptive eviction.

We achieve this by making the sender re-access previously installed
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addresses, after a lag of 5000 bits, to ensure this trailing access

results in an LLC hit (the addresses are likely to be evicted from

the L1 and L2 cache within 5000 bits).

Figure 6 shows the bit-error-rate for Streamline as the sender-

receiver gap (in number of bits) increases, for different access pat-

terns: a naive sequence accessing one cacheline per page, a sequence

with high LLC set-coverage from Section 3.3.1, and a sequence with

high coverage of LLC sets and ways from Section 3.3.2. The naive

sequence shows an increase in error-rate beyond a sender-receiver

gap of 1000 bits, the sequence with high LLC set-coverage beyond

4000 bits, and the sequence with high coverage of LLC sets and

ways retains low error-rates till a gap of 40,000 bits between sender

and receiver. With this, Streamline tolerates a sender-receiver gap

of 1/3rd the LLC capacity (128,000 addresses).
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Figure 6: Error-rate versus Sender-Receiver Gap. With a se-

quence of addresses that covers a majority of LLC sets and

ways, Streamline builds in considerable tolerance to slack

between the sender and receiver.

3.4 Techniques to Bound Sender-Receiver Slack

In an ideal scenario where the sender and receiver are perfectly rate-

matched, the gap between the sender and receiver would remain

constant, and never go beyond the tolerable slack. To that end, we

attempt to rate-match the sender and receiver as best as possible

and then explicitly bound the maximum slack between the sender

and receiver, to ensure the sender never wraps-around the array

and laps the receiver.

3.4.1 Matching Sender and Receiver Load Execution-Rates. One of

the key reasons for the rate mismatch between the sender and the

receiver is that the receiver measures the latency of the loads it

executes while the sender does not. To measure the load latency, the

receiver uses rdtscp instructions in the sequence rdtscp; load;

rdtscp;. Such usage of rdtscp serializes the execution of loads

of different bits for the receiver, whereas the sender (without such

serializing instructions) can issue loads of multiple bits in parallel.

As a result, despite issuing two loads per bit (one for transmission

and one for fooling the replacement policy), the sender can execute

at a faster rate than the receiver. Hence, to throttle the sender, we

add a load-serializing rdtscp per bit in the sender that limits its

load execution-rate and reduces its mismatch with the receiver.

3.4.2 Periodic Coarse-Grain Synchronization. In a realistic setting,

the sender and the receiver will always have a non-zero drift. To pre-

vent the sender-receiver gap from exceeding a tolerable limit due to

this, we synchronize the sender and receiver at a coarse granularity

(e.g. every 200,000 bits) using a separate low-bandwidth covert chan-

nel. When the sender reaches the end of an epoch of 200,000 bits, it

stops transmitting and waits. Once the receiver completes 195,000

bits of the epoch, it communicates a bit on the synchronization-

channel to the sender, to permit the sender to resume. As synchro-

nization is extremely infrequent (e.g. once in 200,000 bits), any

low-bandwidth covert-channel can be used without any bandwidth

loss (we use a Flush+Reload channel for synchronization).

To justify our choice of synchronizing every 200,000 bits, Fig-

ure 7 shows the sender-receiver gap (in bits) as the bits transmitted

increases. We compare three access patterns: (a) using the tailored

access pattern from the previous section that covers a majority

of the cache, (b) the tailored access pattern with the addition of

a rate-limiting rdtscp for the sender, and (c) the further addition

of halting the sender periodically based on synchronization every

200,000 bits. With the first access pattern, the sender-receiver gap

crosses a threshold of 40,000 bits (beyond which error-rate goes

above 1%) within a transmission of 100,000 bits. With the second

access pattern that rate-limits the sender, the sender-receiver gap

remains within the threshold till 400,000 bits. To ensure that the

sender-receiver gap is below the threshold (i.e., the channel oper-

ates within the threshold of 1% error-rate) indefinitely while also

keeping some head-room, we add synchronization between the

sender and receiver every 200,000 bits transmitted (i.e. the third

access pattern). With this, Streamline can maintain the channel

error rate below 1% for billions of bits transmitted.
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Figure 7: Gap between Sender and Receiver vs Number of

bits transmitted. Rate-limiting the sender to match its rate

with the receiver and using coarse-grain synchronization to

halt the sender every 200,000 bits, ensures the gap is main-

tained below 40,000 bits (within this threshold, the error-

rate stays below 1%).

3.5 Overall Algorithm for Streamline

Figure 8 shows the algorithm for Streamline incorporating the error-

mitigating techniques from Sections 3.3 and 3.4. The modulation of

the payload with the PRNG-sequence (Section 3.2) happens off the

critical path and hence is not shown.
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Sender Receiver

foreach(bit_tx[i]){

 //to rate-limit

 rdtscp

 //to transmit bit

 if(bit_tx[i] == 0)

  load(&arr[index(i)])

 //to beat real-policy

 if(bit_tx[i-5000] == 0)

  load(&arr[index(i-5000)])

 //synchronize every 200K

 if(i%200000 == 199999)

   FR_Sync_With_Receiver()  

}

sleep(delayed_start)

foreach(bit_rx[i]){ 

 

 //to receive bit

 t = rdtscp

 load(&arr[index(i)])

 T = rdtscp - t

 bit_rx[i]=T<thresh?0:1

  

 //synchronize every 200K

 if(i%200000 == 195000)

  FR_Sync_With_Sender() 

}

Figure 8: Algorithm for Sender and Receiver in Streamline

to achieve fast and asynchronous communication, incorpo-

rating techniques to ensure low error-rates.

4 RESULTS

In this section, we evaluate the covert-channel transmission bit-rate

and bit-error-rate that Streamline achieves.

4.1 Methodology

We run our experiments on a 4-core Intel Skylake CPU (Intel Xeon

E3-1270), with an 8MB LLC, running at a frequency of 3.9 GHz (the

results were also successfully reproduced on Intel Core i7-8700K

Kaby Lake and Core i5-9400 Coffee Lake CPUs). For our system, we

measure the average LLC-Hit latency to be 95 cycles, and LLC-Miss

latency to be 285 cycles. So, we use a threshold of 180 cycles for

the receiver to determine if a load is an LLC-Hit or Miss. We use

large pages for the sender and receiver, to minimize any effects

due to TLB misses. We pin the sender and receiver processes to

two different cores, to ensure all communication is through the

LLC. We assume the sender and receiver share an array (default

size of 64 MB) with read-only permissions that Streamline uses for

communication; we analyze other array sizes in Section 4.4.

4.2 Streamline Channel Bit Rate and Error Rate

Figure 9 shows the bit-rate in KB/s and bit-error-rate for Streamline,

plotted against the size of the payload that is transmitted (in bits).

As a high-speed covert-channel typically has more utility at large

payload sizes, we evaluate Streamline for payload sizes of 200,000

bits to 1 billion bits. We report the bit-rate by measuring time from

receiver-start to end, divided by the number of bits transmitted,

averaged over 5 runs. Streamline achieves a steady-state bit-rate

of 1801 KB/s at a bit-error-rate of 0.37%. This corresponds to a

steady-state bit-period of 265 CPU cycles, that is in between the

latency for an LLC Hit and a DRAM access on our system.

Streamline’s bandwidth is limited by how fast the receiver exe-

cutes and measures a load for each bit, and is not limited by synchro-

nization as in prior works. Although DDR4-DRAM has a bandwidth

of 150 Million accesses/second, Streamline is still limited to a band-

width of <2 MB/s, due to serialization of loads by the rdtscp used

to measure load-latency at the receiver. As the receiver cannot ex-

ecute multiple loads in parallel, it is forced to wait till each load

completes (incurring raw LLC-Hit/ DRAM-access latency per bit-

period), before issuing the next load.We discuss how this bandwidth

limitation is fundamental to all future attacks in Section 4.6.
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Figure 9: Covert-channel Bit-rate and Bit-error-rate vs Pay-

load Size (shaded regions represent 95% CI, i.e. confidence

intervals). Streamline has bit-rate of 1801 KB/s at error-rate

of 0.37% (note the non-zero start of the Y-Axis for bit-rate).

In Figure 9, the bit-error-rate for a payload size of 200,000 bits is

~2% and relatively higher than the stable bit-error-rate of 0.37% for

larger payload sizes. This is because of high error-rates incurred

during the first 5000 bits, when the trailing accesses to fool the

replacement policy have not started (during the first 5000 bits,

the error-rate goes up to 20% as shown in Figure 6). However,

this transient increase in error-rate is amortized as payload size

increases, becoming imperceptible beyond 5 million bits, and the

error-rate stabilizes at 0.3%.

4.3 Analysis of Errors and Error-Correction

Table 2 shows the breakdown of error-rates by type ś 0 to 1 bit

errors and 1 to 0 bit errors, for different payload-sizes. As payload

size increases, the 1 to 0 errors (which form a significant fraction

of the total errors for smaller payloads) drop considerably. At the

same time, 0 to 1 errors stay the same, and become a dominant

fraction for larger payloads.

0 to 1 bit errors typically manifest when an address accessed

by the sender gets evicted from the LLC before the receiver can

access it, because the gap between receiver and sender grew too

large or because of cache usage by other system processes. In either

scenario, we observe these errors appear in bursts that are hard to

correct without re-transmission. On the other hand, we observe that

1 to 0 errors occur when a DRAM access is faster than our LLC-hit

threshold, resulting in a false declaration of an LLC-Hit. We expect

these errors to be randomly distributed as these accesses form

the tail of the DRAM latency distribution, with a high chance of

them being single-bit errors. Hence, we develop an error-correction

scheme for Streamline that corrects single-bit errors.

To add error-correction, we break our payload into 8-byte pack-

ets and append each packet with a (72,64) Hamming Code before

transmission, that can correct 1-bit errors and detect 2-bit errors

occurring during transmission. We pick this specific design with a
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Table 2: Breakup of Error-Rates for Different Payload Sizes

Payload Size (in bits) 2 × 105 106 107 108 109

Total Bit-Error-Rate 2.16% 0.68% 0.41% 0.35% 0.37%

Rate of 1 to 0 Errors 1.95% 0.44% 0.12% 0.09% 0.11%

Rate of 0 to 1 Errors 0.22% 0.25% 0.29% 0.26% 0.27%

12.5% overhead (1-byte code per 8-byte data) to maintain equiva-

lence with the error-mitigation framework developed by Gruss et

al. [13] (a more robust mechanism including re-transmission) that

incurs a similar 12% overhead for the Flush+Flush attack.

Table 3 shows the bit-rate and bit-error-rate with andwithout our

error-correction scheme for transmitting 1 billion bits. With error-

correction, the effective data bit-rate goes down by approximately

10% to 1598 KB/s, while the bit-error-rate goes down to 0.12%. The

remaining bit-errors are due to uncorrected or miscorrected bits,

because of the presence of multi-bit errors within a packet. We

observe a similar 0.2% drop in error-rate for all payload sizes.

Table 3: Streamline with and without Error-Correction

(parenthesis includes margin-of-error for CI=95%)

Configuration Bit-rate Bit-Error-Rate

Without Error-Correction 1801 KB/s (± 3) 0.37% (± 0.04%)

With (72,64) Hamming Code 1598 KB/s (± 2) 0.12% (± 0.01% )

4.4 Sensitivity to Shared Array Size

Table 4 shows the error-rate of Streamline with a payload of 100

million bits, as the size of the shared array used for covert commu-

nication varies. As our system has an 8MB LLC, we evaluate shared

array sizes of 8MB to 64MB (1x to 8x the LLC size). As the size

decreases from the default value of 64MB to 32MB, the error-rate

stays close to 0.3%. However, it increases considerably below 32MB,

reaching 3.2% for 16MB and 28% for 8MB. Having a sufficiently

large shared array is critical for the robustness of the channel, as

Streamline relies on the cache-thrashing behavior of its accesses

to evict addresses previously used for communication. Without

evictions via cache-thrashing, Streamline cannot effectively reuse

array addresses on a wrap-around, resulting in high error rates.

Streamline needs an array that is at least 3x the size of the LLC

for inducing effective cache-thrashing, as its access pattern only

loads every 3rd cache line of the array to fool the prefetcher. Hence,

Streamline incurs higher error rates with array-sizes that are 2x

(16MB) and 1x (8MB) the LLC-size.

Table 4: StreamlinewithDifferent SharedArray Sizes (paren-

thesis includes margin-of-error for CI=95%)

Shared Array Size Bit-Error-Rate

64MB (default) 0.35% (± 0.02%)

32MB 0.33% ± 0.01%

16MB 3.2% (± 0.1%)

8MB 27.5% (± 0.1%)

4.5 Sensitivity to Synchronization Period

Table 5 shows channel characteristics for a payload of 100 million

bits, as the synchronization period is varied. Across all periods,

the bit-rate remains above 1780 KB/s because the synchronization

overhead is negligible. However, the bit-error-rate increases to 0.7%

if the synchronization-frequency decreases once every 500,000 bits,

as the sender-receiver gap exceeds tolerable limits (going beyond

500,000 bits leads to channel breakdown). On the other hand, in-

creasing synchronization frequency to once every 25,000 results

in minor differences in error-rates (increase by 0.1% versus our

default of once every 200,000 bits), but we observe these tend to be

single-bit errors that are easily correctable.

Table 5: Streamline with Different Synchronization Periods

(parenthesis includes margin-of-error for CI=95%)

Synchronization Period Bit-rate Bit-Error-Rate

Every 500,000 bits 1818 KB/s (± 5) 0.65% (± 0.05%)

Every 200,000 bits (default) 1802 KB/s (± 7) 0.35% (± 0.02%)

Every 100,000 bits 1797 KB/s (± 6) 0.37% (± 0.03%)

Every 50,000 bits 1783 KB/s (± 10) 0.40% (± 0.02%)

Every 25,000 bits 1791 KB/s (± 5) 0.46% (± 0.01%)

4.6 Limiter for Covert-Channel Bit-rate

Streamline mitigates two key bottlenecks faced by prior covert-

channels: (a) the transmission bottleneck (the requirement of load-

ing and resetting an address with separate operations every bit),

and (b) the synchronization bottleneck (sender waits until the re-

ceiver has decoded a bit before transmitting the next bit). Thus, we

improve the covert-channel bit-rate by >3x compared to state-of-

the-art. Our work, however, exposes a new bottleneck for covert-

channels ś the measurement bottleneck.

To see the problem, consider that the bit-rate in Streamline is de-

termined by the rate at which the receiver can execute and measure

loads. All existing methods to measure load latency on x86 systems

result in load serialization for accurate latencymeasurement. For ex-

ample, we use the sequence rdtscp; load; rdtscp; (other works

use rdtsc;lfence; instead of rdtscp). Fundamentally, these se-

quences need to ensure that the second timer instruction samples

the time after the load returns (which they do with either an explicit

lfence or fence-like semantics as in rdtscp). This fencing implies

that the next load cannot execute until the previous one returns.

This loss of parallelism means that each bit-period is limited by the

load latency to access DRAM or LLC (between 100 ś 300 cycles).

Thus, Streamline is limited to a bit-period of 267 cycles, as is any

future attack requiring timing loads.

Note that using gadgets like sibling counting-threads [19, 30],

for measuring time without rdtscp, is not viable for measuring the

latency of multiple loads executing in parallel in x86. Executing

and measuring loads in parallel with such timer-variables leads to

re-ordering of timer-loads and potential TSO violations on Intel

CPUs [28] ś these cause speculative timer-loads to be squashed,

resulting in incorrect latency measurements. We leave the study of

new methods to measure load-latency of multiple loads in parallel,

to reach higher bit-rates, for future work.
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4.7 Resilience to System Noise

In Streamline, the sender buffers bits for the receiver in LLC loca-

tions to enable asynchronous communication. However, consider-

able cache-activity from co-running processes on the system can

cause lines installed by the sender to get evicted before the receiver

accesses them, adding noise to the channel. However, Streamline

can achieve noise-resilience by limiting the time-window where

cache lines installed by the sender are vulnerable to eviction (i.e. the

time window for which the line is installed by the sender but not

yet accessed by the receiver). This can be achieved by reducing the

maximum sender-receiver gap, by using a smaller synchronization

period for the sender and receiver.

Our default implementation uses a synchronization period of

200,000 bits that limits the sender-receiver gap to a maximum of

40,000 bits. Reducing the synchronization-period to once every

50,000 bits limits the maximum sender-receiver gap to 8,000 bits (as

shown in Fig 7) without affecting the bit-rate (as shown in Table 5).

In this case, as the buffer size used at any given time is no more than

8000 bits, i.e. 6% of our 8MB LLC (131,000 lines), the potential for

interference from co-running processes is significantly diminished.

To evaluate the attack fidelity under noise, we evaluate Stream-

line while running applications stressing the CPU caches simulta-

neously on a different core. We use stress-ng [16] (configurable

kernels that stress system resources) and run applications from

"–class cpu-cache" that stress the CPU caches.

Figure 10 shows the error-rate of Streamline transmitting a pay-

load of 100 million bits (averaged over 5 runs) using synchroniza-

tion periods of 200,000 and 50,000 bits, while each application from

stress-ng is co-running (pinned to an adjacent core). While the

error-rate of the channel reaches a worst-case of 15% with the sync-

period of 200,000 bits, it is limited to a worst-case of 0.8% when the

sync-period is reduced to 50,000 bits and relatively noise-resilient

(close to the error-rate of 0.3% under noise-free setting). On the

other hand, Streamline’s bit-rate with co-running stress-ng appli-

cations is slightly diminished and varies from 1500-1800 KB/s due

to increased memory latency and queuing delays.

We also tested Streamline while simultaneously running the

Chromium-60 web-browser streaming Youtube videos and found

error-rate to be 0.5-0.6% (no impact on bit-rate). Note that infrequent

spurious noise evicting line at such low rates can be mitigated using

error correction codes (discussed in Section 4.3).
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Figure 10: Error-Rate of Streamline under co-running

stress-ng workloads, for sender-receiver synchronization

periods of 200,000 and 50,000 bits.

5 COMPARISON WITH PRIORWORK

In this section, we compare Streamline with an implementation of

Flush+Reload [40] covert-channel on our system and also distin-

guish our work from other previously proposed covert-channels.

5.1 Comparing Flush+Reload and Streamline

Figure 11 shows the bit error rate versus bit rate for the Flush +

Reload [40] covert channel (averaged over 5 runs), generated on

our system using the code from the Arch-Sec tutorial at ISCA-

2019 [9] (note that this is not a fully optimized implementation, so

the trend is more representative than the actual values). To obtain

the error-rates at different bit-rates for Flush+Reload, we reduce

the transmission window per bit (time for which the sender and

receiver perform accesses to communicate a bit) from 32,768 cycles

to 256 cycles, while artificially ensuring that the synchronization

related errors remain negligible, so that the errors are only due to

transmission (note that the error-rate obtained is a lower-bound).

We observe the error-rate stays low (below 1%) until 200 KB/s (bit-

period of 2000 cycles), but beyond 200 KB/s the error-rate consider-

ably increases beyond 10%. This is because Flush+Reload requires

multiple operations (loads for transmission, flush for reset) to be

executed within progressively shorter bit-periods. In comparison,

Streamline achieves an error-rate of 0.3% with a bit-period of 265

cycles as it only requires a single operation per bit for transmission

and also does not require synchronization for every bit.
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Figure 11: Bit-rate and bit-error-rate (without error-

correction) of Flush+Reload attack versus Streamline.

5.2 Comparison with other Covert-Channels

Table 6 shows bit-rates and error-rates of cache covert-channel

attacks in recent works, compared with Streamline. As state-of-

the-art bit-rates for these attacks are difficult to achieve without

hand-tuned assembly implementations (not publicly available to our

knowledge), we present results reported in the respective papers.

Flush+Flush and Flush+Reload implementations by Gruss et

al. [13] were the prior fastest cross-core covert channels, with bit-

rates of 298 KB/s and 496 KB/s. Streamline achieves 3.6x and 6x

higher bit-rates at comparable error-rate as it (a) is asynchronous

(the sender does not wait for the receiver each bit), and (b) only

requires a load per bit (no flushes). Note that the hardware used in

Streamline (Intel Xeon Skylake) only has a ~15% speedup compared

to that used in these prior attacks (Intel i7 Haswell) [7] and Stream-

line’s bit-rate increase of 3.6x far outweighs any potential hardware

speedup. In fact, Streamline is likely to have similar bit-rates across

recent processor generations as its bit-period is bottlenecked by
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Table 6: Prior Cache Covert Channels (Bit-Rate>50 KB/s)

Attack
Attack

Bit-Rate
Bit

Model Error Rate

Take-a-way [20] Same-Core 588 KB/s 1ś3%

Flush+Flush [13] Cross-Core 496 KB/s 0.84%

Prime+Probe (L1) [26] Same-Core 400 KB/s ś

Flush+Reload [13] Cross-Core 298 KB/s 0%

Prime+Probe (LLC) [23] Cross-Core 75 KB/s 1%

Xiaong and Szefer [36] Same-Core 72 KB/s <2%

Streamline (this work) Cross-Core 1801 KB/s 0.37%

LLC/DRAM latencies which have largely stayed similar. Moreover,

Streamline is more universally applicable as it does not rely on

cacheline flush instructions (required by flush-based attacks), that

are unavailable for unprivileged use on ARM CPUs by default.

Prime+Probe attacks exploiting set-conflicts were pioneered

by Perceival [26] on L1-Caches. This work used an array as large

as the L1-Cache for communication, transmitting a bit per array-

entry (similar to our proposal). However, it used a synchronous

protocol, where the sender accesses L1-cache sets to transmit while

the receiver waits, and only once it completes the receiver accesses

all L1-cache lines and checks for conflicts while sender waits, that

limits its bit-rate to 400KB/s [26]. Subsequent works [23, 24] demon-

strated a synchronous cross-core Prime+Probe attack on slower

LLCs, achieving a bit-rate up to 75KB/s [23]. Streamline is much

faster than these attacks, primarily due its asynchronous opera-

tion, where the sender and receiver do not have to wait on the

other frequently (although Streamline requires shared-memory;

Prime+Probe does not). The strategies in Streamline may also be

used to enable a faster asynchronous Prime+Probe attack in future

works, where the bit-rate is not be limited by synchronization.

Other attacks exploit the replacement policy metadata in L1

caches [36] or in LLCs [4], or even coherence protocols [32, 39]

to transmit information more stealthily. However, they suffer a

synchronization bottleneck like Prime+Probe or Flush+Reload that

limits their bit-rate. Streamline uses insights from prior replacement

policy attacks to enable a considerably faster asynchronous attack.

Thrash+Reload [29], a variant of Flush+Reload attack, uses

cache-thrashing instead of flush to evict an address each bit. Unfor-

tunately, it is quite slow due to its synchronous nature: the sender

waits for the receiver to thrash the cache by accessing more ad-

dresses than LLC capacity before it transmits the next bit (bit-rate

of 4 bits/min over the network [29] and up to 1000 bits/s natively).

In Streamline, the transmission itself induces cache-thrashing, and

eviction of previous addresses is automatic (without needing the

sender or receiver to wait), helping it achieve 14000x higher bit-rate.

Take-a-way [20] on AMD machines has the highest known bit-

rate (588 KB/s) for a same-core covert channel attack. It achieves

this by communicating over 80 concurrent synchronous channels,

leveraging different L1 cache sets. On the other hand, Streamline

transmits over a large number of addresses in a single asynchronous

channel and achieves a 3x higher bit-rate. Streamline is also more

general as it only relies on generic LLC properties like sharing

among cores and thrashing, unlike Take-a-way that exploits way-

prediction features only known to be exploitable in AMD CPUs.

6 DISCUSSION

Real-World Applicability: Streamline is applicable to the classic

covert-channel setting [5, 34, 39] between trojan and spy processes

(both controlled by an adversary), where a trojan malware has

infiltrated a sand-box and gained access to secrets, and needs to

communicate with a spy program with access to network ports

(capable of exfiltrating data or communicating with a command-

and-control server). Streamline can enable transmission of high

bandwidth payloads (such as video-streams) in such a setting that is

not possible with existing covert-channels. While Streamline is also

applicable as a covert-channel for transient-execution attacks [18,

21], its benefits may not be as apparent, as the bit-rate bottlenecks in

such attacks are typically not the covert channel, but other factors

related to transient execution in the victim.

Shared-Memory Requirement: Streamline requires a shared-

array that is 2-4x the size of the LLC. This can be easily achieved

by the colluding processes with an mmap of shared libraries, either

using a single large shared library (e.g., libQtWebKit.so is ~32MB) or

by chaining a sequence of smaller libraries (e.g., libc.so, libcrypto.so

are ~2MB each). Memory may also be shared between processes

via OS-based deduplication (e.g., Linux KSM [3]), as in prior at-

tacks [39]. Future work could also explore asynchronous communi-

cation without shared-memory (e.g., using conflicts in shared sets

for bit-transmission) to avoid this requirement.

Applicability to Hyper-Threads: While we evaluate Streamline

between processes running on different cores, it is also applicable

to hyper-threads simultaneously running on the same core sharing

the L1/L2-cache. An advantage of such a setting is that a smaller

shared-array is required for thrashing L1/L2 caches, but the smaller

difference in hit-vs-miss latencies for these caches is a challenge.

For these reasons, in a cross-thread setting, the L2 cache is a more

suitable target for Streamline than the L1 cache.

7 MITIGATION STRATEGY

Defenses that restrict the unprivileged usage of cacheline flush

instructions to mitigate flush-based attacks, such as SHARP [37] or

ARM ISA, are incapable of mitigating Streamline. There are three

main mitigation strategies that might be used to restrict Streamline:

detection, noise-injection, or isolation. We describe these below.

Detection based approaches attempt to identify attacks either by

profiling them using performance-counters available in commodity

hardware [1, 6, 25] or by using specialized hardware [5, 38] to

detect contention-patterns prevalent in such attacks. Performance-

counter based detection is unlikely to specifically detect Streamline

as its cache-access rates and cache-miss rates are quite similar

to generic memory-intensive applications (e.g. those processing

streams of data). Detectors using specialized hardware, that have

the capability to infer detailed cache re-use and contention patterns,

have a higher chance of detecting Streamline. For example, record-

replay techniques [38] can profile the distribution of cache-hits

and misses and potentially infer the cache-access pattern used in

Streamline. However, such detection-tools can also be easily fooled

by an adaptive version of Streamline that shapes its distribution

of cache-hits/misses (using extra LLC-accesses) to match a benign

workload and avoid detection. For these reasons, a detection-based

approach is not a fool-proof mitigation strategy.
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Noise-injection based strategies can attempt to reduce the fi-

delity of any cache covert channel by dislodging the cachelines used

by the sender and receiver for communication via cache-accesses

from a co-running application. While most prior attacks only use

a single or a small group of addresses for communication and are

highly vulnerable to disruption if noise-injection is targeted at these

addresses, Streamline utilizes a sequence of addresses (that can be

made unpredictable) that makes targeted noise injection more diffi-

cult. Moreover, for the noise-injection to be successful, addresses

installed by a sender need to be dislodged before the receiver ac-

cesses them. Reducing the number of bits buffered in the LLC at a

time and the time-window for which each address is buffered, by

reducing the synchronization-period (as discussed in Section 4.7)

limits the exposure of the attack to noise-injection.

Hardware designs like randomized prefetching [10] or random-

ized cache fills [22] may naturally hinder Streamline operation by

introducing noise, although such designs also cause slowdown for

benign applications. On the other hand, random-replacement can

add noise to the channel, but is unlikely to fully prevent Stream-

line. If shorter synchronization periods are in use where less than

10% of the LLC space is actively used as a buffer at any given time

(Section 4.7), even random replacements due to co-running pro-

cess activity are unlikely to dislodge a significant portion of the

lines between the sender and receiver accesses to disrupt the chan-

nel. Streamline can tolerate infrequent interference due to random

replacement using ECC (as discussed in Section 4.3).

Isolation based approaches prevent processes in different trust-

domains from sharing cache locations and are highly effective atmit-

igating shared-memory based covert-channel attacks. Such cache

isolation can be achieved by disabling shared-memory or deduplica-

tion (e.g. disabling Linux KSM [3]), or by using cache-partitioning

techniques that eliminate cross-domain hits required for transmis-

sion in Streamline: by allocating disjoint groups of LLC sets to pro-

cesses in different trust-domains [15, 27], or by duplicating shared

cachelines across trust-domains [17, 35]. Such techniques eliminate

Streamline and all cache attacks exploiting hits on shared cache-

lines. However, all such solutions either have performance costs or

face scalability challenges (cache-partitioning requires allocation

at the limited granularity of ways or sets) or require support from

system-software to classify processes into trust-domains (needed

for cache-partitioning) that could limit their practical applicability.

8 CONCLUSION

This paper advances the state-of-the-art in cache covert-channel

attacks by systematically analyzing the bit-rate bottlenecks for

existing attacks, including synchronization and transmission bottle-

necks, and proposing a faster Streamline attack that overcomes these

bottlenecks. With its asynchronous operation, Streamline achieves

a bit-rate of 1801 KB/s, which is 3ś3.6x faster than prior-fastest

attacks. Streamline is also flush-less and only exploits generic cache

properties and hence is applicable to CPUs of all ISAs and micro-

architecture unlike prior attacks. Finally, this work also highlights

a new measurement bottleneck (inability to measure the latency

of simultaneously executing loads) that limits the bit-rate for all

existing covert-channels and also this new class of asynchronous

covert-channels. Overcoming this can enable even faster attacks.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact presents the code and methodology to run our Stream-

line cache covert-channel attack. We provide the C++ code for the

sender and receiver processes engaged in covert communication.

Although the attack itself is not specific to an OS, ISA, or micro-

architecture, the code is written with the assumption of an x86

Linux system and an Intel CPU that is a Skylake or a newer gener-

ation model. The code may be compiled with a standard compiler

and run natively to execute the covert-communication. We also

provide scripts to run the attack in several configurations demon-

strated in Section-IV of our paper (with and without ECC, varying

the shared array size and the synchronization period) and provide

a Jupyter notebook to visualize the results.

A.2 Artifact Check-List (Meta-Information)

• Algorithm: Implementation of Streamline attack in C++.

• Compilation: Tested with gcc v6.4.1, but the code should

compile with most standard compilers.

• Run-time environment: Requires Linux (Tested on Fe-

dora 25 and Ubuntu). Sudo privilege needed for stable bit-rate

measurement (to pin processes to cores and disable DVFS).

• Hardware: Requires Intel CPU of Skylake or a newer gen-

eration. Tested on Intel Xeon E3-1270 v5 (Skylake), Core

i7-8700K (Kaby Lake), and Core i5-9400 (Coffee Lake) CPUs.

• Metrics: Transmission Bit-Rate and Bit-Error-Rate.

• Output: Streamline Results from Sections 4.2, 4.3, 4.4, 4.5

(Tables 2,3,4, and Figure 9) can be reproduced.

• Experiments: Instructions to run experiments and gener-

ate tables and figures are available in the README file.

• Time needed to complete experiments: 3-4 hours

• Publicly available?: Yes.

A.3 Description

A.3.1 Link: The code is available at https://github.com/gururaj-

s/streamline and https://doi.org/10.5281/zenodo.4322033.

A.3.2 Hardware Dependencies: The attack requires an Intel CPU

from Skylake or a newer generation, as the Streamline logic to fool

the LLC replacement policy and prefetcher is currently tuned for

these CPUs. Additionally, system-parameters like LLC Size, LLC

and DRAM access-latency need to be set before running the attack

(we describe how these can be discovered in the README).
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A.3.3 Software Dependencies:

• GCC compiler (tested with version 6.4.1)

• Command line utilities: cpupower (for setting frequency).

• Python3 and Jupyter Notebook (for plotting)

• Python3 Packages: pandas, matplotlib, seaborn.

A.4 Installation

The makefile compiles the sender and receiver executables with

the command make all.

A.5 Experiment Workflow

The following steps are needed to run the experiments:

• Enable Support for Transparent Huge Pages

• Fix CPU Frequency to a stable value using performance

frequency governor for correct bit-rate calculation.

• Set system-specific parameters in src/utils.hh mentioned

in Section A.7.

• Compile the sender and receiver processes using make all.

• Run all the experiments using ./run_exp.sh.

A.6 Evaluation and Expected Result

The artifact provides run.sh script to run following experiments:

• Figure-9 : Streamline bit-rate and error-rate as the payload

size varies from 200,000 bits to 1 billion bits

• Table-2 : Breakup of error-rates for different payload sizes.

• Table-3 : Streamline Bit-Error-Rate with error-correction.

• Table-4 : Streamline Bit-Rate for different array sizes.

• Table-5 : Streamline Bit-Rates and Error-Rates for different

synchronization periods.

The generated results can be visualized using the provided Jupyter

notebook visualize_results.ipynb.

A.7 Experiment Customization

The following system-specific parameters need to be updated in

the src/utils.hh (as per the instructions in README):

• LLC Size in bytes.

• LLC Miss Threshold in cycles.

• CPU Frequency in MHz

• Path to the shared file containing the shared array

A.8 Notes

Note that the bit-rate for Streamline on a new system will vary

based on the DRAM and LLC access latency of the system. The error-

rates are expected to be low (1-5%) for a successful orchestration

of the attack. If significantly higher error-rates are observed, some

potential reasons could be:

• Improper configuration of LLC-Miss-Threshold. This may

need to be manually tuned for your system.

• Sender and receiver processes not properly pinned to sepa-

rate cores or being context-switched leading to loss of syn-

chronization. Running the sender and receiver tests specified

in README with the Linux perf tool could help to check if

this is the case.

A.9 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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