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ABSTRACT
The error rates of quantum devices are orders of magnitude higher
than what is needed to run most quantum applications. To close
this gap, Quantum Error Correction (QEC) encodes logical qubits
and distributes information using several physical qubits. By pe-
riodically executing a syndrome extraction circuit on the logical
qubits, information about errors (called syndrome) is extracted
while running programs. A decoder uses these syndromes to iden-
tify and correct errors in real time, which is necessary to prevent
accumulation of errors. Unfortunately, software decoders are slow
and hardware decoders are fast but less accurate. Thus, almost all
QEC studies so far have relied on offline decoding.

To enable real-time decoding in near-term QEC, we propose
LILLIPUT– a Lightweight Low Latency Look-Up Table decoder.
LILLIPUT consists of two parts– First, it translates syndromes into
error detection events that index into a Look-Up Table (LUT) whose
entry provides the error information in real-time. Second, it pro-
grams the LUTs with error assignments for all possible error events
by running a software decoder offline. LILLIPUT tolerates an error
on any operation in the quantum hardware, including gates and
measurements, and the number of tolerated errors grows with the
size of the code. LILLIPUT utilizes less than 7% logic on off-the-shelf
FPGAs enabling practical adoption, as FPGAs are already used to
design the control and readout circuits in existing systems. LIL-
LIPUT incurs a latency of a few nanoseconds and enables real-time
decoding. We also propose Compressed LUTs (CLUTs) to reduce
the memory required by LILLIPUT. By exploiting the fact that not
all error events are equally likely and only storing data for the most
probable error events, CLUTs reduce the memory needed by up-to
107x (from 148 MB to 1.38 MB) without degrading the accuracy.
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1 INTRODUCTION
Quantum computers promise substantial speedup over conven-
tional machines for many important applications [48, 67, 75, 86].
Unfortunately, high error-rates of quantum devices (about 1% on
existing hardware [7]) limit us from running these applications as
they require much lower error-rates (below 10−10) [34, 42, 44, 45].
To bridge this gap, quantum information must be protected by us-
ing Quantum Error Correction (QEC). QEC codes encode a logical
qubit by distributing information over many physical qubits [5, 8,
31, 38, 74]. With increasing redundancy of the QEC code, the logical
error-rate reduces exponentially if the physical error-rate is below
a threshold [5]. Thus, by controlling the redundancy, QEC achieves
the error-rate needed to run a particular quantum application.

QEC consist of both quantum and classical counterparts. On
the quantum side, a logical qubit encodes quantum information in
the combined state of multiple data qubits and uses parity qubits
interspersed between them to gather information about errors,
as shown in Figure 1(a). Each parity qubit periodically extracts
the parity information of a subset of data qubits by executing a
syndrome extraction circuit and projects the errors encountered by
the data qubits into discrete Pauli errors. The process is repeated
from the time qubits are initialized and until the data qubits are
measured (called logical measurement). Each iteration of syndrome
extraction is termed as a QEC cycle or round and the measurement
outcome of the parity qubits is called a syndrome. On the classical
side, a decoder uses the syndromes to detect errors and determine
the most probable correction for the data qubits. The logical error-
rate depends on the physical error-rate of the qubit devices as well
as the performance of the decoder. High physical error rates make
QEC codes ineffective [5]. Similarly, if a decoder is inaccurate or
fails to correct errors in real-time, errors can accumulate. Real-time
decoding refers to the detection and correction of errors dynamically
as syndromes are received in each QEC cycle and before the arrival
of the syndrome in the next cycle. Inaccurate decoding or failure
to decode in real-time may cause logical failure during program
execution. Thus, accurate real-time decoders are essential for QEC.

In recent years, several preliminary QEC experiments involv-
ing repetition codes and Bacon-Shor codes have been successfully
demonstrated [6, 17, 18, 27, 49, 52, 66, 69, 71, 85, 87, 88, 90]. However,
reaching low logical error rates requires implementation of more
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Figure 1: (a) In QEC, a logical qubit is encoded using a set of data and parity qubits. The parity qubits repeatedly extract the
syndrome between qubit initialization and logical measurement. (b) LILLIPUT takes the syndrome and logical measurement
outcomes as inputs, detects errors, obtains the error assignments for each data qubit from a Look-Up Table (LUT), and tracks
an error log every QEC cycle. Finally, it computes the logical error by comparing the logical measurement and the error log.

efficient QEC codes such as surface codes [41], and recent stud-
ies [6, 9, 14, 50] have taken a step in this direction. Unfortunately,
QEC studies so far have mainly resorted to offline decoding be-
cause most software decoders are slow [29]. Alternately, hardware
decoders are faster but have poor accuracy. Moreover, hardware de-
coders need custom design [19] or superconducting devices [39, 84].
Custom decoding logic (such as an ASIC) is impractical for adop-
tion in the near-term as it requires significant engineering effort,
which may not be justifiable given the small number of quantum
computers built today. Furthermore, some of the proposed designs
may rely on technologies that are yet to mature for large-scale
implementations (for example, superconducting designs). With im-
proving device quality and size of quantum systems, QEC studies
with small surface codes that span multiple QEC cycles and use real-
time decoding represent the next significant milestone in quantum
computing. Consequently, there is a growing demand and need for
accurate, fast, and low-cost decoding solutions in near-term QEC.
To address this challenge, we propose LILLIPUT– a Lightweight
Low Latency Look-Up Table decoder for small surface codes.

Our proposed design, LILLIPUT, is an end-to-end system that
directly interfaces with the qubit readout circuits, detects, and cor-
rects errors in real-time, and computes the logical error. LILLIPUT
performs three key steps in hardware, shown in Figure 1(b)– (1)
translates the syndromes every QEC cycle into error detection events,
(2) assigns errors to each data qubit from a Look-Up Table (LUT)
and maintains an error log in real-time, and (3) computes the logical
error by comparing the logical measurement outcomes with the
most up-to-date error log. Additionally, LILLIPUT programs the
LUT with the error assignments by running a software decoder
offline for all possible error events.

For high accuracy, a decoder must correct (a) errors that accu-
mulate on data qubits, (b) gate and (c) measurement errors in the
syndrome extraction circuit, and (d) errors on data qubit measure-
ments during the logical-measurement stage. LILLIPUT tackles all
these errors by decoding multiple rounds of syndrome and by con-
verting the logical measurement data into an appropriate syndrome
in the last cycle. The accuracy and complexity of a decoder depends
on the decoder configuration, a combination of the QEC code re-
dundancy and the number of syndrome rounds used in decoding.
As LILLIPUT is fully modular and reconfigurable, it can be imple-
mented across a wide range of decoder configurations. LILLIPUT
programs the LUTs offline using the software Minimum Weight
Perfect Matching (MWPM) decoder [30, 32], widely used for its
combination of high accuracy and polynomial time complexity. The

MWPM decoder may produce multiple possible error assignments
for a single error event. For greater accuracy, LILLIPUT considers
the error model of the device (we use Google Sycamore [7]) and se-
lects the most probable error assignment among all the possibilities.
As LILLIPUT is reconfigurable, it can be adapted to other decoding
algorithms, device error models, and QEC codes.

Instead of determining errors using hardware or software at run
time, LILLIPUT transforms this step into a single memory access
and therefore, incurs a deterministic low latency depending on the
decoder configuration. LILLIPUT has low hardware complexity and
fits on off-the-shelf FPGAs. As most existing quantum systems [1,
10] use FPGAs for delivery of control instructions to qubits and
implementation of readout interface, LILLIPUT can be seamlessly
integrated on these systems, and it attractive for practical adoption.
Overall, LILLIPUT is accurate, fast, and lightweight which makes
it an ideal candidate for real-time decoding in near-term QEC.

LILLIPUT incurs high memory overhead to store the LUTs and
requires a memory external to the FPGAs for some decoder configu-
rations. To address this challenge, we propose Compressed Look-Up
Tables (CLUTs). CLUTs exploit the fact that not all entries of a
LUT are accessed with equal probability. This behavior arises from
the nature of surface codes, where errors on data qubits only flip
adjacent parity qubits. Infrequent errors flip a few parity qubits. Al-
ternatively, more errors affect multiple locations resulting in longer
error-chains. Such errors are more likely to flip the parity qubits
back and forth lying on the error-chain, resulting in few bit flips on
the surface code lattice overall. Consequently, the Hamming weight
(number of ones) of the memory address accessed is typically low.
CLUTs leverage this insight and only store entries corresponding
to addresses of low Hamming weights that are most likely to be
accessed. CLUTs determine the cut-off Hamming weight such that
LILLIPUT encounters a decoder failure due to missing LUT entries
with probability equal to or lower than the logical error rate and
thus, has negligible impact on the overall accuracy.

The reconfigurability of LILLIPUT allows us to perform a design
space exploration across various decoder configurations and un-
derstand the trade-off between the accuracy and complexity of a
decoder. Our studies with small surface codes show that LILLIPUT
achieves high accuracy. The decoding latency (time from the arrival
of syndrome to error assignment) ranges between 29-42 ns for the
decoder configurations studied in this paper. LILLIPUT requires
up-to 7% logic utilization on off-the-shelf FPGAs [2–4] and thus,
is lightweight. Lastly, CLUTs reduce the memory requirement of
LILLIPUT by up-to 107x (from 148 MB to 1.3 MB).
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Overall, this paper makes the following contributions:

(1) We propose LILLIPUT, a lightweight low latency lookup table
decoder for small surface codes (requires <7% logic elements on
FPGAs). It offers high accuracy as it can tolerate errors on both data
qubits as well as in the syndrome extraction circuit; and requires a
decoding latency within 42 ns.
(2) To the best of our knowledge, LILLIPUT is the first fully re-
configurable system-level decoding solution that can be seamlessly
integrated with existing quantum systems.
(3) We propose Compressed Look-Up Tables (CLUTs) to reduce the
memory overhead of LILLIPUT. By only storing the data for the
most probable error events, CLUTs reduce the memory required by
up-to 107x, without sacrificing the accuracy.

2 BACKGROUND AND MOTIVATION
2.1 Qubits and Quantum Error Correction
A quantum bit, or qubit, is the fundamental unit of information in
a quantum computer. The state of a qubit can be represented as a
superposition of its basis states |0⟩ and |1⟩, with complex valued
amplitudes for these states [57]. Unfortunately, qubit devices retain
information for only a short span of time (about few microseconds)
and quantum operations have very high error rates (about 1%) [7].
These factors limit us from executing most quantum applications on
existing hardware. To run programs without encountering errors,
quantum information must be protected by using Quantum Error
Correction (QEC) [5, 8, 31, 38, 74].

QEC codes encode a logical qubit using a set of data and parity
qubits. The data qubits collectively store the quantum information,
whereas the parity qubits periodically extract information about
errors on the data qubits by executing a syndrome extraction circuit.
Measuring the parity qubits every QEC cycle allows the QEC code
to project any errors on the data qubits into a discrete set of Pauli
errors. The bit-flip (X) error swaps the probability amplitudes of the
basis states, whereas the phase-flip (Z) error introduces a relative
phase of -1 between them. The Pauli Y error denotes simultaneous
X and Z errors. The measurement outcomes of the parity qubits,
called syndrome, is analyzed by a decoder to detect, and correct
errors encountered by the data qubits. To perform computations,
fault-tolerant quantum computers must perform error correction
continuously while running an algorithm.

2.2 Surface Code
The surface code [26, 33, 41, 64] is widely considered to be the most
promising QEC code as it can tolerate high thresholds [78] and
requires only nearest-neighbor connectivity. It encodes a logical
qubit into a 2-dimensional lattice of alternating data and parity
qubits. The size and layout of the lattice depends on the code dis-
tance 𝑑 which determines the code redundancy and the length of
the shortest error chain (𝑑+12 ) that cannot be corrected. An error
on a data qubit is detected by the adjacent parity qubits by execut-
ing a syndrome extraction or stabilizer circuit, where each parity
qubit measures a four-qubit operator called a stabilizer. X errors
are detected by the Z stabilizers, whereas Z errors are detected by
the X stabilizers [37]. For example, Figure 2(a) shows the layout
of distance 3 regular surface code that can correct error chains of

length 1. It consists of 13 data qubits (qubits A to M) and 12 parity
qubits (qubits 𝑍0 to 𝑍6 and 𝑋0 to 𝑋6). An X error on data qubit D is
detected by the Z stabilizers 𝑍0 and 𝑍2, whereas a Z error on this
qubit is detected by the X stabilizers 𝑋0 and 𝑋1.
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Figure 2: Distance 3 (a) regular and (b) rotated surface code. X
errors are detected by the Z stabilizers (in blue) and Z errors
are detected by the X stabilizers (in red). (c) Z stabilizer circuit

Figure 2(b) shows the layout of distance 3 rotated surface code
that is obtained by rotating the lattice of a regular surface code by
45 degrees and removing some of the data and parity qubits. The
rotated code requires fewer qubits and gate operations to extract
a syndrome. Therefore, the rotated surface code is preferred over
regular lattices for near-term QEC experiments, and we focus on
rotated codes in this paper.

2.3 Error Decoding in Real-time
A decoder uses the output of stabilizer measurements, the syn-
drome, to determine a set of corrections that must be applied to the
data qubits. By convention, the syndromes generated by the X sta-
bilizers are called X syndromes and are decoded using an X decoder.
Similarly, the syndromes generated by the Z stabilizers are called
the Z syndromes and decoded using a Z decoder. Decoders must
accurately identify errors in real-time to prevent accumulation of
errors. The maximum latency that can be tolerated by a decoder
is the latency of the syndrome extraction circuit, an example of
which is shown in Figure 2(c). The circuit has a latency of about 1
`seconds, derived using specifications of existing device technol-
ogy [6, 7]. Errors must be corrected within this time and designing
accurate and fast decoders is an active area of research. Typically,
software implementations are slow [29] and hence, more recently
decoders have been proposed that uses custom hardware [19] and
superconducting devices [39, 84] to enable fast decoding.

2.4 Motivation: Near-term QEC
QEC is essential to realize the potential of quantum computers in
practice. As the device quality and system size continues to improve,
there is increasing interest in studying QEC codes and real-time
decoding. Several demonstrations of repetition codes, Bacon-Shor
code have been successful [6, 17, 18, 27, 49, 52, 66, 69, 71, 85, 87,
88, 90]. While these experiments represent a significant milestone
in QEC, unlike surface codes, these codes can only correct either
phase-flip or bit-flip errors but not both. Also, QEC experiments so
far have mainly relied on offline software-based error decoding. The
largest surface code demonstrated so far is distance 2 [6, 9, 14, 50].
With improving device quality, quantum hardware may soon reach
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the level of 1% error per data qubit per syndrome cycle, where QEC
can function (involving surface codes of distance 3 and beyond).
Thus, QEC experiments that demonstrate small surface codes using
real-time decoding is a reasonable major milestone for quantum
computing in the next few years.

2.5 Challenges in Real-time Decoding
Real-time decoding is necessary to prevent accumulation of errors
on data qubits. If errors are not corrected within a QEC cycle before
the arrival of the next syndrome, errors may accumulate resulting
in a logical failure. The decoding complexity depends on the error
events and software decoders may be too slow for real-time de-
coding [29]. They also incur significant communication overheads
in transmitting the syndromes into software running on a CPU.
This high latency of software decoders limits the use of general-
purpose computing for online decoding and therefore, almost all
QEC experiments that use software decoders have resorted to offline
decoding. In the first instance of real-time decoding [70], software
decoders have been used for color codes [77]. However, this study
uses trapped-ion systems that can tolerate up to few milli-seconds
of decoding latency, about 3 orders of magnitude higher than super-
conducting systems. The alternative is hardware decoders that are
faster and promise real-time decoding. However, they have poor
accuracy due to algorithmic and implementation limitations and
rely on custom hardware [19] or specialized devices [39, 84]. Given
the current state of superconducting device technology, it is not
even feasible to implement the SFQ decoders [39, 84] in the near-
term. The number of devices required to fabricate these decoders
far exceeds the device densities of existing superconducting device
technologies.

2.6 Goal: Decoding in Real-time for Near-term
Quantum Error Correction

Ideally, we want a low-cost and accurate decoder that can be seam-
lessly integrated with existing quantum devices while enabling
real-time decoding for near-term QEC experiments. To achieve this
goal, we propose LILLIPUT– an accurate Lightweight Low Latency
Look-Up Table decoder for small surface codes in this paper. We
describe the evaluation methodology before discussing the design.

3 EVALUATION METHODOLOGY
In this section we describe the benchmarks, experimental setup,
and the figure-of-merit used to evaluate our policies.

3.1 Surface Code Parameters
In this paper, we consider rotated surface codes of distance 3, 4,
and 5. The details of the layouts are described in Table 1. The total
number of physical qubits required ranges from 17 to 49. In the
near-term, we expect systems with few hundreds of qubits which
would be able to fit these layouts.

3.2 Monte Carlo Simulation Infrastructure
Figure 3 shows an overview of the Monte Carlo simulator used
for our studies. The simulator generates a surface code lattice for
a given code distance. Depending upon the noise model and the

Table 1: Parameters of Rotated Surface Codes

Code Data X-ancilla Z ancilla Total Physical
Distance Qubits Qubits Qubits Qubits

3 9 4 4 17
4 16 8 7 31
5 25 12 12 49

physical error rate 𝑝 , the simulator injects errors onto the data
qubits and measurement errors onto the parity qubits, producing a
syndrome every cycle. The X and Z syndromes are then decoded
independently, and an error log is maintained for both error types.
To model a QEC experiment, the simulator repeats the process
for multiple cycles and terminates when the maximum number of
cycles is reached. The simulator maintains the internal state of the
qubits throughout the experiment which is then used to compute
the logical measurement outcome and the logical error. We call
each such execution as a trial. For our evaluations, we use 1 million
random trials. The simulator also generates the traces used to verify
the proposed LILLIPUT micro-architecture.

Figure 3: Monte Carlo simulation framework

3.3 Noise Model
We implement the phenomenological noise model [26], which inserts
errors on both data qubits and on the measurement of parity qubits.
This is a standard noise model used in QEC and has been used in
several prior works. In this noise model, a data qubit encounters an
error with probability 𝑝 in each cycle. The type of error is chosen
uniformly from Pauli X, Y, and Z errors. Additionally, each parity
qubit encounters measurement error with probability 𝑝 . For sim-
plicity, we assume the probabilities for data qubit errors to be the
same as measurement errors. This assumption is consistent with
prior works in QEC. For our studies, we consider physical error
rates ranging from 𝑝 = 10−3 to 𝑝 = 5× 10−2. We consider this to be
a suitable range of error rates for quantum devices in the near term.
Nonetheless, if the device quality improves further, our design can
still support those quantum architectures.

3.4 Target Hardware Platforms
Our target is to implement the decoder on off-the-shelf FPGAs
as existing quantum systems already use FPGAs for control and
readout interface logic [1, 10, 11]. For our studies we use FPGA
from the Intel Cyclone 10 LP [3], Arria V [2], and Stratix 10 [4]
family as these are commercially available.
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Figure 4: Overview of LILLIPUT

4 OVERVIEW OF LILLIPUT
The classical counterpart of QEC comprises of three key steps– (1)
error detection from stabilizer measurements, (2) identification of
errors and error assignment to data qubits every cycle, and (3) com-
putation of logical error. Figure 4 shows the micro-architecture of
LILLIPUT that accomplishes these steps. It communicates with the
readout interface, translates the stabilizer measurement outcomes
into error detection events, identifies errors, and computes the logi-
cal error. Note that X and Z errors are decoded independently. In
the next subsections, we describe the design implementation.

4.1 Detection of Errors from the Stabilizer
Measurements

In QEC, syndromes are generated every cycle by measuring the
stabilizers. LILLIPUT generates error detection events by comparing
the stabilizer measurement outcomes from two consecutive QEC
cycles. Any change in the measurement outcome of the stabilizers
between two cycles indicates an error. Alternately, no event is
detected if the stabilizer measurement outcomes remain the same.
For example, Figure 5 shows Z stabilizers measurements outcomes
of a distance 3 surface code, where an error event is detected in
cycles 1 and 3, whereas no error event is detected in cycle 2. This
step is accomplished by the Event Detection Logic block shown
in Figure 4. Detection events enables us to track errors in a given
cycle and are used to identify the optimal correction.

Figure 5: Steps involved in translating the stabilizer measure-
ment outcomes (red denotes an error is identified) to error
detection events in each QEC cycle. The bitstream for stabi-
lizermeasurements is specified from left to right (convention
used in this paper) on the surface code lattice.

4.2 Error Identification as a Matching Problem
Error identification is the step in which a decoder assigns errors
to each data qubit which is tracked throughout the QEC cycles. To
perform this step, the detection events are represented on a graph,
often termed as the decoding graph, where the nodes and edges
represent the parity and data qubits respectively. The minimum
weight perfect matching algorithm [32] uses the decoding graph
andmatches each detection nodewith another or to the surface code
boundary such that the total weight of thematched edges isminimal.
MWPM is widely considered to be the most accurate algorithm.
A more recent method, the Union-Find algorithm [24, 25], uses a
different approach to matching to generate the error assignments.
It is faster than MWPM but has lower accuracy [40]. In LILLIPUT,
instead of dynamically assigning errors in real-time, the matching
step is accomplished using Look-Up Tables (LUTs), as shown in
Figure 4, and the details are described in Section 5.

4.3 Handling Data and Measurement Errors
For greater accuracy, a decoder must handle both errors on the
data qubits as well as errors in the syndrome extraction circuit.
Overall, there are four key sources of errors: (a) errors on data
qubits (b) errors in the gate operations during syndrome extraction
(c) measurement errors on parity qubits during stabilizer measure-
ments, and (d) measurement errors on data qubits during logical
measurement. Next, we discuss how LILLIPUT handles each of
these errors, where we use “space” and “time” directions to describe
when detection events are generated in the same round or two
consecutive cycles, respectively.
(a) An error on a data qubit is detected by its neighboring parity
qubits, producing a space-like detection event on them in the same
cycle. For example, Figure 6(a) shows a space-like error detection
event in cycle 1.
(b) Two-qubit gate errors during syndrome extraction are detected
across consecutive cycles. They produce space-time like detection
events, as shown in cycles 1 and 3 in Figure 6(b).
(c) Measurement errors on parity qubits exhibit temporal behavior
and translates into time-like detection events in two consecutive
cycles, as shown in cycles 2 and 3 of Figure 6(b).
(d)Measurement errors on the data qubits are handled in the last
boundary cycle by generating an extra syndrome of either X or Z
type and is discussed in detail in the next subsection.
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To tackle the first three sources of errors, LILLIPUT processes more
than a single cycle of syndrome and performs matching on a 3-
dimensional decoding graph spanning space and time (multiple
cycles). For errors in logical measurement, LILLIPUT uses an extra
syndrome as discussed in Section 4.4.

1 2 3 4 1 2 3 4 1 2 3 4

Detection Event Error Assignment

(a) (b) (c)Time

Space

Figure 6: A distance 4 repetition code decoding graph, where
nodes and edges denote parity and data qubits respectively.
Note that this decoding graph is for the purpose of illus-
tration only and our evaluations in this paper are based on
surface codes. Examples of (a) space-like (b) space-time like
and (c) time-like detection events.

LILLIPUT assumes the readout logic writes the measurement
outcomes on a buffer which gets overwritten every cycle. This
interface works on a much slower clock (e.g., with 1 `𝑠 latency)
that depends on the duration of the syndrome extraction circuit.
LILLIPUT polls for new syndromes and tracks the most recent
history in a FIFO, as shown in Figure 4. The FIFO must store the
history of the last𝑚 cycles, where𝑚 is the number of syndrome
rounds that are simultaneously decoded. Since LILLIPUT decodes
in real-time, storing only the last𝑚 rounds is sufficient. We discuss
the impact of number of measurement rounds on the logical error
rate in Section 6.

4.4 Handling Boundary Cycles
A QEC experiment has two time boundary cycles- one at the be-
ginning and the other at the end. In QEC, cycles are also called
rounds. We use the term cycles in this paper to avoid confusion
with the number of syndrome rounds used for decoding. For the
beginning time boundary cycle, the detection event is computed
by comparing the first round of stabilizer measurements and the
qubit initialization data. In the last time boundary cycle, the data
qubits are measured. To tolerate measurement errors in data qubits,
LILLIPUT translates the measurement outcomes of the data qubits
into a detection event of either X or Z type by comparing with the
stabilizer measurement data from the second-last cycle. Since a log-
ical measurement in surface codes is implemented by performing a
transversal measurement (measuring all the data qubits in either X
or Z basis), the measurement basis of the data qubits determines
the type of the stabilizer that can be constructed from the mea-
surement outcomes. By default, LILLIPUT translates the data qubit
measurement outcomes into a Z syndrome because we assume the
data qubits are measured in the Z basis, as shown in Figure 4.

5 ERROR ASSIGNMENTS IN LILLIPUT
LILLIPUT determines the optimal error assignment using Look-Up
Tables (LUTs). Every cycle, the history of detection events is used to
index an LUT and the LUT entry assigns errors to the data qubits in
the oldest cycle. The length of the history depends on the number
of syndrome rounds used for decoding. LILLIPUT also maintains
an internal state which is updated every cycle. The details of using
LUTs in LILLIPUT and tracking the internal state is described next.

5.1 Streaming Mode of Operation
LILLIPUT operates in streaming mode and maintains an error log
for each data qubit. The log is updated every cycle as errors are
identified. LILLIPUT considers a fixed number of cycles at a time
which is equal to the number of syndrome rounds used in decoding.
We call this a sliding window because it slides forward as an exper-
iment proceeds. For example, Figure 7 shows the sliding window
for four consecutive decoding steps. LILLIPUT uses the detection
events in the sliding window and the internal state to determine
the LUT address every cycle.

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

(b)(a)

(c) (d)

Detection event Neutralized event Sliding window
Error assignment
for current window

Edges considered for 
error assignment

Figure 7: (a) The sliding window uses detection events from
cycles 1, 2, and 3 and assigns error to the oldest layer i.e., cycle
1. Note that all detection events in the window are considered
for matching but only the edges touching the oldest cycle are
considered during error assignments, shown in blue. (b-d)
The sliding window streams forward one cycle at a time.

5.2 Error Assignment
LILLIPUT determines the best correction by using all the detection
events in each sliding window and assigns errors only to the oldest
layer. For example, Figure 7 shows the subset of edges that the
decoder uses to make the error assignment for the current sliding
window. The optimal error assignment is stored in the LUTs and
targets to neutralize the effect of all the errors in the oldest cycle
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and decoding completes once the sliding window covers all the syn-
dromes. The error assignments are made only to the oldest layer in
each sliding window to prevent any premature matching. Premature
matching may result in sub-optimal performance if syndromes in
future cycles can change the assignment. Premature matching may
also result if we use disjoint windows where the window proceeds
forward by its full length. In that case, errors that span over two
non-overlapping windows can cause inaccurate error assignments.
As LILLIPUT uses a sliding window, it does not encounter this prob-
lem and therefore, does not suffer from sub-optimal performance.
For the time boundary cycles, LILLIPUT constructs a full sliding
window by padding zeros. Figure 8(c) shows a time boundary cycle
where additional zeros are padded. Since the LUT is programmed
such that, it assigns the most optimal error for a sliding window, it
is guaranteed to never assign errors to the zero-padded regions.

5.3 Tracking the Internal State
LILLIPUT assigns errors only to the oldest layer. However, as it
performs matching across all the events in a sliding window, it
can neutralize some errors in the second oldest cycle if the detec-
tion event has a time-like or space-time like behavior. For example,
Figure 7(d) shows a time-like detection event that requires neu-
tralizing events in both cycles 4 (oldest cycle) and 5 (second oldest
cycle). Consequently, matching within this window removes the
detection event from the second oldest layer. Similarly, detection
events may be added as well. For example, Figure 8(a) shows an
example of decoding steps where detection events are added. To
accommodate these scenarios, LILLIPUT maintains a record of the
detection events added or removed in an internal state register. To
obtain the LUT address to be accessed in a cycle, LILLIPUT con-
catenates the detection events in the current window and modifies
the oldest detection event using the most recent internal state, as
shown in Figure 8. Each LUT entry provides the error assignment
for the oldest layer as well as the detection events that are added
or removed in the current cycle (1 bit per parity qubit). This value
is used to update the internal state register every cycle.

5.4 Programming the LUT
LILLIPUT programs the LUT entries offline by generating all possi-
ble detection events for a given code distance and size of the sliding
window. We use a software Minimum Weight Perfect Matching
(MWPM) decoder [30]. For some events, the MWPM decoder may
provide more than one possible error assignment. In other words,
a single detection event may have multiple matching possibilities
on the decoding graph that result in minimal weight. For example,
Figure 9 shows possible error assignments on a distance 4 surface
code lattice for the same detection event. Here, the Z stabilizer at
the center of the lattice indicates an error. The MWPM decoder can
assign X errors to either data qubits (a) E and F or (b) G and H or
(c) I and J. For high accuracy, we account for the error model of the
quantum hardware (we consider Google Sycamore [6]) to select the
most probable error assignment. LILLIPUT can also accommodate
variability in device error rates [53, 80] by re-programming the
LUTs. As device characteristics remain stable over short periods of
time and mainly exhibit variability over extended periods (weeks
or months) [23], the LUTs need not be re-programmed frequently.

1 2 3 4 1 2 3 4 1 2 3 4

Detection event

(a) (b) (c)

0100 0000 0010

0100 0000 0010

0000
+

0000 0100 0000

0100
+

0000 0100 0100

0000 0000 0100

0100
+

0000 0000 0000

Detection 
events

Internal
State

Decoding 
Request

Neutralized event Additional detection event

Figure 8: (a) LILLIPUT finds the optimal matching in the
current window but adds a detection event in cycle 2 which
is tracked in the internal state register. (b-c) The additional
event is considered from the register. In the boundary cycle,
zeros are padded. By convention, detection events of the old-
est cycles occupy the least significant bits in our design. The
bits for each cycle run bottom to top from most significant
position to the least.

The reconfigurability allows LILLIPUT to be adapted to other QEC
codes, decoding algorithms, and quantum systems.

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

(a) (b) (c)

Figure 9: Valid possible error assignments for the detection
event at the center of the distance 4 surface code lattice.

5.5 Decoding in presence of Non-Clifford Gates
We design LILLIPUT to operate on surface codes that use magic
states for non-Clifford gates [31, 64]. A magic state is a resource
state created using an unprotected physical non-Clifford gate that is
‘injected’ at the creation step of a surface-code logical qubit. A non-
Clifford gate, such as T gate, is enacted by consuming this encoded
magic state. This consumption process, which can include distilla-
tion of errors from magic states, is composed entirely of Clifford
gates and measurements, as described in Section-XVI of [31].

An error on the creation of a magic state cannot be detected by
any decoder, which is an unavoidable problem with state injection.
To remedy this, an ensemble of noisy magic states is ‘distilled’ into
one higher-fidelity magic state [15, 64]. Distillation is implemented
by a circuit of Clifford operations, so this can be decoded using
LILLIPUT (or another suitable decoder). Hence, LILLIPUT can sup-
port universal fault-tolerant logic in the surface code because all
decoding occurs within Clifford gates.



ASPLOS ’22, February 28-March 4, 2022, Lausanne, Switzerland Das, Locharla, and Jones

5.6 Determination of Logical Error
Early demonstrations of QEC will perform a memory experiment,
simply showing that error correction preserves the initial quantum
state. The probability of logical error is determined by comparing
the logical measurement outcome with the expected outcome for
the state prepared. This logical measurement is computed using the
error log. Which error log (X or Z) is used depends on the measure-
ment basis of the logical measurement. The logical measurement
bit is computed by using a reduction XOR operation on the bitwise
XOR results of the error log and the logical measurement outcome.

6 FINAL EVALUATIONS
In this section, we discuss the accuracy, latency, and hardware
complexity of our decoder.

6.1 Results for Accuracy
Figure 10 shows the logical error rate (LER) for distances (𝑑) 3 and
4 respectively. By default, we assume 5 cycles in the experiments.
The LER scales O(𝑝2) which is expected because distances 3 and
4 can correct at least one error, but they sometimes fail with two
errors; quadratic scaling results from errors being independent in
the model used for simulation. We also study the impact of the
number of syndrome rounds on decoding accuracy. While 𝑚 =

(𝑑 − 1) rounds are needed to detect as many errors as the code is
capable of correcting [78], we observe that LILLIPUT performance
saturates at𝑚 = 2 syndrome rounds for 𝑑 = 4. The LER reduces
by 1.23x and 1.21x on average for distance 3 by going from 1 to 2
and 2 to 3 rounds respectively. Similarly, the LER reduces by 1.99x
and 1.24x on average for distance 4 by going from 1 to 2 and 2 to 3
rounds respectively.

Figure 10: Accuracy of distance (a) 3 and (b) 4 surface codes
for different number of syndrome measurement rounds (m)

Figure 11 shows the logical error rate for distance 5 surface
codes using 1 and 2 rounds of syndrome measurements. We restrict
the number of rounds to 2 to keep the LUT sizes tractable for

Figure 11: Accuracy of distance 5 surface codes for different
number of syndrome measurement rounds (m)

our simulations. We observe that the LER scales O(𝑝2), which is
expected as using just𝑚 = 2 rounds will lead to some configurations
of two errors not being accurately corrected by the decoder. We
also study the impact of number of cycles on the LER which is
shown in Figure 12. This allows us to budget cycles in a QEC
experiment based on the device error rates by accounting for the
decoder performance.

Figure 12: Impact of number of cycles on LER

6.2 Results for Hardware Complexity
The key component of LILLIPUT are the LUTs for both error types
(X and Z). The size of each LUT depends on the decoder configuration.
We denote a decoder configuration as [𝑑,𝑚], where 𝑑 and𝑚 are
the code distance and number of syndrome rounds considered
for decoding respectively. The address size is the length of the
detection event which is equal to the syndrome length multiplied
by the number of syndrome rounds. The length of each LUT entry
is equal to the sum of the number of data (for error assignment)
and parity qubits (for internal state). Table 2 shows the size of
LUTs for different decoder configurations. Asymmetry in the code
leads to X and Z syndrome lengths being different for distance
4, so the LUT sizes are different for X and Z syndromes. We use
Cyclone 10 LP FPGAs for the decoder configurations [𝑑 = 3,𝑚 = 2],
[𝑑 = 3,𝑚 = 3], and [𝑑 = 4,𝑚 = 2] as it only supports up to 486 KB
of embedded memory [3]. To support configurations with larger
LUTs such as [𝑑 = 4,𝑚 = 3], and [𝑑 = 5,𝑚 = 2], we use Arria V
FPGAs where the LUTs are accessed from an external SRAM (using
QDR II) or SDRAM (using DDR2) [2]. Alternately, the LUTs can be
compressed (discussed in Section 7) and does not require access to
any external memory in that case [4].
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Table 2: LUTs for different decoder configurations

Decoder Address Entry LUT Total Memory
Configuration Size Size Size Memory Type

[𝑑 = 3,𝑚 = 2] 8 13 416 B 832 B Embedded
[𝑑 = 3,𝑚 = 3] 12 13 6.5 KB 13 KB Embedded
[𝑑 = 4,𝑚 = 2] 14/ 16 23/ 24 46/ 192 KB 238 KB Embedded
[𝑑 = 4,𝑚 = 3] 21/ 24 23/ 24 5.75/ 48 MB 53.75 MB External
[𝑑 = 5,𝑚 = 2] 24 37 74 MB 148 MB External

Table 3 mentions the FPGA utilization for different decoder con-
figurations. The logic utilization for LILLIPUT is less than 7%, mak-
ing it extremely lightweight and leaving enough room for other
circuits such as readout interface logic and control logic for de-
livering instructions to the qubits. The LUTs consume up to 40%
of the memory bits for designs that use embedded memory. We
use different Cyclone devices for distance 3 and [𝑑 = 4,𝑚 = 2]
for higher performance. Configuring the distance-3 design on the
latter FPGA reduces the maximum frequency to 245 MHz.

Table 3: FPGA utilization for different configurations

Decoder FPGA Total LEs/ Total Utilization
Configuration Family ALMs Registers Area Memory

[𝑑 = 3,𝑚 = 2] Cyclone 10 353 209 6% 1%
[𝑑 = 3,𝑚 = 3] Cyclone 10 418 239 7% 21%
[𝑑 = 4,𝑚 = 2] Cyclone 10 557 340 < 1% 40%
[𝑑 = 4,𝑚 = 3] Arria-V 217 409 < 1% –
[𝑑 = 5,𝑚 = 2] Arria-V 246 486 < 1% –

6.3 Results for Latency
LILLIPUT requires only a single memory access to the LUT and
incurs fixed latency, irrespective of error detection event. LILLIPUT
is fully pipelined and requires 7 cycles to determine the correction
after a cycle of stabilizer measurements are received. The maximum
clock-frequency depends on the decoder configuration and are
listed in Table 4. To compute the latency of decoder configurations
that rely on external memory access, we account for the most
conservative off-chip memory access time (slowest clock frequency
and maximum number of cycles) and add it to the latency of the rest
of the logic. The decoding latency is up-to 24x lower than the target
latency of 1`seconds in the worst-case (considering the largest
decoder configuration studied in this paper). LILLIPUT also meets
the 400 ns target latency considered in few prior works [19, 39,
84] and thus, will remain useful even if the duration of syndrome
extraction decreases in future with improving device quality.

Table 4: Maximum Frequency (in MHz) and Latency (in ns)

Metric Decoder Configurations
[d=3,m=2] [d=3,m=3] [d=4,m=2] [d=4,m=3] [d=5,m=2]

Frequency 250 240.7 209.8 244.4 232.9
Latency 28 29.1 33.4 40.8 42

The low logic utilization and re-usability of the LUTs allows
LILLIPUT to support QEC experiments spanning more than one
logical qubit. As there is sufficient slack between the decoding
latency and the target latency for all decoder configurations studied
in this paper, real-time decoding capability will not be impacted.

7 A CASE FOR COMPRESSED LUTS
The size of a lookup table increases exponentially in the code dis-
tance because there is an entry for every possible syndrome bit-
string. This limits the scalability of LILLIPUT, and some of the
decoder configurations studied in this paper rely on memory ex-
ternal to the FPGAs. Moreover, it is infeasible to scale the LUT to
higher configurations, [𝑑 = 5,𝑚 = 4] for example. To implement
these configurations without external memory or scale LILLIPUT
to other higher configurations, we propose the use of Compressed
LUTs (CLUTs).

7.1 Not all Error Events are equally likely
Each LUT entry corresponds to an error event. However, not all
error events are equally likely, and Compressed LUTs exploit this
using the following insights:

(1) On surface codes, errors are detected by neighboring parity
qubits. When error rates are low, fewer bit flips are observed in
the detected events. Alternately, higher error-rates cause errors in
multiple locations that result in longer chain of errors. However, it
results in only few bit flips overall as the parity qubits inside the
chain are likely to be zeros (can be thought of as flipped twice). Thus,
the average Hamming weight of the accessed memory addresses is
low. For example, the [𝑑 = 3,𝑚 = 2] configuration requires LUTs
with 8-bit address ranging from 0x00 to 0xFF. Figure 13 shows
the probability distribution of the Hamming weight of addresses
accessed over 1 million trials for different error rates and both X
and Z LUTs of this decoder configuration. We observe that not all
addresses are accessed with equal probability, and some are seldom
or never accessed (address 0xFF for example). The trend persists
even when the number of QEC cycles increases. This is expected
because additional cycles lead to more errors and parity qubits flip
back and forth between consecutive cycles. Therefore, the memory
required for the LUTs can be reduced by removing entries that are
unlikely to be accessed.

(a) (b)

Figure 13: Probability distribution of the Hamming weight
of memory addresses for (a) p = 0.1% and (b) p=1% for 5 cycles

(2) As for small distances, a decoder can assign only a limited
number of errors, the LUT entries contain a large number of zeros.
Thus, the LUT entries themselves are compressible.

To summarize, not all LUT entries are accessed with equal prob-
ability and therefore, the size of the LUTs can be reduced by elim-
inating entries that are unlikely to be accessed. Furthermore, the
data entries corresponding to the most probable error events that
must be stored can be compressed too.
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7.2 Compressing the LUTs in Software
We investigate the scope of compression using the [𝑑 = 3,𝑚 = 2]
configuration. Figure 13 shows that the probability of accessing
LUT addresses with 3 or more ones is equal to or lower than the
logical error rate. Even if these entries are not stored, the decoder
accuracy is unlikely to be affected as the events would result in a
logical error with low probability.

To implement the CLUT, we split the address space into two
groups– Segments A and B, as shown in Figure 14(a). These seg-
ments comprise of data frames (DFs)- a contiguous block of 16 and
10 entries respectively. A block of 16 consecutive LUT entries are
assigned a 16-entry or 10-entry DF depending on the Hamming
weight of the addresses of the block. Addresses with all zeros or a
single one in the four most significant bits are assigned a 16-entry
DF, whereas addresses with two ones in the four most significant
bits are assigned a 10-entry DF. For example, as shown in Fig-
ure 14(a), 0x00 to 0x0F correspond to a 16-entry DF in Segment A,
whereas 0xA0 to 0xAA are assigned a 10-entry DF in Segment B.
Addresses 0xAB to 0xAF are not stored as their Hamming weight is
more than 3. Although we want to store LUT entries for addresses
of Hamming weights up-to 3 only, as memory addresses are not
contiguous in terms of Hamming weight, this results in memory
fragmentation. Instead, we use data frames that cause some ad-
dresses with higher Hamming weights to be stored as well (such as
0x1F), but this ensures a simpler addressing scheme. This reduces
the number of entries by 1.83x from 256 to 140.

Figure 14: Steps (in software) involved in compressing LUTs.

Next, the DF entries are compressed by re-encoding using the
least number of bits and Base-Delta-Immediate [62] compression.
For example, 9-bit error assignments from four consecutive entries
are packed into a 16-bit word, as shown Figure 14(b). First, each
9-bit data is encoded into 6-bit data using an encoding table. Next,
four 6-bit entries are vertically sliced (Slice A and B) and packed
into a 16-bit word. The 2-bit compression mode is needed because
other memory regions require packing slice A and B differently.
For example, when all slice B bits are 0s and slice A is stored using
a 3-bit base and four 2-bit deltas, the mode is 10. We investigated
other compression schemes and found these to be most effective.
Our studies show that for this configuration, compressing the in-
ternal state part of the DF entries needs a different scheme and the

overheads of decompression exceed the benefits of compression as
the data is only 4 bits. Finally, each CLUT reduces to 140 bytes, 3x
lower than the full LUT (416 bytes). As this is done in software, it
does not incur hardware overheads.

7.3 Accessing CLUTs and Decompression in
Hardware

To service a decoding request, it is routed to the appropriate CLUT
segment and DF. The CLUT entry is decompressed to obtain the
error assignments and internal state, as shown in Figure 15. The
hardware overhead to use CLUTs is the logic to obtain the segment
address and perform decompression.

Figure 15: Steps (in hardware) involved in obtaining error
assignment data from CLUTs.

7.4 Performance and Overheads of CLUTs
Figure 16(a) compares the logical error rate of the baseline design
with respect to LILLIPUT using CLUTs. We observe that CLUTs
offer similar performance as the baseline and does not degrade the
LER. Figure 16(b) shows the decoder failure rate (due to missing
LUT entries) and we observe that using CLUTs does not lead to
events that increase the failure rate. A decoder failure here refers to
failure to decode because the LUT address requested is not present
in the CLUT.
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Figure 16: (a) Comparison of logical error rate for the baseline
and LILLIPUT with CLUTs (b) Logical error rate and decoder
failure rate for LILLIPUT with CLUTs

Table 5 shows the logic overhead (increases from 6% to 11%) and
memory reduction (by 3x) in using CLUTs on Cyclone FPGAs. On
Arria V, both designs require less than 1% logic utilization and thus,
the overhead is acceptable.

Table 5: Logical Overhead for Implementing CLUTs

LILLIPUT (Baseline) LILLIPUT with CLUT
LEs Registers Memory LEs Registers Memory

353 (6%) 209 832 Bytes 688 (11%) 261 280 Bytes
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7.5 Scaling to Other Decoder Configurations
The LUTs for distance 4 and 5 surface codes can be reduced in
a similar fashion. Figure 17 shows the probability distribution of
the Hamming weight of the LUT addresses accessed for decoder
configurations [𝑑 = 4,𝑚 = 3] and [𝑑 = 5,𝑚 = 2] respectively.
We observe that storing only the LUT entries corresponding to
Hamming weights 5 and below in the CLUTs are sufficient for both
decoder configurations.
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Figure 17: Probability distribution of Hamming weight of
LUT accesses for (a) [d=4,m=3] and (b) [d=5,m=2]

Table 6 compares the size of CLUTs for distance 4 and 5 decoder
configurations. We observe that using CLUTs can reduce the mem-
ory requirement by up-to 107x. The CLUTs fit within the embedded
memory available on Arria II/V [2] and Stratix 10 devices [4] and
does not require any external memory access. Note that this esti-
mate does not consider compression of the DF entries in the CLUT
(second step discussed in Section 7.2 as distances 4 and 5 require
a different compression scheme and a detailed discussion is be-
yond the scope of this paper. To avoid the address translation for
CLUT lookups, an alternative option is to use Cuckoo hashing [58]
which incurs 2x memory overhead, but still fits the budget of these
FPGA boards. Lastly, to support LILLIPUT for higher decoder con-
figurations [𝑑 = 5,𝑚 = 3] and [𝑑 = 5,𝑚 = 4], the LUTs can be
compressed and accessed from external memory.

Table 6: Memory Requirement for LILLIPUT with CLUTs

Decoder Design Memory (Baseline)
Configuration X Z Total

[𝑑 = 4,𝑚 = 3] Baseline 5.75 MB 48 MB 53.75 MB
W/ CLUT 245 KB 457 KB 702 KB (78.4x)

[𝑑 = 5,𝑚 = 2] Baseline 74 MB 74 MB 148 MB
W/ CLUT 704.6 KB 704.6 KB 1.38 MB (107x)

8 RELATEDWORK
Noisy quantum devices limit us from running most applications
as hardware error rates are orders of magnitude higher than what
can be tolerated at the application-level. In the near-term, quantum
computers with few hundreds of qubits [63] promise computational
advantages for certain domain-specific applications [12, 13, 28, 51]
with support from software error-mitigation [20–22, 35, 36, 46, 47,
53–56, 59–61, 61, 65, 72, 73, 76, 79, 81, 82]. However, fault-tolerant
quantum computers can solve a broader class of problems [48, 75]
and consequently, real-system QEC studies are gaining momen-
tum [6, 68, 70] with improving device qualities and availability of
quantum hardware prototypes.

In this section, we particularly discuss related work on decoders
and compression and compare with LILLIPUT as appropriate.
Decoders for QEC:Developing accurate and fast decoders for QEC
have been an area of research for several years. Recently, various
hardware decoders [19, 39, 84] have been proposed for real-time
decoding. However, these decoders have lower accuracy or rely on
emerging technologies. In contrast, LILLIPUT is accurate, requires a
constant latency, is reconfigurable, and can be seamlessly integrated
with existing quantum systems, making it an ideal candidate in near
future. Tomita et al. first investigated software LUT decoders using a
fixed set of rules to determine the error assignments [83]. However,
this design is only limited to distance 3 surface codes and 3 cycles.
In contrast, LILLIPUT is an end-to-end solution that uses MWPM,
accounts for device error models, and can be implemented over
a wide number of configurations and QEC cycles. Most recently,
Ryan-Anderson et al. used software decoders to achieve real-time
decoding for color codes on trapped-ion systems [70]. However, this
design requires access to general-purpose CPUs with the associated
overhead in time for transferring data. Unfortunately, supercon-
ducting qubits may not tolerate such large latencies because unlike
trapped ions, superconducting qubits can retain information for
only a few microseconds. LILLIPUT on the other hand is more
versatile and can be adapted to both device technologies. In general,
there is no widely accepted standard decoding algorithm for color
codes similar to MWPM for surface codes [16, 43].
Compression in conventional and quantum systems: Cache
and memory compression in traditional architectures are mainly
designed to optimize for capacity, bandwidth, and power. Their
effectiveness varies depending on the sparsity of the data. Recently,
Das et al. investigated syndrome compression for reducing the
bandwidth needed for syndrome transmission in large quantum
systems [19] by exploiting the sparsity in syndrome data. In con-
trast, compression of LUTs in LILLIPUT relies on the fact that not
all error events are equally likely and error assignments data tend to
be sparse. In another work [89], compression has been found to be
effective in simulating quantum circuits for program verification.

9 CONCLUSION
Demonstration of small surface codes using real-time decoding rep-
resents a significant milestone in quantum computing. In this paper,
we propose LILLIPUT- a Lightweight Low Latency Look-Up Table
decoder that is accurate, fast, and can be seamlessly integrated with
near-term quantum hardware. LILLIPUT interfaces with the read-
out logic, detects error events and corrects them as they appear in
real-time. LILLIPUT uses LUTs to identify errors instead of running
a decoding algorithm. The LUTs are programmed offline using a
software decoder and accounts for the error model of the quantum
device. In this paper, we use minimum weight perfect matching and
error rates that are representative of a Google Sycamore device [7].
LILLIPUT utilizes less than 7% logic and requires up-to 148 MB of
memory for distances up-to 5 on off-the-shelf FPGAs. To reduce
the memory overhead of LILLIPUT, we propose Compressed LUTs
(CLUTs). CLUTs exploit the fact that all error events are not equally
likely and store information only for the most probable events. This
reduces the memory required for the LUTs by up to 107x without
deteriorating performance.
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