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ABSTRACT
Quantum computers with hundreds of qubits will be available soon.
Unfortunately, high device error-rates pose a significant challenge
in using these near-term quantum systems to power real-world
applications. Executing a program on existing quantum systems
generates both correct and incorrect outcomes, but often, the output
distribution is too noisy to distinguish between them. In this paper,
we show that erroneous outcomes are not arbitrary but exhibit a
well-defined structure when represented in the Hamming space.
Our experiments on IBM and Google quantum computers show
that the most frequent erroneous outcomes are more likely to be
close in the Hamming space to the correct outcome. We exploit this
behavior to improve the ability to infer the correct outcome.

We proposeHamming Reconstruction (HAMMER), a post-processing
technique that leverages the observation of Hamming behavior to
reconstruct the noisy output distribution, such that the resulting
distribution has higher fidelity. We evaluate HAMMER using ex-
perimental data from Google and IBM quantum computers with
more than 500 unique quantum circuits and obtain an average im-
provement of 1.37x in the quality of solution. On Google’s publicly
available QAOA datasets, we show that HAMMER sharpens the
gradients on the cost function landscape.
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1 INTRODUCTION
Quantum computers with few tens of quantum bits (qubits) are
currently available to users, and machines with several hundred
qubits are expected within the next few years [22]. These machines
can accelerate certain optimization problems [16], molecular sim-
ulations [25], and machine learning [6] applications. While their
prospective looks promising, near-term quantum computers are
noisy and prone to device errors, which severely limits the fidelity
of applications. Although the number of qubits on quantum com-
puters has notably increased in recent years, the average error rate
of quantum operations has not reduced at the same pace. For ex-
ample, the average two-qubit operational error rate on existing
quantum computers from IBM and Google continues to be in the
range of 1% to 2% [1, 11]. Such large error rates limit the number of
operations that can be performed reliably. As quantum machines
are unlikely to have enough resources to support error correction
in the near term, such machines are typically operated in the Noisy
Intermediate-Scale Quantum (NISQ) [36] mode, whereby the pro-
gram is executed several thousand times, and each trial can produce
a correct or an erroneous outcome. The application fidelity on a
NISQ machine is determined by the ability to identify the correct
answer from the outcomes produced during all the trials.

To improve the fidelity of applications on NISQ hardware, recent
works propose compiler techniques that reduce the number of
quantum operations (gates) [3, 24, 29, 38, 39, 45], perform error-
aware computations [15, 26, 44], focus on reducing specific sources
of errors, such as measurement errors [14, 17, 21, 23, 43], idling
errors [13, 40], and crosstalk [27]. Recent works [34, 42] have also
looked at the problem of mitigating correlated errors, where a
particular incorrect outcome can occur with a high probability.
The implicit assumption in all these prior approaches is that the
erroneous outcomes do not provide any meaningful information.

Even with intelligent compilation techniques, NISQ machines
produce incorrect or sub-optimal outcomes for a significant fraction
of the trials. In this paper, we propose an orthogonal approach to
improve the fidelity of NISQ programs. Rather than simply treating
the erroneous outcomes as wasteful, we propose to leverage corre-
lation in such erroneous outcomes. In particular, we try to address
the following two questions in this paper:

(1) When a trial produces a wrong outcome, is the produced
bitstring arbitrary, or does it have a specific structure?

(2) If erroneous outcomes have some structure, can we exploit
that structure to improve the quality of the solution?

To understand the behavior of the incorrect outcomes produced
during program execution, we analyze experimental data from three
different IBM quantum computers and publicly available datasets
from Google with more than 500 representative circuits containing
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Figure 1: (a) Histogram of the output distribution for a 4-qubit Bernstein-Vazirani circuit. (b) Trend in the Expected Hamming
Distance in the output distribution for QAOA circuits, run on IBM-Paris. (c) Cost landscape of a Variational Quantum Circuit.

up to 20 qubits. If the incorrect outcomes did not have any struc-
ture, we would expect all possible incorrect outcomes to occur with
close to uniform probability. However, the incorrect outcomes have
a well-defined structure in the Hamming space, as the incorrect
outcomes tend to be within a short Hamming distance from the cor-
rect or optimal answers. For example, Figure 1(a) shows the output
histogram of a four-qubit Bernstein-Vazirani (BV) circuit in which
the error-free output "1111" appears with only 40% probability. We
observe that the most frequent incorrect outcomes are close to the
correct output in the Hamming space.

We observe a similar structure in the output of variational quan-
tum programs such as Quantum Approximate Optimization Algo-
rithm (QAOA). To understand the structure of errors in Hamming
space, we compute the Expected Hamming Distance (EHD), which
is a weighted average of the Hamming distances between correct
and incorrect outcomes. EHD captures the density of outcomes
in the Hamming space. If the erroneous outcomes produced are
arbitrary for an n-qubit program, then we would expect that the
incorrect bitstring will be 𝑛

2 bits away from the correct outcomes
on an average. Alternately, when outcomes with high probabilities
are clustered around the correct answers, the EHD would approach
to zero. Figure 1(b) shows the EHD for QAOA circuits with two layers
(𝑝 = 2) [16] as the size of the circuit is increased from 5 qubits to
20 qubits. We observe that although the EHD increases with the
number of qubits, it increases at a much slower pace compared to a
uniform-error model. Thus, incorrect outcomes are not arbitrary
but exhibit a well-defined structure in the Hamming space.

As erroneous outcomes are not arbitrary, it is possible to leverage
the structure they exhibit in the Hamming space. To this end, we
propose Hamming Reconstruction (HAMMER), a post-processing
technique for boosting the fidelity of NISQ applications. Instead of
relying solely on the probabilities associated with each outcome,
HAMMER analyzes their neighborhoods in the Hamming space.
More specifically, by utilizing the probabilities of individual out-
comes and their structure in Hamming space, HAMMER provides
more accurate estimates of the likelihood of each outcome. By us-
ing this likelihood function, HAMMER boosts the outcomes that
are likely to be correct, while "hammering" down those that are
potentially incorrect.

We observe that despite the probability of obtaining the correct
bitstring being low for large quantum circuits, the correct answer
has a rich neighborhood, HAMMER leverage this insight to compute
a Neighborhood Score for every outcome string. The neighborhood
Score is computed by obtaining a weighted sum of all the strings
that are 𝑘 Hamming distance away. Therefore, HAMMER uses a
consensus from the individual Hamming scores of all the outcomes
and generates a weight for evaluating the neighborhood at each
Hamming distance. By aggregating these weights, HAMMER deter-
mines the final Neighbourhood Score for each outcome that is used
in conjunction with its probability to estimate the likelihood of the
outcome. As HAMMER uses the knowledge of the neighborhood, it
boosts the probabilities of the correct outcomes while diminishing
the probabilities of the incorrect ones.

Not only can HAMMER improve the fidelity of applications that
produce a single correct output, but also of near-term variational
quantum algorithms. For example, Figure 1(c) shows the landscape
of the cost function of a QAOA circuit, as the circuit parameters are
tuned. Unfortunately, due to high error rates, a significant fraction
of the outcomes in the output distribution are sub-optimal. There-
fore, the expected cost becomes insensitive to changes in the circuit
parameters, which impedes the search for the optimal solution. As
HAMMER builds the consensus using Hamming Spectrum, it ampli-
fies the probabilities of the outcomes with Hamming structure and
attenuates the spurious solutions to improve the average quality of
solutions, thus helping the search for high-quality solutions.

Overall, our paper makes the following contributions:
(1) To the best of our knowledge, this is the first paper to demon-

strate that incorrect outcomes produced on NISQ machines
are not arbitrary but manifest a well-defined structure in the
Hamming space. In particular, incorrect outcomes tend to
be at a short Hamming distance from the correct outcome.

(2) We propose HAMMER, a post-processing technique that
exploits the Hamming structure of incorrect outcomes to
boost the likelihood of the correct outcomes.

(3) We evaluate HAMMER on Google and IBM machines with
more than 500 circuits and show that HAMMER provides a
consistent improvement in the average quality of solutions.
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Figure 2: (a) Example of a 3-qubit Bernstein-Vazirani circuit. (b) Output on ideal (noise-free) and noisy NISQ hardware. (c)
Variational Quantum Approximate Optimization Algorithm (QAOA). (d) Ideal and real output of a QAOA-9 circuit on IBM-Paris.

2 BACKGROUND
2.1 NISQ Paradigm
Existing qubit devices are vulnerable to noise. The average gate er-
ror rates range from 0.1% to 2% on current IBM and Google quantum
computers. Such a high error rate limits the size of the largest quan-
tum circuit that can be executed as the probability of encountering
errors during computations increases with the number of opera-
tions. To run practical quantum applications, we need to protect
against hardware errors. Unfortunately, quantum error correction
codes incur large overheads requiring thousands of physical qubits.
Thus, error correction on near-term systems with a few hundreds of
qubits is not plausible. In the near-term, we have to operate quan-
tum computers without error correction. Although error-prone,
these Noisy Intermediate Scale Quantum (NISQ) [36] computers are
still considered promising for very specific applications [16, 25].
Consequently, there is an active effort in devising algorithms, hard-
ware (building better devices and gates), and software (compiler
and post-processing) solutions to reduce the impact of errors.

2.2 Impact of Noise on Quantum Circuits
NISQmachines are vulnerable to errors and often produce incorrect
outcomes. For example, Figure 2(a) shows a 3-qubit Bernstein Vazi-
rani (BV) circuit that encodes the secret key "111". Ideally, this circuit
should produce the output in a single query on a quantum computer.
However, due to hardware errors, quantum computers produce in-
correct outcomes "011" and "101" in addition to the correct outcome
"111". Executing a quantum program on noisy hardware produces
a large number of incorrect outcomes, along with the correct ones.
Such incorrect bitstrings may occur with a very high probability,
and the output distribution can become too noisy that the correct
outcome is indistinguishable from the incorrect ones.

2.3 Variational Quantum Algorithms
Despite the vulnerability of NISQ machines to hardware errors,
we can still use these machines for solving a class of optimiza-
tion problems using variational quantum algorithms (VQA), which
are robust to a certain types of errors. VQAs use a parametric cir-
cuit and search iteratively for the circuit parameters that produce
high-quality solutions. For example, when solving an optimization
problem using QAOA, as illustrated in Figure 2(c), we search for cir-
cuit parameters 𝛽 and 𝛾 using a two-step process. First, we initialize
𝛽 and 𝛾 with the best-known value and execute a quantum circuit
several thousands of times. This yields a distribution of solution

strings, where each solution has a fixed cost. Our objective is to
find the solution string with the lowest cost. Next, we perform a
second step, in which we compute the average (or expected) cost
corresponding to the output distribution and search for optimal 𝛽
and 𝛾 using expected cost as the objective function.

Unfortunately, high error rates of NISQ hardware disrupt the
variational loop as the output distributions can be extremely noisy.
Figure 2(d) shows an ideal distribution and the output on an IBMQ
machine for a QAOA-9 benchmark. Due to the high error rate, a
significant fraction of outcomes are solutions with suboptimal costs.
These suboptimal outcomes result in inaccurate estimation of the
expected cost on NISQ devices. For example, ideally the expected
cost should be E(x) = 3.75 but in reality, it is E(x)=-0.42, as shown
in Figure 2(d). Moreover, due to increasing noise, the expected cost
becomes insensitive to changes in 𝛽 and 𝛾 and the cost function
landscape plateaus. This makes optimization problems at practical
scales beyond the reach of QAOA on existing NISQ hardware.

2.4 Improving Quality of Solution on NISQ
Existing error-mitigation techniques focus on providing better than
worst-case reliability on NISQ machines. The implicit assumption
in these techniques is that erroneous outcomes may have no mean-
ingful information to determine the correct answer. This would be
true if the values produced by the erroneous trials were arbitrary
– with a uniform probability over all possible incorrect answers.
However, if the incorrect values have some correlation with the cor-
rect answer, then we can analyze the incorrect values to determine
the correct answer.

3 HAMMING BEHAVIOR OF ERRORS
3.1 Is there a Structure in Errors?
To understand the structure in errors, we run a GHZ-10 circuit. On
an ideal (error-free) quantum computer, the output state is an equal
superposition of the all-zero and all-one states. However, on the
IBM quantum computer, hardware errors produce incorrect out-
comes along with the two desired states. In the case of the GHZ-10
circuit, we observe that correct outcomes occur with a cumulative
probability of 45%, while 55% is the collective probability of all the
incorrect outcomes. The incorrect outcomes are not random as the
dominant incorrect outcomes that appear with high frequency are
close to the correct answers in Hamming space. We also observe
that majority of the dominant incorrect outcomes are within a
Hamming distance of two from either correct answer.
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Figure 3: (a) Representing output probability distribution as Hamming spectrum (illustrative example). (b) Hamming Spectrum
of a BV-8 circuit (executed on IBM-Manhattan). (c) Hamming Spectrum of a QAOA-8 circuit (executed on IBM-Manhattan).

The Hamming behavior of erroneous outcomes is not unique
to GHZ. We observe a similar pattern in errors by analyzing data
frommore than 1500 quantum circuits executed on IBM and Google
quantum hardware. These circuits capture diverse trends in the
number of gates, circuit depth, degree of entanglement, and mea-
surement basis. A detailed analysis on how these factors impact
the Hamming structure is presented in the Section 7.

3.2 Hamming Spectrum
To visualize the structure in errors, we illustrate the output distri-
bution in the form of a Hamming spectrum. Hamming spectrum
creates a compact representation of the output probability distri-
bution by bucketing each outcome into Hamming bins, as shown
in Figure 3(a). Every string outcome in the output distribution is
added to the 𝐾𝑡ℎ bin, where 𝐾 is the Hamming distance between
the correct answer(s) and the string. For a quantum circuit with
an N-bit output, 𝐾 ranges between 0 to N. Figure 3(b) shows the
Hamming spectrum of BV-8 output, where correct output is the
all-one state ("11111111"), and rest are erroneous outcomes. In the
Hamming spectrum, we highlight - (1) correct output (2) an erro-
neous outcome that occurs more frequently than the correct output
(3) rest of the erroneous outcomes (4) average of the Hamming bin.

In the Hamming spectrum shown in Figure 3(b), we observe
that many incorrect outcomes that appear with high probability
are close to the correct answer in Hamming space. Furthermore,
the probability of an output string in a given Hamming bin re-
duces with increasing Hamming distance. For example, incorrect
outputs that are four Hamming distances away from the correct
answer have a lower than a random chance of occurrence. Fig-
ure 3(b) also shows the uniform probability distribution where all
2𝑁 outcomes are equally likely with 1

2𝑁 probability. So far, we have
used BV to illustrate the structure in the output errors. However,
unlike BV, most practical NISQ circuits produce output distributions
with multiple correct outcomes. To understand if the structure in
errors persists for such circuits, we analyze representative QAOA
circuits that produce multiple correct outcomes. Figure 3(c) shows
the Hamming spectrum for a QAOA-8 circuit that uses eight qubits
and produces three correct outcomes with 82%,10.5% and 7.0% prob-
ability, respectively, in the absence of noise. On IBM Manhattan,

the three dominant solutions appear with 7%, 0.7%, and 0.2% proba-
bility respectively. Most incorrect answers produced while running
QAOA are within three Hamming distance from the correct answers.
Note that for multiple correct answers, we consider the shortest
Hamming distance.

3.3 How to Quantify Hamming Behavior?
To quantify the degree of Hamming structure, we use Expected
Hamming Distance (EHD). EHD computes the weighted sum of
Hamming distances between correct outcome(s) and incorrect ob-
servations, where the weights are the probabilities of the incorrect
observations. For output distributions without errors, EHD is zero.
Whereas, in case of a uniform output probability distribution, EHD
approaches 𝑛

2 , where n is the number of qubits. Note that EHD
∈ [0,n] as the output strings can be up to "n" hamming distance
away from the correct outcomes. A quantum circuit that uses n
qubits and produces correct answers all the time will have an EHD
of zero, whereas, for uniform output probability distribution where
all outcomes are equally likely, EHD would be close to 𝑛

2 .

3.4 Hamming Clustering and QAOA
We observe Hamming structure in the output of QAOA circuits,
wherein most incorrect outcomes are close to the desired outputs in
the Hamming space. However, despite this closeness in Hamming
space, incorrect outcomes can significantly change the expected
value compared to the noise-free expected value. To illustrate how
just a few bit-flips can significantly degrade the average solution
quality, we show a partial cost landscape of max-cut problem used
for QAOA-10 from Google dataset in Figure 5 and overlay two de-
sired cuts with the lowest cost. Note that the maxcut problem is
formulated such that cost of the desire cut is negative [20].

The staircase plot in Figure 5(a) shows the cost of all the solution
strings that are one Hamming distance away from desired cuts,
whereas Figure 5(b) represents the cost of all the solution strings
that are two Hamming distance away from the desired cuts. Fig-
ure 5(a) show that the solutions that are just one Hamming distance
away have 2x higher cost, and strings that are two Hamming dis-
tance away can have up to 10x higher cost compared to the desired
solution as shown in the Figure 5(b).
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4 HAMMING RECONSTRUCTION
HAMMER is a post-processing technique that leverages the obser-
vation about the erroneous outcomes being close in the Hamming
space to the correct outcome to produce a modified distribution. In
this section, we first provide an overview of HAMMER and then
the details of each step.

4.1 Overview of HAMMER
The output of a NISQ program can be represented as a probability
distribution, where the outcome 𝑥𝑖 occurs with probability 𝑃𝑟 (𝑥𝑖 )
measured across all the trials. Unfortunately, correct outcomes are
often indistinguishable from incorrect ones due to errors, and there-
fore, the probabilities associated with them are generally inaccurate
and insufficient to infer the solution for large programs. For ex-
ample, Figure 4(a) shows the output distribution (P𝑖𝑛) of a 3-qubit
circuit whose correct output is "111". However, "111" does not ap-
pear with the highest frequency. If we rely on the probabilities
and pick the most frequent outcome as the program solution, we
will incorrectly pick "000". The goal of HAMMER is to accurately
estimate the likelihood L(𝑥𝑖 ) of every outcome 𝑥𝑖 in P𝑖𝑛 .
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Figure 5: Landscape of a QAOA-10 benchmark from Google
data-set with cost of all solutions that are at (a) Hamming
distance of one, or (b) Hamming distance of two from the
desired cuts.

Figure 4 provides an overview of HAMMER. HAMMER consists
of three steps. The first step identifies the Hamming distance neigh-
borhood for each unique outcome in the histogram. This is used to
compute a "Neighbourhood Score". The second step analyzes the
neighborhood scores of all unique outcomes to develop a "weight"
that must be assigned to each neighborhood that is at a distance
𝐾 . The third step is to use the weight and the probability distribu-
tion of the neighborhood to compute the effective value for each
outcome in the probability distribution (and normalize).

Thus, HAMMER determines the likelihood L(𝑥𝑖 ) of every out-
come 𝑥𝑖 being an error-free answer, by combining (a) its probability
of occurrence and (b) a "Neighbourhood Score", S(𝑥𝑖 ), as described
in Equation (1). We design a robust Likelihood function that obtains
the neighborhood score by exploiting the structure in the Hamming
space. Using this score, the singleton outcomes that appear without
structure in Hamming space are penalized, whereas outcomes with
Hamming structure get boosted. We discuss each step of HAMMER
next.

L(𝑥𝑖 ) = 𝑃𝑟 (𝑥𝑖 ) × S(𝑥𝑖 ) (1)

4.2 Step-1: Create Hamming Spectrum
To capture the Hamming structure, we introduced the notion of
Hamming Spectrum in Section 3.We can also represent this structure
by using an equivalent Hamming graph where individual outcomes
are the nodes of the graph, and the weight of the edges connecting
the nodes is the Hamming distance between them. For example,
the output distribution in Figure 6(a) can be represented as a six
node Hamming graph, as shown in Figure 6(b-c).

Outcome 
(x)

Prob.  
Pr(x)

111 0.30
101 0.40
110 0.05
011 0.10
010 0.10
001 0.05

(a) (b) (c)
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0.1
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Figure 6: (a) Output Probability Distribution. (b-c) Hamming
Graph Representation of the Output Distribution.
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For simplicity of illustration, Figure 6(b) only shows those edges
that are one Hamming distance away from each other, whereas,
in reality, the graph has additional edges corresponding to other
Hamming distances, as shown in Figure 6(c). In this example, al-
though the correct outcome "111" occurs with a lower probability,
by looking at the Hamming graph, we observe that "111" has more
neighbors than the most frequent outcome "101".

To leverage this structure in deriving the likelihood function at
scale, there are two key challenges:

(1) What is the right size of the neighborhood in Hamming
space that will enable a robust likelihood function?

(2) How to compute the neighborhood score to boost program
fidelity?

Size of Neighborhood: Our characterization data show that
although the most frequent incorrect outcomes are close to the cor-
rect answers in the Hamming space, they disperse in multiple Ham-
ming bins with increasing circuit depth. We observe that certain
multi-bit flips become dominant in the output distribution, which
increases the Expected Hamming Distance (EHD) and reduces the
density of clusters. For example, the most frequent incorrect out-
come "110011111" of a 10-qubit BV circuit is two Hamming distance
away from the correct answer "111111111", as shown in Figure 7(a).

Thus, to compute a robust neighborhood score, we cannot rely
only on neighbors at Hamming distance of one but also need to
consider the neighbors at slightly larger distances.

Neighbourhood Score:The influence of a neighbor is computed
from its Hamming Spectrum (𝐻𝑆). Increasing the neighborhood size
causes the number of neighbors, and therefore its influence, to grow
rapidly, as shown in Figure 6(c). For an 𝑛 qubit program, there are(𝑛
𝑘

)
possible neighbors that are within "𝑘" Hamming distance away.

In the limiting case, when the entire neighborhood is considered,
the neighborhood score will be influenced by all the other outcomes,
eventually yielding a uniform score across all outcomes. Thus, there
exists a trade-off between the neighborhood size and its influence.
While looking at very small neighborhoods may not be enough,
particularly for large circuits as in the case of the BV-10 circuit
example above, bigger neighborhoods can dilute the influence of
the individual neighbors.

4.3 Step-2: Compute Per-Distance Weights
Ideally, we want to look at larger neighborhoods and simultane-
ously ensure that the neighborhood score derived from them has a
positive influence on the likelihood function. To solve this problem,
we limit the influence of each neighbor by assigning a weight (𝑊 ) to
each neighbor based on its Hamming distance (𝑑) while computing
the neighborhood score. Quite often, an erroneous outcome that
occurs with a very low probability may exist in a very influential
neighborhood, such as outcome "001" in Figure 6. To avoid such low
probability outcomes deriving from a rich neighborhood, we intro-
duce a filter function 𝜋 (𝑥) that differentiates between dominant
and average incorrect outcomes, as shown in Equation 2

S(𝑥) =
𝑑∑︁
𝑖=0

𝜋 (𝑥) ×𝑊𝑖 ×𝐶𝐻𝑆𝑖 (𝑥) (2)

Next, we discuss how to design theweights and the filter function
to exploit the structure of errors in Hamming space.

The outcomes generated on a NISQmachinemay be grouped into
(1) the correct outcome(s), (2) a few dominant incorrect outcome(s),
and (3) a large number of average incorrect outcomes that appear
with low frequency. To distinguish between the three, we utilize the
observation that dominant incorrect outcomes lie in close proximity
to the correct answers in the Hamming space. To quantify this
observation, we define the Cumulative Hamming Strength (CHS),
a vector that holds the total probability of all the outcomes that are
"d" Hamming distance away from a given outcome. For an 𝑛-qubit
program with 𝑛-bit output, the possible Hamming distances range
from 0 to 𝑛. For a given string, we compute the CHS by adding the
probabilities of the outcomes in each individual Hamming bin of
the HS. For example, Figure 7(b) shows the CHS of a BV-10 program
for the correct output, the most frequent incorrect outcome, and the
average of all the outcomes. We observe that the CHS of the correct
and dominant incorrect outcomes peaks at a low Hamming bin, as
shown in the 7(b). On the contrary, the average (incorrect) outcome
peaks at 𝑑 = 𝑛

2 in the Hamming spectrum. This observation is
consistent in all our experiments and closelymatches the theoretical
estimate from a uniform error model as the total number of entries
in the Hamming bin approximately scale as

(𝑛
𝑑

)
whose maxima is at

d= 𝑛
2 . This suggests - (1) infrequent (average) incorrect outcomes

exhibit weak structure in Hamming Space, (2) structure exists only
for the dominant incorrect outcomes, and they appear in the close
neighborhood of the correct answer. HAMMER uses this insight to
differentiate between incorrect and correct outcomes.

Since infrequent average outcomes constitute the majority of
the output distribution, the CHS of the average case represents the
global neighborhood information. As most outcomes are erroneous,
we use the average CHS to compute the weights for estimating
the neighborhood score. We compute the weights (W) by inverting
the average CHS as shown in Figure 7(c). Furthermore, to prevent
the infrequent outcomes benefiting from a rich neighborhood, we
limit the neighborhood sizes up to 𝑛

2 by assigning zero weight
for Hamming bins greater than 𝑛

2 . Each outcome in the output
distribution is assigned its individual Neighborhood Score 𝑆 (𝑥)
by multiplying its CHS and the Weights. Figure 7(d) shows the
neighborhood score for the correct outcome, the dominant incorrect
outcome, and the average outcome.

4.4 Step-3: Update the Probability Distribution
HAMMER assigns the Neighborhood score by computing a dot
product between the CHS vector and the weight vectors. However,
in this process, a low probability string that is part of the rich
neighborhoods gets assigned a high score. This equalization step
can result in neighborhood scores that are very similar across all
outcomes reducing the effectiveness of the HAMMER. For circuits
with 10+ qubits, we observe that many low probability outputs are
part of rich neighborhoods. For example, in the case of a QAOA-16
benchmark, there are more than 1000 outcomes within the radius
of three Hamming distance. With increasing circuit size, although
the expected Hamming distance grows slowly, we see an explosion
in the total number of possible outcomes. For an effective score
update, it is essential to account for this effect, and we introduce a
filter function to update the neighborhood score.
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Figure 7: The probability distribution (P) produced by a BV-10 circuit. (a) Probability of correct and top incorrect outcomes in P.
(b) Cumulative Hamming Spectrum (CHS). (c) Weights computed for P. (d) Neighbourhood Score for the correct, top incorrect,
and average of all strings. (e) Cumulative Score.

The filter function determines if the string with low probability
gets any credit from nodes that are high probability. For a given
string (s), while computing neighborhood score, we only consider
neighboring strings (𝑠𝑖 ), which have a lower probability than the
given string. This modulates the benefits given to the strings that
are in the rich neighborhood but sampled with a high probability
in the original distribution.

4.5 Putting it all Together
We use an example to show how HAMMER improves fidelity
using neighborhood scores. Figure 7(a) shows the probability of
two strings in the BV-10 output distribution. The output string
"111111111" is an error-free output, whereas "110011111" is an in-
correct string that appears with the highest probability. HAMMER’s
goal is to boost program fidelity by reducing the gap between cor-
rect and most frequently occurring incorrect outcomes.

In the baseline, there is a 3x gap between the two. Although
the correct string has a low probability, it is part of a stronger
neighborhood, as shown in 7(b). In HAMMER, we compute the
average CHS and invert it to generate the weights, as shown in Fig-
ure 7(c). We compute the neighborhood score for the correct output
and the incorrect output by multiplying the CHS with the weights.
Figure 7(d) show neighbourhood score for each bin. We sum the
neighborhood scores to compute the total score for both the output
strings, as shown in Figure 7(e). Using these post-processing steps,
we generate the output probability distribution. With HAMMER,
the correct string now appears with a higher probability compared
to the strongest incorrect string. Algorithm 1 in the Appendix de-
scribes the overall steps for HAMMER.

5 EVALUATION METHODOLOGY
We evaluate the effectiveness of HAMMER by running various
benchmarks on three IBM quantum computers. Furthermore, we
test HAMMER on publicly available quantumdatasets fromGoogle [37].

5.1 Quantum Hardware and Benchmarks
Google Dataset: We test HAMMER on the Google dataset (see
Table 1). The output distributions in this dataset are collected by
running Quantum Approximate Optimization Algorithm (QAOA) in-
stances on the 53-qubit Sycamore processor [1]. These QAOA circuits

are used to find the max-cut on Grid, Sherrington-Kirkpatrick and
3-regular input graphs [37].

Table 1: Benchmarks from Google Dataset [37]

Name Algorithm details
#Qubits P Total Figure of

(n) Layers Circuits Merit

QAOA Maxcut on Grid 6–20 1 to 5 120 CR

QAOA Maxcut on 3-Reg Graphs 4–16 1 to 3 200 CR

IBM Dataset:We use quantum benchmarks of different sizes and
structures to evaluate our proposed design. Table 2 summarizes
the benchmarks used in this paper. For the QAOA benchmarks, we
use it in the context of Max-Cut problems on a wide range of
random and regular graphs. The graphs are generated using the
Erdos-Renyi method [7]. To obtain a wide range of graphs, we
vary the degree of connectivity between 0.2 (sparse) to 0.8 (highly
connected), depending on the size of the problem. We adopt this
approach from prior works focused on QAOA circuits [2, 18].

Table 2: Details of NISQ benchmarks on IBM Machines

Name Algorithm details
#Qubits P Total Figure of

(n) Layers Circuits Merit

BV Bernstein-Vazirani 5–15 - 88 IST, PST

QAOA Maxcut on 3-Reg Graphs 5–20 2 and 4 70 CR, PF

QAOA Maxcut Rand Graphs 5–20 2 and 4 70 CR, PF

Compiler and Hardware: We use the Qiskit compiler tool-chain
from IBM [10, 24, 27]. Additionally, we perform the compilation
step recursively to ensure minimum number of CNOTs. For all eval-
uations, we use three real quantum hardware from IBM. Note that
although all of these machines have a Quantum Volume [12] of
32 they have very different error characteristics. Generally, NISQ
programs are executed multiple times (called trials) and by default,
IBMQ systems use 8K trials. For our evaluations, we execute be-
tween 8K-32K trials. This serves as our baseline for evaluation.
We also evaluate HAMMER across multiple calibration cycles and
observe similar results.
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6 EVALUATIONS
We now discuss the effectiveness of HAMMER in improving the
quality of solution for key NISQ benchmark circuits.

6.1 Figure of Merit for BV
We use two different metrics derived from prior works to evaluate
our design, and these metrics are discussed below:
(1) Probability of Successful Trial (PST):measures the probability
of the correct answer and is defined as the ratio of the number of
trials that produce the correct outcome(s) to the total number of
trials, as described in Equation (3). We use PST for BV circuits as it
has one correct solution.

𝑃𝑆𝑇 =
Number of Correct Trials
Total Number of Trials

(3)

(2) Inference Strength (IST) is used to account for the magnitude
of both the correct and the incorrect answers. IST is the ratio of
the frequency of the correct output to the frequency of the most
commonly occurring erroneous output, as described in Equation (4).
If IST exceeds 1, the system will be able to correctly infer the out-
put, whereas if IST is significantly lower than 1, then the wrong
answer(s) would mask out the correct answer.

𝐼𝑆𝑇 =
𝑃𝑟 (𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡 )
𝑃𝑟 (𝑆𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 )

(4)
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Figure 8: (a) Output of BV-10 circuit with 1010101010 key (b)
Improvement in PST and IST with HAMMER for 250 BV cir-
cuits with 5-16 qubits over baseline on three IBM Machines.

6.2 Impact on Bernstein Vazirani Circuits
Figure 8(a) shows an output of a BV-10 circuit executed on a noise-
less simulator, on IBM-Paris (baseline), and a post-processed output
fromHAMMER. For noiseless simulation, the probability of solution
string "1010101010" is 100%, whereas for the probability drops to 8%
in the baseline. Furthermore, the incorrect outcome "1010100010"
is the most frequent string with 20% probability in the baseline.
The resultant distribution obtained by applying HAMMER on the
output distribution from the baseline is shown in Figure 8(a). HAM-
MER improves the PST from 8% to 14% by boosting the correct
solution string as it is more likely to be a correct answer based
on the Hamming structure. Moreover, HAMMER attenuates the
dominant incorrect outcome and increases the IST from 0.4 to 1.01,
such that the solution key has the highest frequency of occurrence.

We observe a similar boost in program fidelity with HAMMER for
250 BV circuits. Figure 8(b) shows the relative improvement in PST
and IST. We observe on average, HAMMER improves fidelity by
1.38x and up to 2x. At the same time, it boosts IST by up to 5x and,
on average, by 1.74x.

6.3 Figure of Merit for QAOA Circuits
Cost Ratio (CR): Hybrid quantum-classical algorithms such as
QAOA use parametric circuits with a classical optimization loop,
in which the circuit parameters are tuned to minimize the cost
function. To calculate the cost, the circuit is first executed on the
NISQ hardware for thousands of trials, which generates an output
distribution that consists of possible sample solution strings and
their probabilities. We can evaluate the expectation value of the cost
function by computing the weighted average of cost corresponding
to each solution string in the output distribution [16, 20].

𝐶𝑅 =
𝐶𝑒𝑥𝑝

𝐶𝑚𝑖𝑛
(5)

We analyze the impact of errors on the effectiveness of QAOA
while evaluating the expectation value and discuss the efficiency
of HAMMER in tackling these errors. We compute the Cost Ratio
(CR) which is the ratio of the average quality (𝐶𝑒𝑥𝑝 ) and the lowest
possible cost of the solution (𝐶𝑚𝑖𝑛), as described in Equation (5). A
higher CR indicates the better average quality of the solution. In
the classical component of these algorithms, an optimizer uses the
expectation values to tune the circuit parameters and eventually
converges on a distribution that maximizes the expectation value
and allows us to estimate the high-quality solution of the problem.
Unfortunately, hardware errors that result in noisy distributions and
low-quality expected values can disrupt the training process [4].

6.4 Impact on Quality of QAOA Solutions
Results on Google Dataset: We run HAMMER on 320 QAOA
circuits used to solve Max-Cut problems with 200 Grid and 120 3-
Regular input graphs to quantify improvements in CR from Google
dataset [37]. The baseline data uses a post-measurement correction
scheme to reduce the readout bias [20]. Figure 9(a) shows an S-
curve for the Cost Ratio (CR) of the baseline and HAMMER data for
3-Regular graphs from 6 to 16 nodes and for 𝑝 = 1 to 3 layers. Ideally,
without noise, the CR ranges from 0.7 to 0.9, only depending on
the number of layers. However, on Google Sycamore, qubit errors
reduce the average quality of solution𝐶𝑒𝑥𝑝 and CR drops to 0.08 to
0.4, as shown in Figure 9(a). HAMMER boosts the CR consistently
for all input circuits showing improvements up to 2.4x in the CR.
Figure 9(b) show an output distribution of a QAOA-10 circuit with
p=2 layers. We plot the cumulative probability of all solutions (y-
axis) corresponding to a Ratio of 𝐶𝑠𝑜𝑙/𝐶𝑚𝑖𝑛 value on x-axis. The
quality of the solution is highest when𝐶𝑠𝑜𝑙 = 𝐶𝑚𝑖𝑛 , and it degrades
with decreasing value of the ratio. Note that 𝐶𝑠𝑜𝑙

𝐶𝑚𝑖𝑛
can be negative,

which represents a sub-optimal cut. We want to maximize the
probability of all solution strings with higher 𝐶𝑠𝑜𝑙

𝐶𝑚𝑖𝑛
value to boost

the average cost 𝐶𝑒𝑥𝑝 . In Figure 9(b), HAMMER achieves this goal
by increasing the cumulative probability from 12% to 19.5% for
optimal cuts and reducing the probability of sub-optimal cuts. We
observe a similar trend for grid input graphs in Figure 9(c) and (d).
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Figure 9: (a) Cost Ratio S-Curve for Baseline and HAMMER for 3-Reg input graphs. (b) Output for QAOA-10 example on 3-Reg
input. (c) Cost Ratio S-Curve for Baseline and HAMMER for grid input graphs. (d) Output for QAOA-12 example on grid input.

For Grid graph inputs, both baseline and HAMMER have higher CR
due to reduced circuit depth and total gate counts for grid circuits
that do not require SWAPs.
Results on IBM Dataset:We use HAMMER to post-process 140
QAOA circuits executed on three IBMQ systems. For these bench-
marks, we observe total variational distance (TVD) decreases by
1.23x and CR increases by 1.39x on average. We evaluate TVD by
comparing output obtained on the hardware and ideal simulation
of the circuit.

6.5 Reclaiming Algorithmic Benefits of QAOA
In theory, the solution quality of QAOA improves rapidly with the
increasing number of "p" layers. However, by increasing the num-
ber of layers, QAOA circuits executed on NISQ hardware become
more error-prone and produce noisy sub-optimal solutions with a
higher frequency. This degrades the average quality of the solution.
Furthermore, training a QAOA circuit with a higher "p" becomes
challenging due to increasing noise. Figure 10 shows CR for Google
baseline data with an increasing value of "p" for finding max-cut
on the grid of 10 to 20 nodes. In the ideal noiseless case, the quality
of solution, i.e. CR, improves monotonically with increasing "p"
number of layers. Whereas, on Google’s Sycamore device, the qual-
ity of solution peaks at p=2 and reduces. When we post-process
Google data with HAMMER, we observe a peak in quality at p=3.
As HAMMER can suppress hardware noise, it can reclaim algorithm
benefits of QAOA at higher "p" values.

Moreover, to understand if HAMMER can improve the classical
optimization steps in variational mode, we run HAMMER on a
complete landscape of QAOA-14, solving maxcut for 3-regular graph.
We observe that HAMMER consistently enhances the quality of
solution for each data point on the grid and sharpens the gradient.

6.6 Complexity Analysis of HAMMER
For a given quantum program with 𝑛 qubits, let 𝑁 be the number
of non-zero entries in the (noisy) distribution obtained on a NISQ
computer. From the memory complexity viewpoint, HAMMER
requires to store two vectors of size 𝑛/2 for storing Hamming score
(HS) and weight vectors—denoted by 𝐻𝑆 and𝑊 in Algorithm 1,
respectively. Hence, the memory required by HAMMER grows
linearly with the number of qubits—i.e., 𝑂 (𝑛). Our analysis shows
that the memory required is less than 1 MB even for problems using
up to 500 qubits. For computational complexity, HAMMER performs
𝑁 2 +𝑁 steps to compute the Hamming weight vector, 𝑁 2 steps for

computing the likelihood of observations being a correct outcome,
and 𝑁 steps for normalizing likelihoods. Thus, the execution time
of HAMMER grows quadratic with the number of unique outcomes
- 𝑂 (𝑁 2) . For HAMMER, the execution time gets determined by the
number of unique outcomes, which is limited by the number of
trials for large programs.

For example, Google uses a total of 25,000 trials irrespective of
the size of the QAOA problem [20]. The largest QAOA instance that we
evaluate with HAMMER had 24 qubits. For this instance, there were
about 20K unique outcomes, and HAMMER required 56 seconds
for a Python-based single-threaded code. On NISQ machines, we
expect to observe a limited number of unique outcomes. Even if we
use a few thousand trials and each trial produces a unique outcome,
HAMMER can process this within a few minutes. Table 3 shows
the complexity of HAMMER for machines with up-to 500 qubits
when we run 32K or 256K trials. The time complexity of HAMMER
is small, even with 256K unique outcomes.

Table 3: Number of Operations Required

Trials Unique Operations in Billion
(T) Outcomes Qubits (n) = 100 Qubits (n) = 500

32K 10% 0.001 0.001
100% 1 1

256K 10% 0.6 0.6
100% 64 64

7 IMPACT OF ENTANGLEMENT AND CIRCUIT
SIZE ON HAMMING BEHAVIOUR

Quantum algorithms leverage entangled or correlated states to
enable speedup over classical methods. Unfortunately, entangled
states are prone to errors. Moreover, certain errors can rapidly
spread among entangled qubits reducing the Hamming structure.
To understand if the Hamming behavior persists with increasing
entanglement, we run over a thousand benchmark circuits with
varying degrees of entanglement on IBM quantum hardware. We
use circuits with the following structure:

|0⟩⊗𝑛 𝐻 𝑈
𝑅 𝑈

†
𝑅

𝐻

Each circuit starts and ends with a layer of Hadamard gates be-
tween which a random unitary, 𝑈𝑅 , and its reverse, 𝑈 †

𝑅
, are used.

The sub-circuit𝑈𝑅 comprises of randomly selected single-qubit (Rz,
Rx, Ry) and two-qubit (CX, CZ) gates. The𝑈 †

𝑅
is the reverse circuit
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Figure 10: (a) Quality of solution with increasing layers in QAOA circuits solving Max-Cut for grid graphs with 6-20 nodes, with
total 200 circuits. (b) Optimization landscape for 3-Regular graph for Google baseline and HAMMER.
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Figure 11: EHD of high depth benchmark circuits with varying (a) Entanglement Entropy (b) Fidelity. EHD of low benchmark
circuits with varying (c) Entanglement Entropy (d) Fidelity. Spearman Correlation Coefficient used to quantify the correlation.

such that𝑈𝑅 ∗𝑈 †
𝑅
= 𝐼 . These circuits create an entangled state and

gradually untangle it, producing an all-zero state (|0000..0𝑛⟩). We
use random unitaries to generate circuits with varying entangle-
ment. Furthermore, the all-zero output state enables high fidelity
measurements. We evaluate the degree of entanglement for a bench-
mark circuit by computing the entanglement entropy of the state
produced by the sub-circuit : 𝐻.𝑈𝑅 using ideal simulations. We run
two sets of benchmark circuits - (1) high depth circuits with depth
up to 25 (2) low depth circuits with depth up to 15.

Figure 11(a) shows how EHD changes with varying entangle-
ment entropy for 300 ten-qubit circuits running on IBM hardware.
We observe a weak correlation between entanglement entropy and
EHD (Spearman coefficient: 0.2). Furthermore, EHD is lower than
the uniform error model (dotted line), showing a strong Hamming
structure. We observe a similar trend across different benchmark
circuits. In fact, for shallower circuits shown in Figure 11(c), the
correlation between entanglement and structure in errors weakens.

While Hamming structure persists despite the increasing entan-
glement entropy or degree of entanglement, it reduces with increas-
ing noise. As shown in Figure 11(b) and Figure 11(d) with decreasing
fidelity, EHD increases for both low and high depth benchmark
circuits. Increasing the size of quantum circuits increases the total
number of operations and the duration for which qubits are active.
This exacerbates the error rate, and with increasing errors, fidelity
drops, and EHD increases. Similarly, Figure 12(a) shows EHD for
BV and QAOA circuits with 6 to 20 qubits. With the increasing size
of circuits, we see an increase in EHD.

With more errors, more incorrect answers are produced and scat-
tered across the Hamming space. This results in a higher average
Hamming distance between any two outcomes. However, compared
to the uniform distribution where EHD is 𝑛

2 , circuits discussed in
Figure 12 have significantly lower EHD. Furthermore, we observe
different rates of increase in EHD for different circuits. BV circuits,
for example, lose the structure much faster as compared to the
QAOA circuits. This is because the depth of BV circuits increases
super linearly compared to the linear increase in QAOA circuits.
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Figure 12: EHD of output (a) IBM-Paris (b) Google-Sycamore

Figure 12 highlights that circuit depth is a dominant factor that
influences the EHD and the Hamming structure. Moreover, we
observe this trend for over 400 QAOA circuits that are used to solve
a max-cut problem on 3-regular, 2-regular, and Erdos-Renyi graphs
with 6 to 20 nodes, as shown in Figure 12(a), and a similar trend
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manifests for QAOA on Google-Sycamore, as shown in Figure 12(b).
We observe thatmajority of theQAOA circuits have lower EHD than
the uniform distribution, and for QAOA circuits with reasonable
program fidelity, we observe a low EHD and dense clusters around
the correct outcome. Our observations are consistent across three
IBM machines and over twenty days of experiments. We also verify
if the trend in error structure changes significantly due to qubit
mapping. Our results suggest that although average fidelity and
dominant incorrect answers change, the clustering effects remain
similar across different mappings.

While we cannot establish the exact reasons for the Hamming
behavior of incorrect outcomes, we can surmise a few reasons
for why this behavior occurs in practice. Our evaluations show
for shallow circuits, errors can have a localized impact preserving
Hamming structure. Thus, shallower circuits can be expected to
provide more Hamming structure than deeper circuits. In fact, given
the constraints of NISQ systems, we are likely to run programs
with shallow depth (for example, on IBM hardware, the fidelity of
QAOA circuits drops below 1% beyond circuit depth of 40). Our
experiments show that for wide and low depth circuits, the errors
are clustered in Hamming space.

8 RELATEDWORK
NISQ computers promise computational advantages for practical
applications [16, 25, 31]. In the absence of quantum error correction
on these systems, software policies will play a vital role in closing
the gap between the devices and the algorithms [9, 30]. Therefore,
mitigation of hardware errors through software techniques is an
active area of research. We can broadly classify them as compiler
and post-processing techniques.
Compiler-Based Error-Mitigation: These methods focus on (1)
generating highly optimized program schedules by accounting for
the application-specific characteristics to reduce the circuit depth
and number of operations [3, 18, 19, 24, 39, 45] and (2) hardware
error characteristics to perform noise-aware computations [26, 28,
32, 35, 42–44]. There are other approaches that decompose a circuit
into smaller circuits and obtain the output distribution using a
tensor product [41]. Generally speaking, all of these policies focus
on reducing the likelihood of a program encountering errors. Some
of them particularly focus on a very specific source of error such
as crosstalk between ongoing CNOT operations [28], measurement
errors [5, 8, 21, 23, 33, 43], correlated errors [42], or idling errors [40].
HAMMER uses a completely different approach and is compatible
with all of these policies as it can be applied to a program compiled
with these optimizations.
Post-processing for Error-Mitigation: Recent work [34] has
looked at the problem of correlated errors and proposed diverse
mappings on different machines to reduce the magnitude of corre-
lated errors. These schemes post-process the noisy outputs obtained
from the individual mappings to offer a more accurate output dis-
tribution. Post-processing schemes have also been effective in mit-
igating measurement errors. These schemes use characterization
data to compute a noise matrix which is then used to post-process
the noisy output distribution obtained on a NISQ device [8, 21].

9 CONCLUSION
We propose Hamming Reconstruction (HAMMER), a post processing
technique to boost the fidelity of a quantum program. It uses the
insight that correct outcomes are clustered in the Hamming space.
HAMMER estimates the likelihood of each outcome based on a
neighborhood of answers within a small Hamming distance of given
answer. We evaluate the effectiveness of HAMMER using more
than 500 key quantum benchmarks on IBM and Google Sycamore
Datasets and show that HAMMER improves the quality of solution
by 1.37x on average. We also evaluate the scalability of HAMMER
and show that it easily scales to machines with thousands of qubits.
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APPENDIX A: HAMMING RECONSTRUCTION
The Hamming Reconstruction algorithm is described below.

Algorithm 1: Hamming Reconstruction
Input: 𝑃in (input distribution), 𝑛 (number of qubits)
Output: 𝑃out (output distribution from HAMMER)

1 Function HAMMER(𝑃in):
2 // Step-1: Create Hamming Spectrum

3 𝐶𝐻𝑆 = zeros(n/2)
4 for 𝑥 in 𝑃in do
5 for 𝑦 in 𝑃in do
6 𝑑 = Hamming Distance (𝑥, 𝑦)
7 if 𝑑 < 𝑛

2 then
8 𝐶𝐻𝑆 [𝑑 ]+ = 𝑃in [𝑦 ]
9 // Step-2: Compute Per-Distance Weights

10 𝑊 = zeros(n/2)
11 for 𝑖 = 0 to 𝑛/2 do
12 if 𝐶𝐻𝑆 [𝑑 ] > 0 then
13 𝑊 [𝑑 ] = 1/𝐶𝐻𝑆 [𝑑 ]
14 // Step-3: Update the Probability Distribution

15 𝑃out = {}
16 for 𝑥 in 𝑃in do
17 𝑠𝑐𝑜𝑟𝑒 = 𝑃in [𝑥 ]
18 for 𝑦 in 𝑃in do
19 𝑑 = Hamming Distance (𝑥, 𝑦)
20 if 𝑑 < 𝑛

2 and 𝑃in [𝑥 ] > 𝑃in [𝑦 ] then
21 𝑠𝑐𝑜𝑟𝑒+ =𝑊 [𝑑 ] × 𝑃in [𝑦 ]
22 𝑃out [𝑥 ] = 𝑠𝑐𝑜𝑟𝑒 × 𝑃in [𝑥 ]
23 𝑃out = normalize (𝑃out)
24 return Pout
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