Rubix: Reducing the Overhead of Secure Rowhammer
Mitigations via Randomized Line-to-Row Mapping

Anish Saxena
anish.saxena@cc.gatech.edu
Georgia Institute of Technology
Atlanta, USA

Abstract

Modern systems mitigate Rowhammer using victim refresh,
which refreshes neighbours of an aggressor row when it
encounters a specified number of activations. Unfortunately,
complex attack patterns like Half-Double break victim-refresh,
rendering current systems vulnerable. Instead, recently pro-
posed secure Rowhammer mitigations perform mitigative
action on the aggressor rather than the victims. Such schemes
employ mitigative actions such as row-migration or access-
control and include AQUA, SRS, and Blockhammer. While
these schemes incur only modest slowdowns at Rowhammer
thresholds of few thousand, they incur prohibitive slow-
downs (15%-600%) for lower thresholds that are likely in
the near future. The goal of our paper is to make secure
Rowhammer mitigations practical at such low thresholds.

Our paper provides the key insights that benign applica-
tion encounter thousands of hot rows (receiving more ac-
tivations than the threshold) due to the memory mapping,
which places spatially proximate lines in the same row to
maximize row-buffer hitrate. Unfortunately, this causes row
to receive activations for many frequently used lines. We
propose Rubix, which breaks the spatial correlation in the
line-to-row mapping by using an encrypted address to access
the memory, reducing the likelihood of hot rows by 2 to 3
orders of magnitude. To aid row-buffer hits, Rubix random-
izes a group of 1-4 lines. We also propose Rubix-D, which
dynamically changes the line-to-row mapping. Rubix-D min-
imizes hot-rows and makes it much harder for an adversary
to learn the spatial neighbourhood of a row. Rubix reduces
the slowdown of AQUA (from 15% to 1%), SRS (from 60% to
2%), and Blockhammer (from 600% to 3%) while incurring a
storage of less than 1 Kilobyte.

CCS Concepts: « Security and privacy — Systems secu-
rity; Hardware security implementation.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640404

Saurav Mathur
smathur44@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Moinuddin Qureshi
moin@gatech.edu
Georgia Institute of Technology
Atlanta, USA

Keywords: DRAM, Rowhammer, Memory Mapping

ACM Reference Format:

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi. 2024. Ru-
bix: Reducing the Overhead of Secure Rowhammer Mitigations
via Randomized Line-to-Row Mapping. In 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’24), April 27-May 1,
2024, La jolla, CA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3620665.3640404

1 Introduction

Rowhammer is a data-disturbance error where frequently ac-
tivating a row induces bit flips in nearby rows [24]. Rowham-
mer is a severe security threat and has been used to leak con-
fidential data and escalate privilege [3, 6-9, 13, 27, 27, 44, 48].
Rowhammer worsens with higher memory density. The num-
ber of activations required to induce bit-flips, termed as
the Rowhammer Threshold (Try), has plummeted from 139K
(DDR3) in 2014 to just 4.8K in 2020 (LPDDR4), as shown in
Figure 1 (a). The threshold is expected to reduce even further,
and if the current trend continues (30X reduction in 6 years),
we can expect Try of about 100 over the next decade. Solu-
tions that protect against Rowhammer must be viable not
just at the current threshold, but also at future thresholds.

Rowhammer defenses typically incorporate a tracking
mechanism to count row activations and a mitigative action
to perform when the activation count reaches the threshold.
The most popular form of mitigative action is victim refresh,
which simply refreshes the nearby victim rows when the
aggressor row reaches the specified threshold of activations.
Victim refresh has been deployed in commercial systems (e.g.
DDR4, DDR5) in the form of Target Row Refresh (TRR) [7].
However, the drastic reduction of Tgy poses two problems.
First, due to severe area limitation in DRAM (9% area re-
quired for per-row tracking [11]), TRR is unable to identify
all aggressors, even in DDR5 [11]. In fact, two recent whitepa-
pers from JEDEC[15, 16] mention that “in-DRAM mitigations
cannot eliminate all forms of Rowhammer attacks". Second,
even if tracking is perfect, the act of victim-refresh can itself
be used to induce bit-flips. As shown in Figure 1 (b), Half-
Double [2] leverages victim-refresh to cause bit-flips at a
distance-of-2 from the aggressor row, thereby breaking all
defenses relying on victim-refresh. Thus, current systems
remain vulnerable to Rowhammer. In this paper, we focus
on mitigations resilient to complex patterns.

https://orcid.org/0000-0002-8925-8109
https://orcid.org/0009-0007-0496-2513
https://orcid.org/0000-0002-1314-9096
https://doi.org/10.1145/3620665.3640404
https://doi.org/10.1145/3620665.3640404
https://doi.org/10.1145/3620665.3640404

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(2014) (2018) (2020 (2023)

3| 139K
5 &
EE Ces s
ET [—
S3 —
S| | F e AogressorF PR
S 12 8K ? o &1
= DDR3 DDR4 LPDDR4 LPDDR5, DDR5

(@) (b)

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

Average Slowdown

Tau| AQUA ROS‘:?;J:@ BlockHammer
Victim K| <% 3.4% 10%
‘G Victim-refresh 512 2.4% 10% 37%
4\;ictim 256 6.4% 25% 140%

128 15% 60% 600%

©)

Figure 1. (a) Trend of Rowhammer threshold (30x lower in 6 years). (b) Half-Double breaks victim-refresh. (c) Secure
Rowhammer mitigations that are resilient against Half-Double, incur impractical slowdown at low thresholds (Tgy of 128).

Recent studies [43, 53, 54] propose such resilient miti-
gations that are aggressor-focused instead of being victim-
focused (such as victim-refresh). AQUA [43] and SRS [53]
migrate the aggressor row to another row, breaking the spa-
tial correlation between the aggressor and victim. Blockham-
mer [54] limits the number of activations to any row to less
than Tgy, preventing large number of activations to a row
(critical for complex attacks). While these schemes invoke
high-overhead mitigating actions that take several microsec-
onds or more, at current Try only a small number of rows
require any mitigation, and these schemes incur a modest
slowdown. Unfortunately, as Try reduces, many more rows
reach the threshold, requiring mitigations, which causes sig-
nificantly higher overheads. Figure 1 (c) shows the average
slowdown of AQUA, SRS, and Blockhammer as the threshold
reduces from 1K to 128. At a threshold of 128, AQUA suffers
a slowdown of 15%, SRS of 60%, and Blockhammer of 600%,
rendering them impractical at lower thresholds.

The goal of our paper is to make secure Rowhammer mitiga-
tions practical even at a low threshold (128), as such thresholds
can occur if the trend holds for the next decade.

High slowdown occurs due to the dramatic increase in
number of rows that receive more than Try activations in
64ms, which we define as hot rows. In our evaluations, we
observe only about 200 hot-rows, on average, with 512 or
more activations, but 9500 hot-rows with 64 or more activa-
tions (45X more). Reducing the number of hot-rows would
reduce the slowdown stemming from secure mitigations.

We make the key observation that hot rows are primar-
ily caused by the memory mapping function, which deter-
mines the set of lines co-residing within the same row. The
memory-mapping in modern processors places lines with
spatial proximity in the same row to maximize row-buffer
hits. For example, Intel Coffee Lake [49] mapping places the
entire 4KB page within the same row and Intel Skylake [49]
round-robins the lines of each 4KB page between rows of two
banks. Thus, 32-64 lines of each 4KB page co-reside within
the same row, and if the page is heavily accessed, these lines
would contribute to the aggregate activation count of the
row. While each line incurs only a few activations, the sum
of activations due to all the lines makes the row a hot-row.

Typical workloads access only a small fraction of the mem-
ory within 64ms. In our evaluations, less than 5% of rows are
touched within 64ms. Thus, spreading activations from hot-
rows to the entire memory would greatly reduce hot-rows.
With this insight, we propose Rubix, a memory mapping
that breaks spatial correlation of lines to rows by using an
encrypted address to access memory. We present two flavors
of Rubix: Static (Rubix-S) and Dynamic (Rubix-D).

Rubix-S uses the low-latency programmable bit-width K-
Cipher [26] for address-space randomization, which is kept
in the memory controller. On a memory access, the memory
controller encrypts the line-address, accessing the memory
with the encrypted line address. Encryption randomizes the
line-to-row mapping, so the lines co-resident in the same
row have no spatial correlation. This significantly reduces
the likelihood of heavily accessed lines getting placed in the
same row, virtually eliminating all the hot-rows. As a result,
mitigations are invoked much less, reducing slowdown. To
preserve row buffer hit rate, Rubix-S encrypts a gang of 1-
4 contiguous lines, as line-level address encryption would
result in virtually zero row buffer hits. Our evaluations show
that at Try of 128, Rubix-S reduces the slowdown of AQUA
(from 15% to 1%), SRS (from 60% to 3%), and Blockhammer
(from 600% to 3%) while requiring just 16 bytes of storage,
thereby making it practical to deploy secure mitigations.

With Rubix-S, the group of lines that co-reside in the row
are randomized, however, this group remains unchanged
throughout the system uptime. To this end, Rubix-D pro-
vides dynamic randomization of line-to-row mapping with-
out needing a programmable cipher, by using an xor opera-
tion with a randomly generated key. The mapping changes
gradually from the current-key to the next-key. Rubix-D
remaps vertically (gangs in the same position of different
rows) instead of horizontally (gangs within the row), which
not only reduces hot-rows, but also makes it much harder for
an adversary to determine set of spatially contiguous rows,
a critical step in launching a targeted Rowhammer attack.
Our evaluations show that at Try of 128, Rubix-D reduces
the slowdown of AQUA (from 15% to 1.5%), SRS (from 60%
to 2%), and Blockhammer (from 600% to 3%) while incurring
a storage overhead of less than 1 KB.

Rubix: Randomized Line-to-Row Mapping

Overall, our paper makes the following contributions:

1. To the best of our knowledge, this is the first paper to
analyze the impact of memory (line-to-row) mapping
on the efficacy of Rowhammer mitigations.

2. We demonstrate that the line-to-row mapping is the
primary reason for hot-rows in benign workloads.

3. We propose Rubix-S, which breaks the spatial correla-
tion in line-to-row mapping by accessing the memory
with an encrypted address (with gangs of 1-4 lines).

4. We propose Rubix-D that provides dynamic random-
ization without needing a programmable cipher and
makes it harder to identify spatially proximate rows.

2 Background and Motivation
2.1 Threat Model

We assume an unprivileged attacker that can run code on the
system vulnerable to Rowhammer. The attacker can run a
process under user privilege and exploit Rowhammer to flip
bits in critical data structures (such as page-table) or in the
data of another program. We assume the Rowhammer bit-flip
occurs at the victim location when any row in memory incurs
more activations than Ty within the refresh interval of 64ms.
Thus, the attack is successful if no mitigation is issued when
a row has encountered more than Tgy activations.

2.2 Background on DRAM

Modern DRAM-based memory is organized into several
banks, each of which is a two-dimensional array of DRAM
cells, organized as rows and columns. Each bank caches the
most recently opened row in a row buffer. Data is accessed by
bringing it into the row buffer. To access data in another row,
the bank clears the row buffer, followed by activation of the
given row. DRAM cells leak charge and require periodic re-
fresh operations (at 64ms). Trc determines the time between
consecutive activations for a given bank and is about 45ns.

2.3 Memory Mapping

The memory-mapping function routes a given line address
to a particular bank and row, determining the set of lines that
co-reside in a row [10, 49]. It also affects row-buffer hit-rate
and performance. Memory systems place spatially proximate
lines in the same row and we consider two mappings used
in Intel systems. While not exhaustive, we note that most
deployed mappings use similar xor-based hashing [49].

Coffee Lake Mapping: This mapping places consecutive
128 lines within the same row buffer. So, two consecutive 4KB
pages would be resident in the same row. It uses a xor-based
hashed mapping for bank selection.

Skylake Mapping: This mapping alternatively places a pair
of lines between two banks (selected using xor). So, for a
4KB page, lines 0,1,4,5 ... 60, 61 reside in a row of one bank,

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

and lines 2,3,6,7 ... 62,63 are in row of the other bank. This
mapping causes 32 lines from a 4KB page to reside in a row,
with contents of four consecutive pages in the same row.

2.4 Rowhammer

Rowhammer is a data-disturbance error [17, 24] where acti-
vating a row frequently induces bit-flips in nearby rows. The
Rowhammer Threshold (Try) denotes minimum activations
required on a row to induce bit-flips with any access pattern.
Rowhammer is a severe security threat as the attacker can
flip bits in the page table and take over the system. When
Rowhammer was characterized in 2014, Try was 139K with
single-sided attack, whereas it reduced by 30x to 4.8K [19] in
2020 (with double-sided attack). As established by a decade
of threshold characterization [20], ultra-low thresholds will
be reached by the next decade and as memory gets denser,
more nearby rows experience aggressor activations [28].

We can avoid ultra-low thresholds if DRAM organization
changes fundamentally or DRAM vendors mitigate Rowham-
mer. Unfortunately, neither option has materialized, as stated
by JEDEC [15, 16] and recent industry papers [11, 23]. More-
over, as systems remain deployed for several years, Rowham-
mer defenses must scale to future Tgy.

Hardware-based defenses for Rowhammer have two parts:
activation-tracker and mitigating-action. Several studies [4,
22, 29, 36, 37, 46, 47, 56] have looked at storage-efficient
trackers. Comparatively, mitigating action is less well studied.
Most modern systems simply rely on victim-refresh, which is
vulnerable to address-correlation attacks [25]. Thus, modern
systems continue to be vulnerable to Rowhammer attacks.

2.5 Secure Rowhammer Mitigation

Performing mitigative action on aggressor row, instead of the
victim, prevents address-correlation attacks. Figure 2 shows
three such recently proposed aggressor-focused mitigation.

Blockhammer [54] controls the access rate of frequently
accessed rows, such that no row incurs more than Try acti-
vations within 64ms, by delaying accesses for an appropriate
time. As the adversary cannot perform an overwhelmingly
large number of activations (required for Half-Double) on a
single row, it prevents complex attacks.

AQUA [43] migrates the aggressor row when it receives
Try /2 activations (halving of threshold due to tracker reset),
to a quarantine-region in memory. AQUA breaks the spatial
connection between aggressor and victim, limiting the time
for an attacker to craft complex attacks.

Secure Row-Swap (SRS) [53] swaps the aggressor row,
once it has received Tgy/3 activations (reduction due to
birthday-paradox attacks), with another randomly selected
row in memory. Like AQUA, SRS breaks the spatial connec-
tion between the aggressor and the victim.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

I] I
= T 5
-
Access = | = I 1
- g9
— ’Quarantine Region‘
— Migrate Swap
RowBlocker | — —
(a) BlockHammer (b) AQUA (c) Scalable Row Swap

Figure 2. Secure Rowhammer Mitigations: (a) BlockHammer controls rate of accesses to each row. (b) AQUA quarantines
aggressor rows in a dedicated region. (c) Scalable Row-Swap (SRS) swaps the aggressor row with a random row.

2.6 Scalability Problem of Secure Mitigations

Secure Rowhammer mitigations (such as Blockhammer, AQUA,
and SRS) incur significantly more overhead than victim-
refresh. While performing two victim-refresh activation takes
less than 100 nanoseconds, these schemes incur significantly
more latency. For example, row migration in AQUA and SRS
ties up the memory bus for several microseconds, during
which the channel cannot service any requests. The problem
is even worse for Blockhammer, as rate control can delay
accesses by several tens to hundreds of microseconds.

These schemes are designed for the current thresholds
of few thousands, where very few rows reach the thresh-
old in benign workloads and require mitigation. However,
at lower thresholds, many more rows reach the threshold,
which causes more frequent high-overhead mitigations, caus-
ing drastic slowdown. Figure 3 shows the performance of
AQUA, SRS, and Blockhammer as thresholds ranging from 1K
to 128, for the Coffee Lake and Skylake memory mappings,
normalized to Coffee Lake-based baseline.

8 [CoffeeLake @@ SkyLake

£ 1.0

€ 0.8

&

< 0.6

204

©

oo mll

= 0.0
D O Db AN > O VAN > O DV AN
N N RN PSR

Rowhammer Threshold

Figure 3. Normalized performance of AQUA, SRS, Block-
hammer at varying Try. At Try of 128, all schemes incur
significant slowdowns.

At the threshold of 1K, AQUA and SRS have negligible
slowdown, whereas Blockhammer suffers 10% (Coffee Lake)
to 25% (Skylake). However, at Try of 128, all schemes incur
significant overheads. AQUA and SRS incur 15% and 60%
slowdown, respectively, and Blockhammer has 500% to 600%
slowdown (note that normalized IPC of 0.2 implies 5x slow-
down), making secure mitigations impractical for adoption.

2.7 Goal of Our Paper

The goal of our paper is to make secure Rowhammer mitiga-
tions viable at low thresholds (Try of 128), which are likely
to be present in the near future. We want to accomplish this
without incurring significant hardware overheads. We de-
velop a general framework that can be used by current and
also by future secure Rowhammer mitigations.

3 Evaluation Methodology
3.1 System Configuration

We use the Gemb5 [31] simulator to perform multi-core simu-
lations in Syscall Emulation (SE) mode with an out-of-order
core and DDR4 memory model. We use DDR4 2400MT/s
based on Micron MT40A2G4 [12]. Table 1 shows our base-
line system configuration. We use the open-adaptive memory
page policy which keeps the row open for maximum of 16
accesses before closing it. Moreover, we use first-ready FCFS
(FR-FCFS) scheduling policy to prioritize row hits and mini-
mize unnecessary activations. We use the Coffee Lake map-
ping as our baseline. AQUA and SRS use the Misra-Gries [35]
tracker and for Blockhammer, we use an idealized SRAM
tracker with one counter per row in memory. Due to tracker
state reset, we use a tracker threshold of Try/2.

Table 1. Baseline System Configuration

Out-of-Order Cores
Last Level Cache (Shared)
Memory size
trep-teL-trp-tre
Rows x Banks x Ranks x Channels
Size of row

4 cores, 8 wide at 3GHz
8MB, 16-Way, 64B lines
16 GB - DDR4 2400MT/s
14.2-14.2-14.2-45 ns
128Kx16x1x1
8KB

3.2 Workloads

We evaluate with 18 SPEC2017 [1] rate workloads and 16
mixed workloads (each with four random SPEC2017 work-
loads). We fast-forward 25 billion instructions and simulate
for 250 million instructions. Table 2 shows the Misses Per
1K Instructions (MPKI) and the average number of unique
rows touched, and "hot-rows" with 64 or more activations
(ACT-64+) and with 512 or more activations (ACT-512+).

Rubix: Randomized Line-to-Row Mapping

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

DRAM } Access Pattern }
Workload i i Baseline Encrypted
osweam [LT LTI ! 0 0
| \
4aVB | —> 1l\2|:Grg\)Ns i Strided @ i 1K (100%) 0
Corandom [JOIOOOIIE] 1K (100%) | <1(0.1%)
4KB row ‘ !

Figure 4. Illustration: Understanding the impact of memory-mapping in generating hot-rows (a) System configuration (b)
Workloads (c) Number of hot-rows for 4MB footprint (and 4KB rows). Under baseline mapping, both stride-64 and random
have 1K hot rows (100%), however, with an encrypted address virtually all the hot-rows are eliminated.

Table 2. Workloads Characteristics: MPKI, Unique Rows
Touched (within 64ms), and Hot-Rows (within 64ms).

MPKI | Unique Rows | Total number of "Hot-Rows"
Workload || (LLC) Activated ACT-64+ | ACT-512+

blender 12.78 8.8K 347K 29K
Ibm 20.87 29.4K 70.3K 0
gee 6.12 10.4K 21.8K 384
cactuBSSN 2.57 5.2K 12.2K 0
mcf 5.81 49K 10.5K 425
roms 3.33 27.9K 6.6K 9
perlbench 0.71 11.4K 1.7K 0
Xz 0.40 10.8K 496 0
nab 0.53 44K 189 0
namd 0.37 3.4K 105 0
imagick 0.13 1.1K 89 0
bwaves 0.21 1.7K 20 0
wrf 0.02 702 20 0
exchange2 0.01 122 14 0
deepsjeng 0.25 68.1K 12 0
povray 0.01 390 8 0
parest 0.10 24K 3 0
leela 0.02 879 0 0

[Average [301 | 107K [9528 | 206]

4 A Case for Randomized Memory

The reason secure Rowhammer mitigations incur significant
overheads at low thresholds is because more rows reach the
threshold number of activations (we refer to such rows as
hot-rows). We identify the root cause of hot-rows to be the
memory mapping function that determines the line-to-row
mapping. In this section, we first present this insight, then
our workload characterization, then our solution Rubix, and
results for slowdown and mitigation.

4.1 Dependence of "Hot Rows" on Mapping

We illustrate the dependence of hot-rows on line-to-row
mapping using a simple model, as shown in Figure 4 (a). The
processor accesses a memory system containing one bank.
The memory system is 4GB and contains 1 million rows of
4KB each. We use sequential mapping that places the 4KB
page within the same row.

We consider three kernels as shown in Figure 4 (b): stream,
stride-64, and random, with a 4MB footprint. Each kernel

incurs 1 million memory accesses within 64ms. We deem
a row to be a hot-row if it has at least 64 activations. We
analyze the number of hot-rows for these kernels.

For the stream kernel, the first access causes an activation,
and subsequent 63 accesses get a row-buffer hit. Therefore,
a million memory accesses cause a total of only 15.6K acti-
vations, which get spread over the 1K rows, with a uniform
activation rate of about 16 activations per row, with no hot-
rows. The stride-64 kernel has a stride of 64 lines and each
access goes to a different page. When all pages are exhausted,
the stride continues with the next line on the page. As each
memory access causes an activation, this kernel incurs 1
million activations, spread equally over 1K pages, and each
row gets 1K activations. Thus, all the 1K rows are hot-rows.
The random kernel accesses a random line in memory. The
likelihood of a row buffer hit is negligibly small, so the 1
million accesses cause 1 million activations, spread over 1K
rows. The average activations per row are 1000 (standard
deviation of 32), with more than 99% of the rows having
more than 900 activations. Thus, we deem all the 1K rows to
be hot-rows. The results are summarized in Figure 4 (c).

The conventional mapping of placing sequential lines in
the same row buffer causes hot-rows for both the stride
pattern and the random pattern. We have 64 lines that cause
activation of the same row in memory, thus compounding
the total number of activations incurred by the given row.

Consider an alternative mapping that uses an encrypted
line-address to access the memory system. There are 64K
lines in a 4MB footprint. These 64K lines would be spread
over the 1 million rows in memory. We estimate (using bino-
mial distribution) that 61.5K rows have exactly 1 line from
the kernel mapped to them, 1.9K rows with 2 lines, and 40
rows with 3 lines (no row with 4 or more lines). For both
stream and stride, each line gets accessed 16 times. So,
we have 61.5K rows with 16 activations, 1.9K rows with 32
activations, and 40 rows with 48 activations. Thus, no row
is deemed a hot-row. For random, we estimate the expected
number of hot-rows to be 0.4, so less than 1 row will be
deemed a hot-row. Thus, randomizing the line-to-row map-
ping eliminates the hot rows of all three kernels.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

4.2 Characterizing Lines in Hot-Rows

For our baseline system, we examine how many lines (out of
the 128 lines) of the row contribute to making the row a hot-
row. For each row that reaches 64 activations, we measure
the number of lines in the row that encountered at least 1
activation. Table 3 shows the percentage of hot-rows that
had 1-8 lines, 8-16 lines, 32-64 lines, and 64-128 lines (and
the average) contributing to the row activation counts.

Table 3. Number of lines that add to activation counts of
hot-rows (data for workloads with 100+ hot-rows).

Number of Activating Lines in a Hot-Row

Workload || 1-32 | 32-64 [64-128 | Average
blender 2% 98% 0 60
Ibm 0 100% 0 58
gee 1% 99% 0 60
cactuBSSN 0 100% 0 63
mcf 0 100% 0 52
roms 3% 97% 0 51
perlbench || 7.3% | 92% 0 47
XZ 0 100% 0 57
nab 0 100% 0 58
namd 0 100% 0 54

[Average [2% [98% 0] 56]

We observe that for 98% of hot-row activations come from
at-least 32 lines in the row. On average, 56 out of 128 lines
incur at least one-activations within the hot-row. This val-
idates our hypothesis that hot-rows occur because many
lines of the row contribute to the activation counts. Thus,
the line-to-row mapping which decides which set of lines
co-reside within the same row is the main reason for the
occurrence of hot-rows.

4.3 Rubix: Randomized Line-to-Row Mapping

Rubix breaks the spatial correlation of lines to row by using
an encrypted address to access memory. Figure 5 shows an
overview of the static version of Rubix, called Rubix-S. Con-
sider the access pattern where requests for four consecutive
lines A, B, C, D are set to memory. In conventional mapping,
these four lines will co-reside within the same row. However,
with encryption, these lines get scattered to different rows.

GIEIEIE—

Line Address

Encrypted
Line Address

DRAM

Figure 5. Overview of Rubix-S: breaking spatial correlation
in line-to-row mapping with encrypted line-address.

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

Rubix-S uses K-Cipher [26], a low-latency programmable
bit-width cipher, for address-space randomization. K-Cipher
is kept in the memory controller and incurs a latency of 3
cycles (with 10nm process technology [26]). On a memory
access, it encrypts the line-address which is used to access the
memory. As we have 16GB memory, we use a 28-bit cipher.
Encryption randomizes the line-to-row mapping, breaking
the spatial correlation between lines co-residing in the row.

The exact line-to-row mapping depends on the 96-bit key
of the K-Cipher. The key is set to a random value (based on
PRNG) at boot time. As each system will have a different key,
the memory mapping for each system will be different.

4.4 Recouping Row-Buffer Hits via Gangs

While line-address encryption virtually eliminates hot-rows,
it degrades the row-buffer hit-rate to approximately zero.
Rubix minimizes hot-rows while still retaining some row-
buffer hits, by encrypting a gang of 2-4 contiguous lines.
Figure 6 shows Rubix-S with gang-level randomization.

e

n-bit Line Address

‘ \

| |

! | n-kbits |k-bits || DRAM

| |

| |

| K| »{1]2]

| |

| \

| [Gang Address | k-bits | | [3[4

Line Address) [
. El ted

B Linzcgj%fess

Figure 6. Rubix-S: Using gang-address encryption to balance
both row-buffer hits and reduced hot-rows .

Instead of encrypting the entire n-bit line-address, Rubix-
S skips the k least significant bits of the line-address and
only encrypts the gang-address, which is the remaining (n-k)
bits. The encrypted gang-address is concatenated with the
unmodified k-bits, and this line-address is used to access the
memory. Thus, lines within a gang that co-reside in a row
provide temporal locality to aid row-buffer hits. For example,
in Figure 6, lines 1 and 2 co-reside in the same row. Note
that with k-bits, we would have a gang-size of 2 lines and
if k is set to zero, this design degenerates into Rubix-S with
line-address encryption. We denote Rubix-S with a gang-size
of X lines as Rubix-S (GSX). The size of the cipher is adjusted
per gang size, so Rubix-S (GS4) uses a 26-bit K-cipher.

4.5 Results: Impact on Mitigations

We observe that Rubix-S (GS1, line-level) eliminates all hot-
rows for our workloads. Figure 7 shows the number of hot-
rows for the baseline system with Coffee Lake mapping,
Skylake mapping, and Rubix-S (GS4). Rubix-S eliminates
hot-rows for all but six workloads. On average, Coffee Lake

Rubix: Randomized Line-to-Row Mapping

[Coffee Lake
» 10°
2
2
o 103
S
jant
g 10!
£ il w
\\0\%1\ 3e* gc,o 59 08 g§ ‘\6“ 15’)03‘9%(\;? «© %@5 w\‘é gﬁ %66\'0667* (e
Vg < Qe" %

3 Skylake

B

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Hl Rubix-S (GangSize=4)

D b O O O AQ AN AL AD D A0 N\
At RS AR

Figure 7. Number of hot-rows (activations of 64 or more) with Intel mappings and Rubix-S with Gang-Size of 4 (GS4). Mean
implies arithmetic mean. While baselines have more than 7K hot rows on average, Rubix-S (GS4) reduces it by 220x to 33.

[Coffee Lake

Norm. Performance
o
[=)]

9 48° (000 o $0“$1)’$9C>{‘6666'6\3
\X{eﬁ\é ST % (o) 6‘% %™ s% &Q
o

&

1.0
0.8
0.6
0.4

Norm. Performance

S35 (08 050G cﬁ@o«;,,goases 6{@3 SRR,
%‘(\3606 & ﬁoﬁ‘ oo %\ %« PSS SE) qi GQQQ%{Q

e‘;’
g
El.O
—
§0.8
o 0.6
’LO4
g 0
302 _H_B-
Z. 15615 1%
3 38° (<O %$0‘0$3‘0<}1~ee O 8 o
%‘\)6‘\6 (},‘ % 1\0(%«\1 6\«!44(
o

3 Skylake

N0 e 9 A
e"’ 66@ SIS GS &“1{0

HEl Rubix-S

.y 2 D A0
e&‘% I e NN <

B

SRS

2.2 5. 0. ® . & 2 9 A0
SRR e BRI o

BLOCKHAMMER

DB o o0 10 o o AAYAEAARATAC b

PR

Figure 8. Performance of secure mitigations at Ty of 128 for Intel mappings and Rubix-S, normalized to an unprotected
Coffee Lake baseline. Rubix-S uses GS4 for AQUA and SRS, and GS1 for Blockhammer, and reduces the average slowdown to
1.1%, 3.1%, and 2.9%, respectively (down from 15%, 60%, and 600%), making them viable at ultra-low thresholds.

and Skylake mappings have 7.6K and 7.2K hot-rows respec-
tively, whereas Rubix-S (GS4) reduces it by 220x to only 33.
Line-to-row mapping primarily determines hot-rows, and
our design significantly reduces hot-rows. Mitigations are
invoked much less, greatly reducing performance overheads.

4.6 Results: Impact on Performance

Figure 8 shows performance of AQUA, SRS, and Blockham-
mer with Intel Coffee Lake, Skylake, and Rubix-S mappings.
Performance is normalized to an unprotected Coffee Lake

baseline. Intel mappings incur unacceptable slowdown with
secure mitigations. We compare Rubix-S with Coffee Lake
mapping which performs slightly better than Skylake. Cof-
fee Lake incurs a significant average slowdown of 15% for
AQUA, while Rubix-S reduces it to a negligible 1% (for gang-
size 4). SRS and BlockHammer are impractical with baseline
policies, incurring 60% and 600% average slowdown, respec-
tively. Rubix-S not only enables SRS and BlockHammer with
a negligible average slowdown of 3.1% (GS 4) and 2.8% (GS
1), respectively, it retains application-level performance with

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

a worst-case slowdown of 42% for Ibm with SRS and just 11%
for BlockHammer, 28X and 350X improvement.

Overall, Rubix-S makes secure mitigations viable at ultra-
low Tgry of 128 with just 2-3% overhead. While we do not
change access scheduling and DRAM page policies, fine-
tuning them would likely reduce the overheads even further.

4.7 Sensitivity: Varying Gang-Size

10% EE Gst I Gs2 I Gs4
8%
6%

4%

AQUA SRS

Slowdown (%)

Blockhammer

Figure 9. Performance of Rubix-S with Gang-Size of 1-4.

Gang-size (GS) balances row-buffer hits and reduction in
hot-rows. With larger GS, row-buffer hit rate increases along
with hot-rows and mitigation overheads. Figure 9 shows the
performance of secure mitigations with Rubix-S as GS is
varied from 1 to 4. Due to high mitigation overhead, Block-
hammer works best with GS1 which eliminates hot-rows.
AQUA has lower overhead mitigation, so GS4 works best
which retains row-buffer hits. For SRS, GS2 offers the best
balance between row-buffer hits and minimizing hot-rows.
Thus, the best GS size depends on the scheme and the miti-
gation overhead and Rubix-S provides the flexible trade-off
of minimizing hot-rows while retaining row-buffer locality.

4.8 Results: Impact on Row-Buffer Hits

A key effect of small gang-size is decreased row-buffer hit
rate. The baseline Coffee Lake and Skylake policies provide
an average row-buffer hit rate of 55% and 63%, respectively.
Rubix-S shows a gradual increase in row-buffer hit-rate from
0 with GS1, to 19% at GS2 to 31% at GS4, with up-to 2.7X
more activations for GS1. Thus, GS2 and GS4 recoup some of
the row-buffer hits. The overall system performance depends
not only on row-buffer hits but also on mitigation overheads.

4.9 Results: Storage and Power Overheads

Rubix requires negligible power for the K-Cipher and ad-
dress mapping logic. We use Micron’s power calculator [34]
to compute DRAM power, the primary overhead due to lower
row-buffer hit rate. Rubix-S increases the DRAM power by
120mW at a gang-size of 4 (a 4.3% increase), and by 300mW
at gang-size of 1 (10.6% increase), due to a lower row-buffer
hit rate than baseline that result in additional activations.
The power consumption of Rubix-S with secure mitigations
remains within 10% of the baseline, because of virtually elimi-
nating mitigations, unlike existing memory mappings, which
incur prohibitive energy overheads.

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

4.10 Security Analysis of Rubix-S

The security of Rubix-S stems from the security of the under-
lying mitigation schemes (SRS, AQUA, Blockhammer). The
security guarantees of these schemes are not dependent on
using a specific memory-mapping. Rubix-S remains secure
because we simply change the memory mapping.

4.10.1 Defining TRH. We define Tgry as the minimum
number of activations to at least one row within 64ms which
causes a bit flip via any attack pattern (single-sided, double-
sided, Half-Double[25], or a future attack pattern). So to
ensure security of our solution, our only assumption is:

A successful Rowhammer attack requires activating at
least one row more than Ty times within a refresh period.

4.10.2 Security of SRS, AQUA, and BlockHammer. SRS
and AQUA rely on row migration to guarantee that now row
receives more than Try activations within a 64ms window.
SRS does so by randomization, guaranteeing that even under
continuous attacks for several years, the likelihood of ran-
domly finding migrated rows is negligibly small. With AQUA,
a row that receives Ty activations is moved to a quarantine
region, and by design, it guarantees that no physical row
will ever receive more than Ty activations. BlockHammer
controls the activation rates to a physical row such that no
row ever receives more than Tpy activations. These schemes
rely on accurate tracking of row counts, and we use Misra-
Gries tracker for SRS and AQUA, and one-counter-per-row
for BlockHammer, which provide guaranteed tracking. The
security guarantees of SRS, AQUA, Blockhammer are appli-
cable for all access patterns (including Half Double) and all
possible memory mapping (the mapping of lines to rows).

4.10.3 Proving Security of Rubix-S Using Lemmas.
Rubix-S reduces performance overheads while retaining the
security guarantees of the underlying SRS, AQUA, and Block-
hammer schemes. The underlying schemes (SRS, AQUA, and
Blockhammer) are secure against all access patterns (includ-
ing Half Double), and these guarantees work for any memory
mapping. Using the randomized memory mapping of Rubix-
S retains these guarantees, as we show using lemmas.

Lemma-1: The security guarantee of SRS, AQUA, and
Blockhammer is not dependent on memory mapping, so
these designs are secure for all memory mappings.

Lemma-2: Rubix-S is a memory mapping which random-
izes the line-to-row mapping.

From Lemma-1 and Lemma-2, it follows that secure mitiga-
tions continue to be secure with Rubix-S. For example, Half
Double requires that an aggressor row be activated about
100x more times than Tgry. As no row is activated Tgy times
in secure mitigations, their security is unaffected by Rubix-S.

Rubix: Randomized Line-to-Row Mapping

currKey| 010
nextKey| 110

DRAM
Ptr—— 010 |, 100 100 100
011 —»| 011 101 101
000 000 —» 000 111
001 010 010 —»| 010
110 110 110 110
111 111 111 000
100 010 010 010
101 101 011 011

(a) (b) () (d)

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

currKey| 110
nextKey 001

100 100 100 100
101 101 101 101
111 111 111 111
110 110 110 110
—»{ 010 010 010 010
000 —»| 000 000 000
010 010 —» 010 010
011 011 011 —» 011

(e) ® (€3] (h)

Figure 10. An example of dynamically changing xor-based mapping. The effective address is the line-addressed xor-ed with a
key. The dynamic remapping algorithm gradually remaps all the lines from a currKey (010) to the nextKey (110).

5 Rubix-D: Dynamic Randomization

With Rubix-S, lines co-residing in the row are randomized.
However, this mapping remains unchanged throughout the
system uptime. We propose Rubix-D, an alternative approach
that not only randomizes the line-to-row mapping but changes
this mapping dynamically at system runtime. Rubix-D re-
duces hot-rows and makes it much harder to determine rows
that are spatially contiguous to each other (a critical step in
a targeted Rowhammer attack).

We adapt the ideas presented in seminal works on dy-
namic memory remapping [40, 45] to suit our constraints
and objectives. Rubix-D performs xor with a randomly gen-
erated key to randomize [45], and this mapping is gradually
changed from a given key to new key. In this section, we first
provide an example of dynamically changing xor mapping,
then present Rubix-D, and finally the results.

5.1 Overview of Xor-Based Remapping

Figure 10 provides an example of the xor-based dynamic
remapping for a memory containing 8 lines (000-111). The
system contains a pointer (Ptr) to aid with remapping and
two sets of keys currKey and nextKey. The effective line-
addresss is computed as the xor operation with one of the
keys. At the start of the epoch, all lines use the currKey
whereas by the end of the epoch, all lines use the nextKey.
We perform remapping every 100 accesses. Figure 10 (a)
shows the mapping at the start of the epoch with all lines
located at their original address xor-ed with the currKey
(010). After 100 accesses, the first remapping is invoked, so
the physical location 000 (pointed by the Ptr) is swapped
with the destination 110 (Ptr xor-ed with the nextKey). Ptr
is incremented to 001.

The next three remappings also result in swaps (Figure 10
(b), (c), and (d)) and the pointer is incremented. For the next
four remapping episodes, swapping is skipped as the Ptr
points to an already remapped line. After 8 episodes, all lines
use the mapping with nextKey (Figure 10(h)). Next, the cur-
rKey becomes currkey xor-ed with nextKey, and the nextKey
is initialized to a new value obtained using a hardware-based
PRNG. The Ptr is reset to 000, indicating a new epoch.

We translate line-address to physical-address in two steps:
(1) Translate line-address L to L’ = (L xor currKey).

(2) Perform two checks: First, is L’ < Ptr? and Second, is (L’
xor nextKey) < Ptr?. If either is yes, L’ = (L’ xor nextKey).

The memory access is routed to location L’. The simple
xor and check operations are performed within one cycle.
Thus, xor-based dynamic remapping randomizes line-to-row
addresses with negligible SRAM (three registers — currKey,
nextKey, and Ptr)) and latency (one cycle). For properties
and proof of xor-based randomization, please refer to [45].

5.2 Pitfall of Xor at Randomizing Line-to-Row

While xor-based mapping dynamically randomizes memory
addresses, we cannot directly apply it in our context, due to
the linear mapping of xor. For example, if there are 128 lines
co-residing in a row, then after an xor with a random key,
these 128 lines still co-reside in one row (at another location).
As all the top (n-7) bits of the lines that get mapped to the
same row are identical, an xor with the (n-7) bits in the
key results in the same remapped value. Reordering of lines
within the destination row, unfortunately, does not reduce
the likelihood of it becoming a hot-row. Instead, our proposal
Rubix-D reorganizes the xor-based mapping to dynamically
randomize the group of lines that co-reside in a row.

5.3 Overview of Rubix-D

Figure 11 shows an overview of Rubix-D. We randomize
gangs vertically (across rows but for same gang-in-row). For
G gangs in a row, we provision G sets of remapping circuits
(currKey, nextKey, and Ptr). As each gang in the row uses
a different key, gangs co-residing in the same row in the
baseline are scattered to different rows in memory, breaking
the spatial correlation between gang mapping to a row.

In Figure 11, the memory has 4 gangs in a row (colored
red, yellow, etc.). The same-colored gangs across all rows
form a vertical-group (v-group). Each v-group is allocated a
pair of keys (curr and next) and a pointer. The line-address
is split into three parts: the least significant k bits identify
the line-in-gang, next p bits identify the gang-in-row, and
remaining n — p — k bits identify the row-address.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

|
|
iKeys n-bit Line Address |
| Gl G2 G3 G4 [R=B=KBifs] p-bits [k-bits | | DRAM
} lm S |
I |R2 [Rand] |
| R3 Pk B
| R4 e !
| [R8]__Jons] * [Rand Fowid[- M [kebits] |
|
\

Line Address — Rubix-D
Encrypted Line Address

Figure 11. Overview of Rubix-D: gangs within a vertical
group (G1, G2, etc.) are routed to random rows in memory.

Rubix-D keeps the k+p bits of the line address unchanged,
randomizing only the bits for (global) row address. The p bits
identify the v-group and its keys and pointer translate the
row-address to the remapped-row-address. The remapped-
row-address is concatenated with the k+p bits to form the
remapped-line-address, which is used to access the memory.
With a 28-bit line address, Rubix-D with gang-size of 4 uses 2
bits to identify line-in-gang, the next 5 bits for gang-in-row,
and remaining 21 bits for global row address. With less than
8 bytes for each pair of keys and ptr, we need total SRAM of
512 bytes (for 32 v-groups).

5.4 Remapping Rate and Remapping Period

Remapping-Rate (RR) determines the frequency of remap-
ping. We set RR to occur with 1% probability on each activa-
tion (thereby avoiding ACT counters for v-groups). V-gangs
with more activations are remapped more frequently. Dur-
ing remap, the gangs pointed by the Ptr of the v-group are
swapped with their destination (based on nextKey). At GS4,
the memory controller streams 4 lines from source and desti-
nation rows and swaps them (open-row-X, read-DataX, open-
row-Y, read-DataY, write-DataX-to-Y, open-row-X, write-
DataY-to-X). Swapping incurs 3 ACTs, 8 CAS reads and 8
CAS writes, consuming bandwidth and energy . As half of
the remap operations are skipped (Figure 10 (e)-(h)), at an RR
of 1%, the average overhead is low at 1.5% extra activations.

Remapping Period (RP) is the time to remap the v-group.
With RR=1% and two million rows in memory, a v-group
has a remap-period of about 200 million activations. We can
reduce the remapping-period by dividing such that every Nth
row of the v-group to forms a v-segment. Each v-segment has
its own set of keys and pointer. With N=32, the remapping-
period of the v-segement is 6.25 million activations; however,
this requires 16 KB SRAM overhead for metadata.

5.5 Security Analysis of Rubix-D

Even though Rubix-D remaps dynamically, it is not a stan-
dalone mitigation for Rowhammer, as an adversary can use
Flush+Reload [55] to cause bit-flips. Thus, Rubix-D must al-
ways be used with a Rowhammer mitigation scheme. Rubix-
D’s security stems from the underlying mitigation (AQUA/

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

SRS/ Blockhammer). As the security of these schemes is not
dependent on line-to-row mapping, Rubix-D retains their
security (please see Section 4.10). Thus, per Lemma-1 and the
fact that Rubix-D is simply a memory mapping, the overall
design (with AQUA,SRS, Blockhammer) of Rubix-D is secure
against all access patterns, including Half-Double.

5.6 Impact of Rubix-D on Future Attacks

Complex attacks, such as Half-Double and BLASTER [28],
attack multiple rows and identifying spatially contiguous
rows is critical for success [5]. Once inferred, the mapping re-
mains constant in Rubix-S until system reboot, whereas with
Rubix-D the neighbor information gets changed within a
few seconds due to remapping. Thus, with Rubix-D, not only
do we get security for known attacks, it makes orchestrating
future complex pattern attacks much harder.

5.7 Results: Storage and Power Overheads

Rubix-D needs 8-byte metadata (currKey, nextKey, Ptr) for
each v-group, so 512 bytes for gang-size of 4 lines. For seg-
mented Rubix-D, the storage overhead is proportional to
the number of segments (e.g., 16KB SRAM for 32 segments).
DRAM power, computed using Micron’s power calculator [34],
increases by 130mW at GS4 (4.2% more than baseline), 180mW
at GS2 (5.8% increase), and 320mW at GS1 (10.9% increase).
Note that with baseline mappings, secure mitigations would
incur significant energy overheads.

5.8 Results: Impact on Mitigations

Rubix-D reduces hot-rows within 64ms as shown in Figure 12,
which plots hot-rows for conventional policies, Rubix-S, and
Rubix-D (as GS is varied). The baseline policies each have
more than 7K hot-rows. Rubix with GS1 eliminates hot-rows
which GS2 incurs a negligible number of hot-rows, which
increase to few tens with GS1. The reduction in hot-rows
makes secure mitigations viable at Try of 128.

5

g
£ 10°
& 10
o
I 10
"6
s
10’ - -
eva‘* o " 0‘5'7’ & & & &
‘{\

Figure 12. Hot-rows in baseline and Rubix (atleast 100x less).

5.9 Results: Impact on Performance

We evaluate Rubix-D with Remapping-Rate of 1% without
any segments as they do not impact performance (they af-
fect the Remapping-Period and storage overheads). Figure 13

Rubix: Randomized Line-to-Row Mapping

[Coffee Lake

Norm. Performance
© O 0o O -
N & O 0 O

\\%g;;\ o 90206‘9 cﬁ oSS g‘o %ﬁ% @S&@ qg@% e\%e ST
%)

Performance

e oor
s o o

Norm.
=}
N

$0

< X
%{g\ée ge g$00‘0 « gb%:,:&465 @6{ q{o*ﬁ Q“\ggg @ 6\13* D s
o°

1.0
0.8
0.6
0.4

0.2 <M<l <
1%M1% 1%

Norm. Performance

qﬁﬁo“‘ +b ,39 \0\‘”4@‘5 @6¢(&{<>‘3
Q

RO

5405 (00
%{é\é S {0
e‘f’c

B Skylake

NO oL oS
6 Q {6
e

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Il Rubix-D

DA D A0
o 6\ ‘0\ ﬁ\\ 6\\ ‘0\ ﬁ\\ 6\\ ‘0\ ~;.\ xﬂ\d’\ ‘0\‘1‘%\\‘?}' & (,&N

SRS

9 A
6‘«‘“‘%““‘“““‘%@@@@&@

BLOCKHAMMER

D2 b 30 (O 2 A2 ABAD A
B SN o

Figure 13. Performance of secure mitigations at Ty of 128 with Intel mappings and Rubix-D, normalized to unprotected
Coffee Lake baseline. With GS4 for AQUA, GS2 for SRS, and GS1 for BlockHammer, Rubix-D incurs a low average slowdown
of 1.5%, 2.3%, and 2.8%, respectively (down from 15%, 60%, and 600%).

shows the performance of Rubix-D compared to Intel map-
pings, normalized to an unprotected Coffee Lake baseline.
Rubix-D incurs low overhead of just 1-3% on average at Try
of 128. AQUA, SRS, and BlockHammer perform best at dif-
ferent gang-sizes. AQUA launches almost no mitigations
and benefits from row buffer locality at GS4. SRS operates
at a lower threshold of &2 and launches more mitigations,
performing best at GS2 with negligible hot rows. BlockHam-
mer has high mitigation overhead and works best minimal
hot-rows at GS1. Rubix-D incurs worst-case slowdown of
just 10%, compared to more than 100X in baseline (for Block-
Hammer). The remapping of Rubix-D also avoids getting
stuck with an accidentally bad mapping, as the mapping gets
changed over program execution.

5.10 Sensitivity: Mapping Overhead of Rubix

Table 4 shows the isolated slowdown of Rubix mappings
without any mitigative action. Rubix incurs low overhead of
1%-3% due to lower row-buffer hit rate than baseline map-
ping. Rubix-D overheads are slightly higher than Rubix-S
due to extra activations required for dynamic remapping. As
randomization incurs a small performance cost while mini-
mizing episodes of hot rows, it avoids expensive mitigations.

Table 4. Isolated overhead of Rubix without mitigative action

’ Slowdown of Rubix Mapping H Rubix-S ‘ Rubix-D

Gang of 4 lines (GS4) 1% 1.3%
Gang of 2 lines (GS2) 1.6% 1.9%
Gang of 1 line (GS1) 2.6% 2.7%

5.11 Sensitivity: Higher Rowhammer Thresholds

Figure 14 shows the slowdown of secure mitigations with
Rubix-S and Rubix-D at higher Try. Randomizing the line-
to-row mapping practically eliminates hot-rows at higher
thresholds, even at gang-size of 4 employed by Rubix at Try
of 1K for all secure mitigations. Consequently, the perfor-
mance overhead is a negligible 1.1% to 1.4% at Try of 1K.

—_ [Try =128 Try =512 H Tr,=1024
X 4% AQUA [SRs] [BLOCKHAMMER]
< 3%
v
o
n
\‘l~ * * * * *
PROMPRS PROMIPRS PO

Figure 14. Slowdown of Rubix at Higher Thresholds. Rubix-
GS4 incurs less than 2% slowdown at Try = 1K.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

g [Coffee Lake [Rubix-S WMl Rubix-D [32GB DDR4 -2 channels|
§ 0 AQUA SRS BLOCKHAMMER
8 4, i
5 0.8
5 0.6
004
£ 02 |
S 0.0
oS X 5 X 5 X
SR FEOLEN0 S DD > SR FLLLENRIL S N> O SERFLOLENR S N> &
FSEEEGEERT R O SERIECSE R O SHOREEN T R 9
N7 Q&N < @R AQPNA < @R RROA S @<
& € & XN & & € &
N " < P < e
o [32GB DDR4 - 4 channels|
% o AQUA SRS BLOCKHAMMER
g 1.
508
506
204
E o2
200
QELOVNFLIEALL S NAAX & QEL0NLIEARL S NAH X & S ONFLILARL S AN ON> &
FTEIERE TG T @ FGIEGETIIE (Y & SRS TS @
¥ & T PR ¥ & T TR IR T TR
Q $) () O () %)
< e < oF Q o

Figure 15. Normalized performance of secure mitigations with Intel and Rubix mappings for an 8-core multi-channel system.
While Intel mappings incur impractical average overheads of 15%-380% (AQUA-BlockHammer), Rubix reduces it to 1%-4%.

5.12 Sensitivity: Scaled-up Multi-Channel Systems

We evaluate Intel Coffee Lake and Rubix mappings on a
subset of workloads with 8-core simulations with 2 and 4
channels (32GB DDR4 memory and 16 MB LLC, other con-
figuration same as Table 1). As Figure 15 shows, Intel’s map-
ping incurs impractical overheads of 15%, 45%, and 380% for
AQUA, SRS, and BlockHammer (bottom graph), even though
it stripes gangs of 4 lines across 4 channels, because contigu-
ous lines end up in the same row in a strided pattern. Rubix
breaks the spatial correlation of line-to-row, resulting in low
overheads of just 1-3% (4% for 2-ch SRS with Rubix-S).

5.13 Sensitivity: Memory-Intensive Workloads

We evaluate Rubix and the baseline mappings with memory-
intensive STREAM workloads [33] using 1 GiB arrays (LLC
MPKI of more than 50). Figure 16 shows the performance
of Rubix normalized to unprotected Coffeelake and Skylake
mappings. Rubix eliminates hot-rows in all STREAM work-
loads. On average, Rubix incurs 2% to 5% slowdown com-
pared to Coffeelake mapping (5% to 8% slowdown compared
to Skylake mapping) due to lower row buffer hit rate (Rubix-
D incurs more slowdown due to dynamic remapping). Over-
all, Rubix is low-cost even with memory-bound workloads.

[Rubix-S+AQUA
[Z3 Rubix-D+AQUA

3 Rubix-S+SRS
23 Rubix-D+SRS

I Rubix-S+BH
[E=A Rubix-D+BH

Norm. to Coffeelake Norm. to Skylake

Figure 16. Rubix with secure mitigations incurs 2% to 8%
average slowdown (geomean) for memory-intensive work-
loads compared to unprotected baseline memory mappings.

6 Discussion

In this section, we describe alternative designs that can re-
duce hot-rows without relying on a cipher or remapping.

6.1 Randomizing Line-to-Row without Cipher

Rubix-S breaks line-to-row spatial proximity via random-
ization. An alternative strategy to reduce hot rows is to
use the most significant bits of the memory address for the
gang-in-row, which strides gangs co-resident in a row. For
example, 16GB memory and 32 gangs-per-row strides the
gangs in the same row by 512MB. As lines that are much
further away (512MB) from each other are unlikely to be
accessed within a short time of each other, this mapping
also reduces the line-to-row correlation without relying on
a cipher. We also evaluated such a large-stride design and
found that it has overheads similar to Rubix-S (1.8% to 3.8%
slowdown with secure mitigations compared to unprotected
Coffee Lake mapping). However, unlike Rubix-S, gang-level
striding would not be robust against all access patterns, such
as patterns with large strides, whereas, cipher-based ran-
domization provides a principled solution for all patterns.

6.2 Randomizing Line-to-Row with Keyed XOR

Rubix-D assigns each gang-in-row to a separate remapping
circuit to XOR-hash with its randomly generated key. If
dynamic remapping is skipped, Rubix-D still retains static
randomization while avoiding the performance and energy
overheads of swapping gangs. In our evaluations, Rubix-D
without dynamic remapping incurs an average slowdown
of just 0.9%-2.6% with secure mitigations. The randomized
mapping remains unchanged until system is rebooted (like
Rubix-S). Note that static randomization virtually eliminates
all hot-rows, and the additional benefit of dynamic random-
ization is to make targeted Rowhammer attacks difficult.

Rubix: Randomized Line-to-Row Mapping

7 Related Works
7.1 Mapping of Memory Systems

Minimalist Open-Page (MOP) [18] balances performance and
fairness by placing only four lines of a 4KB page in the same
row. Unfortunately, as MOP round-robins across all banks,
spatially proximate lines from consecutive pages co-reside
in the same row, maintaining spatial correlation. We find
hot-rows with MOP are similar to our baseline mapping.
Figure 17 shows the normalized performance of secure miti-
gations with MOP, Rubix-S, and Rubix-D. We observe that
MOP still suffers significant slowdowns, whereas Rubix vir-
tually eliminates the hot-rows and the associated slowdown.
Rather than hand-crafting a mapping, our work uses encryp-
tion for breaking the spatial correlation of lines.

[Coffee Lake [MOP B Rubix-D
[Skylake Hl Rubix-S

g

€10

% 0.8

5 06

& 0.4

g .

o 0.2

P4
AQUA SRS Blockhammer

Figure 17. Performance of AQUA, SRS, and Blockhammer
on MOP and Rubix. MOP suffers large slowdowns.

7.2 Randomization in Memory Systems

Randomization is a popular technique to improve the relia-
bility and security of memory systems. For example, Start-
Gap [40] and Security-Refresh [45] randomize mapping in
non-volatile memories for wear-leveing. Cache randomiza-
tion [30, 38, 39, 41, 50, 51] techniques randomize the line-to-
set mapping to mitigate conflict-based cache attacks.

7.3 In-DRAM Rowhammer Mitigations

DRAM modules contain Target Row Refresh (TRR), which
tracks aggressors and refreshes victims. Recent attacks [7,
14], break TRR by exploiting its insufficient tracking ca-
pability to capture all possible aggressor rows. Samsung’s
DSAC [11] and SK Hynix’s PAT [23] improve TRR for DDR5,
but due to severe area limitation in DRAM, still allow aggres-
sors to escape detection. DSAC has an escape probability
of 13.9% between two mitigations and PAT fails 6.9% of the
time (compared to DDR4-TRR). Two recent whitepapers from
JEDEC[15, 16] mention that the deployed “in-DRAM mitiga-
tions cannot eliminate all forms of Rowhammer attacks".
Evenif all aggressors are tracked accurately, victim-refresh
is still not secure as it preserves spatial proximity between
aggressor and victims, enabling attacks such as Half-Double.
Note that increasing the victim refreshed to two on each
side does not solve Half-Double, as rows distance-of-three
away can now incur bit flips. Instead, our solution Rubix

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

makes secure Rowhammer mitigations, which are resilient to
complex attacks, practical at ultra-low thresholds, as shown
in Table 5. Rubix is a memory mapping and is compatible
with any tracking and mitigation mechanism.

Table 5. Comparison of Rowhammer Mitigations

’ Mitigation H Security Slowdown
in-DRAM TRR Not Secure <1%
AQUA Secure - Isolation 15%
SRS Secure — Randomization 60%
BlockHammer Secure - Rate Control 600%
Rubix with AQUA/ Secure - 1% to 3%
SRS/ BlockHammer || underlying mitigation

Rubix can also greatly reduce the overheads of existing
mitigations, which rely on victim refresh, by eliminating the
root cause of overheads — hot-rows, thereby requiring much
reduced number of mitigative actions. Moreover, all our eval-
uated secure mitigations (AQUA, SRS, and BlockHammer)
work with commodity DRAM and DDR protocol, while in-
DRAM mechanisms like Rega [32] typically require changes
to DDR protocol and DRAM architecture (and significant
energy overheads to mitigate low thresholds). Thus, such
solutions are orthogonal to our work.

7.4 Randomization to Mitigate Rowhammer

Recent row migration proposals [42, 43, 52, 53] mitigate
Rowhammer by moving an aggressor row to another row in
memory. However, such row-to-row randomization does not
change the set of lines that co-reside in the row Likewise,
randomized DRAM address remapping [21] retains the set
of lines coresident in the same memory row. Thus, unlike
our solution, these schemes do not reduce the hot-rows.

8 Conclusion

Rowhammer gets worse as thresholds drop and attacks de-
velop complex patterns that defeat the commonly used victim-
refresh. Mitigations resilient to complex attacks, like AQUA,
SRS, and Blockhmmer, suffer from drastic slowdown at low

thresholds due to many hot-rows. We identify the line-to-row

mapping as the root cause of hot-rows, as it places spatially

correlated lines in same row. Our proposal, Rubix, breaks this

spatial correlation by randomizing the line-to-row mapping,
reducing the number of hot rows by more than 100x. Rubix

reduces overheads of the prior schemes by 10-100x, making

them viable for practical adoption.

Acknowledgments

We thank Salman Qazi (Google) for feedback on an earlier
draft of our paper. We also thank our shephard, Prof. Alaa
Alameldeen, and the anonymous reviewers of MICRO-2023
and ASPLOS-2024 for their comments and feedback. This
work was supported in part by a gift from Intel.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

References
[1] [n.d.]. SPEC CPU2017 Benchmark Suite. In Standard Performance

[2
[3

[10

[11

[12

[13

[14

[15

[16

(18

[t}

[

]

]

]

=

]

—

—

Evaluation Corporation. http://www.spec.org/cpu2017/

[n.d.]. “Half-Double”: Next-Row-Over Assisted RowHammer.

Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL:
Software-based protection against next-generation rowhammer at-
tacks. ACM SIGPLAN Notices 51, 4 (2016), 743-755.

Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. 2021.
Panopticon: A Complete In-DRAM Rowhammer Mitigation. In Work-
shop on DRAM Security (DRAMSec).

Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu. 2020. Are we susceptible to rowham-
mer? an end-to-end methodology for cloud providers. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 712-728.

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
2019. Exploiting correcting codes: On the effectiveness of ecc memory
against rowhammer attacks. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 55-71.

Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020.
TRRespass: Exploiting the many sides of target row refresh. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 747-762.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018.
Another flip in the wall of rowhammer defenses. In 2018 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 245-261.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.
Rowhammer. js: A remote software-induced fault attack in javascript.
In International conference on detection of intrusions and malware, and
vulnerability assessment. Springer, 300-321.

Martin Heckel and Florian Adamsky. 2023. Reverse-Engineering Bank
Addressing Functions on AMD CPUs. (2023).

Seungki Hong, Dongha Kim, Jaehyung Lee, Reum Oh, Changsik Yoo,
Sangjoon Hwang, and Jooyoung Lee. 2023. DSAC: Low-Cost Rowham-
mer Mitigation Using In-DRAM Stochastic and Approximate Counting
Algorithm. arXiv:2302.03591 [cs.CR]

Micron Technology Inc. 2015. DDR4 SDRAM Datasheet (MT40A2G4).
(2015). https://www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf

Yeongjin Jang, Jachyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-
Bomb: Locking down the processor via Rowhammer attack. In Pro-
ceedings of the 2nd Workshop on System Software for Trusted Execution.
1-6.

Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. 2022. BLACKSMITH: Rowhammering in the Frequency
Domain. In 43rd IEEE Symposium on Security and Privacy’22 (Oakland).
https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf.
JEDEC. 2021. Near-Term DRAM Level Rowhammer Mitigation
(JEP300-1). (2021).

JEDEC. 2021. System Level Rowhammer Mitigation (JEP301-1). (2021).
Wen Jiang, Gautam Khera, Roger Wood, Mason Williams, Neil
Smith, and Yoshihiro Ikeda. 2003. Cross-track noise pro-
file measurement for adjacent-track interference study and
write-current optimization in perpendicular recording. Jour-
nal of Applied Physics 93, 10 (05 2003), 6754-6756. https:
//doi.org/10.1063/1.1557716 arXiv:https://pubs.aip.org/aip/jap/article-
pdf/93/10/6754/8061756/6754_1_online.pdf

Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. 2011. Min-
imalist Open-Page: A DRAM Page-Mode Scheduling Policy for the
Many-Core Era. In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Porto Alegre, Brazil) (MICRO-
44). Association for Computing Machinery, New York, NY, USA, 24-35.
https://doi.org/10.1145/2155620.2155624

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Anish Saxena, Saurav Mathur, and Moinuddin Qureshi

Jeremie S Kim, Minesh Patel, A Giray Yaglik¢1, Hasan Hassan, Roknod-
din Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting rowhammer:
An experimental analysis of modern dram devices and mitigation
techniques. In 2020 ACM/IEEE 47th ISCA. IEEE, 638-651.

Jeremie S Kim, Minesh Patel, A Giray Yaglik¢i, Hasan Hassan, Roknod-
din Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting rowhammer:
An experimental analysis of modern dram devices and mitigation
techniques. In ISCA. IEEE, 638-651.

Moonsoo Kim, Jungwoo Choi, Hyun Kim, and Hyuk-Jae Lee. 2019. An
effective DRAM address remapping for mitigating rowhammer errors.
IEEE Trans. Comput. 68, 10 (2019), 1428-1441.

Michael Jaemin Kim, Jaechyun Park, Yeonhong Park, Wanju Doh,
Namhoon Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. 2021.
Mithril: Cooperative Row Hammer Protection on Commodity DRAM
Leveraging Managed Refresh. arXiv preprint arXiv:2108.06703 (2021).
Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong,
Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi, Sanga
Hyun, Mankeun Kang, Sangho Lee, Dohong Kim, Sanghyun Ku, Don-
hyun Choi, Nogeun Joo, Sangwoo Yoon, Junseok Noh, Byeongy-
ong Go, Cheolhoe Kim, Sunil Hwang, Mihyun Hwang, Seol-Min
Yi, Hyungmin Kim, Sanghyuk Heo, Yeonsu Jang, Kyoungchul Jang,
Shinho Chu, Yoonna Oh, Kwidong Kim, Junghyun Kim, Soohwan Kim,
Jeongtae Hwang, Sangil Park, Junphyo Lee, Inchul Jeong, Joohwan
Cho, and Jonghwan Kim. 2023. A 1.1V 16Gb DDR5 DRAM with
Probabilistic-Aggressor Tracking, Refresh-Management Functional-
ity, Per-Row Hammer Tracking, a Multi-Step Precharge, and Core-
Bias Modulation for Security and Reliability Enhancement. In 2023
IEEE International Solid- State Circuits Conference (ISSCC). 1-3. https:
//doi.org/10.1109/ISSCC42615.2023.10067805

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. ISCA (2014).

Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
2022. Half-Double: Hammering from the next row over. In USENIX
Security Symposium.

Michael Kounavis, Sergej Deutsch, Santosh Ghosh, and David Durham.
2020. K-cipher: A low latency, bit length parameterizable cipher. In
2020 IEEE Symposium on Computers and Communications (ISCC). IEEE,
1-7.

Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020.
Rambleed: Reading bits in memory without accessing them. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 695-711.
Zhenrong Lang, Patrick Jattke, Michele Marazzi, and Kaveh Razavi.
2023. BLASTER: Characterizing the Blast Radius of Rowhammer. In
3rd Workshop on DRAM Security (DRAMSec) co-located with ISCA 2023.
ETH Zurich.

Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn.
2019. TWiCe: preventing row-hammering by exploiting time window
counters. In ISCA.

Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B Lee. 2016. Newcache:
Secure cache architecture thwarting cache side-channel attacks. IEEE
Micro 36, 5 (2016), 8-16.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adria Armejach, Nils As-
mussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen,
Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan
Fariborz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, An-
dreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian

http://www.spec.org/cpu2017/
https://arxiv.org/abs/2302.03591
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf
https://doi.org/10.1063/1.1557716
https://doi.org/10.1063/1.1557716
https://arxiv.org/abs/https://pubs.aip.org/aip/jap/article-pdf/93/10/6754/8061756/6754_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jap/article-pdf/93/10/6754/8061756/6754_1_online.pdf
https://doi.org/10.1145/2155620.2155624
https://doi.org/10.1109/ISSCC42615.2023.10067805
https://doi.org/10.1109/ISSCC42615.2023.10067805

Rubix: Randomized Line-to-Row Mapping

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40

=

[41

—

(42

—

(43]

(4]

Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Han-
hwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Sub-
ash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Tiago
Miick, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Niko-
leris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram
Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain,
Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong
Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon,
and Eder F. Zulian. 2020. The gem5 simulator: Version 20.0+. arXiv
preprint arXiv:2007.03152 (2020).

Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and Kaveh
Razavi. 2023. REGA: Scalable Rowhammer Mitigation with Refresh-
Generating Activations. In 44rd IEEE Symposium on Security and Pri-
vacy (SP 2023). IEEE.

John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in
Current High Performance Computers. IEEE Computer Society Techni-
cal Committee on Computer Architecture (TCCA) Newsletter (1995).
Micron Technology Inc. [n.d.]. System Power Calculators. ([n.d.]).
https://www.micron.com/support/tools-and-utilities/power-calc.
Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn,
and Jae W Lee. 2020. Graphene: Strong yet Lightweight Row Hammer
Protection. In MICRO. IEEE, 1-13.

Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn,
and Jae W. Lee. 2020. Graphene: Strong yet Lightweight Row Hammer
Protection. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, Athens, Greece, 1-13. https:
//doi.org/10.1109/MICR0O50266.2020.00014

Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J
Nair. 2022. Hydra: enabling low-overhead mitigation of row-hammer
at ultra-low thresholds via hybrid tracking. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 699-710.
Moinuddin K Qureshi. 2018. CEASER: Mitigating conflict-based cache
attacks via encrypted-address and remapping. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 775-787.

Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-
address cache. In Proceedings of the 46th International Symposium on
Computer Architecture. 360-371.

Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalak-
shmi Srinivasan, Luis Lastras, and Bulent Abali. 2009. Enhancing
lifetime and security of PCM-based main memory with start-gap wear
leveling. In Proceedings of the 42nd annual IEEE/ACM international
symposium on microarchitecture. 14-23.

Gururaj Saileshwar and Moinuddin Qureshi. 2021. MIRAGE: Mitigat-
ing Conflict-Based Cache Attacks with a Practical Fully-Associative
Design. In 30th USENIX Security Symposium (USENIX Security 21).
1379-1396.

Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J.
Nair. 2022. Randomized Row-Swap: Mitigating Row Hammer by Break-
ing Spatial Correlation between Aggressor and Victim Rows. In Pro-
ceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’22). Association for Computing Machinery,
New York, NY, USA, 1056-1069. https://doi.org/10.1145/3503222.
3507716

Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin
Qureshi. 2022. Aqua: Scalable rowhammer mitigation by quarantin-
ing aggressor rows at runtime. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 108-123.

Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat 15 (2015), 71.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S Lee. 2010. Security
refresh: Prevent malicious wear-out and increase durability for phase-
change memory with dynamically randomized address mapping. ACM
SIGARCH computer architecture news 38, 3 (2010), 383-394.

Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. 2018.
Mitigating wordline crosstalk using adaptive trees of counters. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 612-623.

Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017.
Making DRAM stronger against row hammering. In Proceedings of the
54th Annual Design Automation Conference 2017. 1-6.

Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic
rowhammer attacks on mobile platforms. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security.
1675-1689.

Minghua Wang, Zhi Zhang, Yuegiang Cheng, and Surya Nepal. 2020.
Dramdig: A knowledge-assisted tool to uncover dram address mapping.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
1-6.

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for
thwarting software cache-based side channel attacks. In Proceedings
of the 34th annual international symposium on Computer architecture.
494-505.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting
Cache Attacks via Cache Set Randomization.. In USENIX Security Sym-
posium. 675-692.

Minbok Wi, Jaehyun Park, Seoyoung Ko, Michael Jaemin Kim,
Nam Sung Kim, Eojin Lee, and Jung Ho Ahn. 2023. SHADOW: Pre-
venting Row Hammer in DRAM with Intra-Subarray Row Shuffling.
In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 333-346.

Jeonghyun Woo, Gururaj Saileshwar, and Prashant] Nair. 2023. Scal-
able and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation
in Memory Systems. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 374-389.

A Giray Yaglik¢i, Minesh Patel, Jeremie S Kim, Roknoddin Azizi,
Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos
Kanellopoulos, Taha Shahroodi, et al. 2021. BlockHammer: Preventing
RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM
Rows. In 2021 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). IEEE, 345-358.

Yuval Yarom and Katrina Falkner. 2014. {FLUSH+ RELOAD}: A high
resolution, low noise, 13 cache {Side-Channel} attack. In 23rd USENIX
security symposium (USENIX security 14). 719-732.

Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-
hammering based on memory Locality. In 2019 56th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1-6.

https://www.micron.com/support/tools-and-utilities/power-calc
https://doi.org/10.1109/MICRO50266.2020.00014
https://doi.org/10.1109/MICRO50266.2020.00014
https://doi.org/10.1145/3503222.3507716
https://doi.org/10.1145/3503222.3507716

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Threat Model
	2.2 Background on DRAM
	2.3 Memory Mapping
	2.4 Rowhammer
	2.5 Secure Rowhammer Mitigation
	2.6 Scalability Problem of Secure Mitigations
	2.7 Goal of Our Paper

	3 Evaluation Methodology
	3.1 System Configuration
	3.2 Workloads

	4 A Case for Randomized Memory
	4.1 Dependence of "Hot Rows" on Mapping
	4.2 Characterizing Lines in Hot-Rows
	4.3 Rubix: Randomized Line-to-Row Mapping
	4.4 Recouping Row-Buffer Hits via Gangs
	4.5 Results: Impact on Mitigations
	4.6 Results: Impact on Performance
	4.7 Sensitivity: Varying Gang-Size
	4.8 Results: Impact on Row-Buffer Hits
	4.9 Results: Storage and Power Overheads
	4.10 Security Analysis of Rubix-S

	5 Rubix-D: Dynamic Randomization
	5.1 Overview of Xor-Based Remapping
	5.2 Pitfall of Xor at Randomizing Line-to-Row
	5.3 Overview of Rubix-D
	5.4 Remapping Rate and Remapping Period
	5.5 Security Analysis of Rubix-D
	5.6 Impact of Rubix-D on Future Attacks
	5.7 Results: Storage and Power Overheads
	5.8 Results: Impact on Mitigations
	5.9 Results: Impact on Performance
	5.10 black!80!blackSensitivity: Mapping Overhead of Rubix
	5.11 black!80!blackSensitivity: Higher Rowhammer Thresholds
	5.12 Sensitivity: Scaled-up Multi-Channel Systems
	5.13 black!80!blackSensitivity: Memory-Intensive Workloads

	6 black!80!blackDiscussion
	6.1 black!80!blackRandomizing Line-to-Row without Cipher
	6.2 Randomizing Line-to-Row with Keyed XOR

	7 Related Works
	7.1 Mapping of Memory Systems
	7.2 Randomization in Memory Systems
	7.3 In-DRAM Rowhammer Mitigations
	7.4 Randomization to Mitigate Rowhammer

	8 Conclusion
	Acknowledgments
	References

