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Enhancing the Reach and Reliability of Quantum
Annealers by Pruning Longer Chains
Ramin Ayanzadeh , Member, IEEE, and Moinuddin Qureshi , Fellow, IEEE

Abstract—Analog Quantum Computers (QCs), such as D-
Wave’s Quantum Annealers (QAs) and QuEra’s neutral atom
platform, rival their digital counterparts in computing power.
Existing QAs boast over 5,700 qubits, but their single-instruction
operation model prevents using SWAP operations for making
physically distant qubits adjacent. Instead, QAs use an embedding
process to chain multiple physical qubits together, representing
a program qubit with higher connectivity and reducing effective
QA capacity by up to 33x.

We observe that, post-embedding, nearly 25% of physical
qubits remain unused, becoming trapped between chains. Ad-
ditionally, we observe a “Power-Law” distribution in the chain
lengths, where a few dominant chains possess significantly more
qubits, thereby exerting a considerably more significant impact
on both qubit utilization and isolation. Leveraging these insights,
we propose Skipper, a software technique designed to enhance
the capacity and fidelity of QAs by skipping dominant chains
and substituting their program qubit with two measurement
outcomes. Using a 5761-qubit QA, we observed that by skipping
up to eleven chains, the capacity increased by up to 59% (avg
28%), and the error decreased by up to 44% (avg 33%).

Index Terms—Adiabatic Quantum Computing, Embedding,
Power-Law, Quantum Annealers.

I. INTRODUCTION

QUANTUM computers (QCs) harness the power of quan-
tum bits (qubits) to solve problems that surpass the

capabilities of classical computing [8]. Two main types of
QCs exist: digital machines, exemplified by IBM, Google, and
IonQ, and analog devices such as superconducting Quantum
Annealers (QAs) by D-Wave, as well as neutral atom platforms
by QuEra and PASQAL [1], [3], [4], [8].

While both digital and analog QCs have polynomial equiv-
alent computing power and are accessed via the cloud, their
operation models and design trade-offs differ significantly. In
digital QCs (a.k.a. gate-based or circuit model QCs), qubits un-
dergo a scheduled sequence of quantum operations defined by
the quantum algorithm to directly manipulate their states [8].
Conversely, analog QCs operate as single-instruction systems,
where the qubit environment is incrementally modified based
on the evolution of a physical system, called “Hamiltonian”,
thereby allowing natural qubit evolution and indirect state
alteration [1], [3]. Unlike classical realm, both types offer
equivalent polynomial computational power [1], [8].

Recent QAs have over 5,700 qubits, outscaling IBM’s
Osprey QC with 433 qubits, but their single-instruction model
limits effective program qubit handling [3]. Full connectivity
of qubits at scale is infeasible. In digital QCs, compilers
introduce successive SWAP operations to make physical qubits
adjacent, allowing every program qubit to be represented by
one physical qubit. Conversely, analog QCs cannot apply
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Fig. 1. (a) Embedding seven program qubits (Qi) onto a 5 × 7 grid of
physical qubits utilizes twenty qubits, leaving fifteen qubits unutilized. (b)
Max embeddable Barabasi–Albert (BA) graphs on a 5761-qubit QA device
for different preferential attachment factors (m), ranging from sparse BA-1
(m = 1) to dense BA-6 (m = 6) structures.

operations to qubits, thus preventing the use of SWAPs for
qubit routing. Instead, QAs employ embedding where multiple
physical qubits are chained (or entangled) to represent a pro-
gram qubit with higher connectivity, as shown in Fig. 1(a) [3].

Compiling quantum circuits in digital QCs preserves qubit
utilization (using 1-to-1 mapping between program and phys-
ical qubits); however, embedding in QAs can substantially
increase physical qubit utilization [3] (due to chaining). For
instance, the 5761-qubit QA can accommodate up to 177
program qubits with all-to-all connectivity, highlighting nearly
33x reduced logical capacity.

Real-world applications typically involve irregular “Power-
Law” graphs [2], [7], and Barabasi–Albert (BA) graphs are
widely considered representative of such real-world graphs [2],
[5], [7]. Fig. 1(b) illustrates the largest embeddable BA graphs
on a 5761-qubit QA for different preferential attachment
factors (m), ranging from sparse BA-1 (m = 1) to dense BA-
6 (m = 6) structures. As m increases linearly, the logical
capacity reduces superpolynomialy, converging to the 177-
node fully connected graph.

Not all chains are created equal. We observe that chain
lengths follow a “Power-Law” distribution, where a few
dominant chains are significantly longer than most other
chains. Furthermore, as shown in Fig. 1(a), we observe that a
significant number of physical qubits remain unused as they
become trapped in chains.

In this study, we aim to improve the capacity and fidelity of
QAs through eliminating dominant chains, as they account for
a substantial portion of qubit utilization and are the main rea-
son for isolating physical qubits. We propose Skipper, which
prunes these chains by removing their corresponding program
qubits and replacing them with two possible measurement
outcomes: -1 and +1. Each chain cut bifurcates the search
space of the initial problem; hence c cuts create 2c disjoint
sub-spaces. Skipper examines all of these subspaces for a
guaranteed full recovery.
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II. BACKGROUND AND MOTIVATION

A. Quantum Computers: Digital vs. Analog
QCs fall into two categories: digital and analog. Digital

QCs, such as IBM and Google’s, use precise quantum op-
erations to manipulate qubits [8]. Conversely, analog QCs,
exemplified by D-Wave and QuEra, adjust the environment
continuously, guiding qubits along specified paths [1], [3].

B. Quantum Annealers
Quantum Annealers (QAs) are a form of analog QCs

that can sample from the ground state (the configuration
with the lowest energy value) of a physical system, called
Hamiltonian [1], [4]. QAs by D-Wave are single-instruction
optimization accelerators that can only sample from the ground
state of the following problem Hamiltonian (or Ising model):

Hp :=
∑
i

hizi +
∑
I ̸=j

Jijzizj (1)

acting on spin variables zi ∈ −1,+1, where hi ∈ R and
Jij ∈ R are linear and quadratic coefficients, respectively [3].

C. Operation Model of Single-Instruction QAs
QAs operate as single-instruction computers, and during

each execution trial, they only draw a single sample to
approximate the global minimum of (1). Therefore, we cast
real-world problems into Hamiltonians, where h and J are
defined in such a way that its global minimum represents the
optimal solution to the problem at hand [1], [3]. The abstract
problem Hamiltonian is then embedded into the connectivity
map of the QA hardware to generate an executable Quantum
Machine Instruction (QMI) [6]. Casting and embedding in
QAs are akin to designing and compiling quantum circuits
in digital QCs, respectively (Figure 2). The QMI is executed
for several trials, and the outcome with the lowest objective
value is deemed as the ultimate result [3].

D. Embedding for QAs
The connectivity of QA qubits is sparse, thereby limiting

users to only specify Jij for those qubits that are physically
connected. Thus, as shown in Fig. 3, the abstract problem
Hamiltonian is embedded into QA hardware where a program
qubit (Qi) with higher connectivity is represented by multiple
physical qubits (qi) called chain. Satisfying the following
conditions is sufficient to guarantee that both the abstract
Hamiltonian and the Hamiltonian executed on the QA hard-
ware have identical ground states:
1) All sub-graphs representing program qubits must be a

connected component.

2) There must be at least one connection between chains
whose corresponding program qubits are connected.
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Fig. 2. Operation models: (a) digital QCs vs. (b) analog QAs.
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Fig. 3. Embedding example.

3) The quadratic coefficient Jij is distributed equally among
the couplers connecting Qi and Qj .

4) The linear coefficient hi is distributed equally among all
physical qubits of the corresponding chain.

5) Inter-chain quadratic coefficients must be large enough to
guarantee that all qubits within a chain take an identical
value—i.e., a very high penalty for broken chains.

E. Prior Work Limitations
Previous work for solving larger problems on smaller QAs

employ iterative schemes involving approximations [9], lead-
ing to reduced reliability as problem size increases. Con-
versely, Skipper explores the entire search space without
resorting to approximations. Circuit cutting techniques [10]
are infeasible in the analog quantum realm because: (a) the
executable in QAs is not a quantum circuit, and (b) partition-
ing graphs by edge/node removal is nontrivial (e.g., a fully
connected graph is non-partitionable).

F. Goal of This Paper
In Figure 4(a), we can see the maximum and average chain

lengths for various graph topologies when embedded on a
5761-qubit QA, indicating that a few long chains, known as
dominant chains, contain more than 7.9x the qubits compared
to the average chain lengths. Furthermore, as shown in Fig-
ure 3, we observe that a significant number of physical qubits
remain unused as they become trapped in chains. Figure 4(b)
displays the number of unused qubits when embedding the
largest possible graphs on a 5761-qubit QA for different graph
topologies, indicating that more than 25% of physical qubits
remain unutilized, primarily due to dominant chains. This
underutilization of QA qubits, along with utilizing several
physical qubits to represent a single program qubit, severely
diminishes the capacity of QAs by up to 33x. This paper
studies whether the reach and fidelity of QAs can be improved
by pruning dominant chains.
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Fig. 4. Maximum embeddable BA graphs on 5761-qubit QA: (a) Avg and
Max chain lengths, and (b) Number of unutilized qubits.



3

(a)

1 10 20 30 40 50
Chain Length

10−3

10−2

10−1

Fr
eq

ue
nc

y
(b)

100 200 300 400 500 600
Program Qubit Count

0
10
20
30
40
50

Ch
ai

n 
Le

ng
th

Avg
Max

Fig. 5. (a) Chain lengths Histogram of a 600-node BA-3 graph (log-scale).
(b) Max/Avg chain lengths of BA-3 graphs on a 5761-qubit QA.

III. SKIPPER: SKIPPING DOMINANT CHAINS

A. Key Insights: Not All Program Qubits are Equal

Figure 5(a) displays a log-scaled histogram of chain lengths
for the BA-3 graph on a 5761-qubit QA, showing a “Power-
Law” distribution with some notably longer dominant chains
and many shorter chains. Figure 5(b) shows maximum and
average chain lengths in BA-3 graphs as node count increases,
highlighting growing chain length variability with larger prob-
lem sizes. These intriguing observations extend beyond the
BA-3 graph type, and we observe it in all benchmark graphs.

B. Overview of Skipper

Leveraging the Power-Law distribution of chain lengths and
qubit underutilization in QAs, we propose Skipper to enhance
QA capacity and fidelity by pruning dominant chains. Figure 6
shows the overview of Skipper. For a given problem, Skipper
prunes the top c longest (dominant) chains. Eliminating each
dominant chain accomplishes two significant objectives: firstly,
it frees up physical qubits previously used within pruned
chains, and secondly, it eliminates the isolation of solitary
qubits resulting from dominant chains. As a result, Skipper
enables the handling of larger problems by accommodating a
significantly higher number of program qubits. Additionally,
Skipper enhances QA fidelity by substantially mitigating the
impact of dominant chains, a primary factor in compromising
QA reliability.

C. How to Skip Chains?

Skipping a chain in QAs is akin to freezing a qubit in
digital QCs [2]. Fig. 7 shows how eliminating a chain from
a five-variable problem yields two independent sub-problems.
Skipping involves replacing the program qubit with +1 and -1,
effectively removing the node and its edges from the graph.
Unlike digital QCs, where removing one program qubit results
in reducing the physical qubit utilization by one, in QAs,
removing one program qubit liberates all the physical qubits
involved in its corresponding chain.
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Fig. 6. Overview of Skipper.
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Fig. 7. Substituting Q0 with ±1 in a baseline of five spin variables generates
two sub-problems, each with four spin variables (c = 1). The same embedding
is applied to all 2c sub-problems at each c-th level in the binary tree.

D. Skip Count: A Cost-Performance Tradeoff
Skipping c chains leads to 2c sub-problems. Skipper runs all

the corresponding QMIs for exact solution recovery, resulting
in an exponential quantum overhead. By default, up to eleven
chains are pruned. However, the nontrivial embedding and
the necessity to run 2c embeddings can pose a bottleneck for
Skipper. Fortunately, the identical structure of all sub-problems
at the c-th level in the binary tree allows for sharing the
same embedding across them, as shown in Fig. 7. Note that
in Skipper c does not scale with problem size, and Skipper
always skips up-to eleven chains.

E. Decoding Outcomes
The input problem Hamiltonian comprises n variables.

Skipper fixes c variables (n → n−c variables), and embedding
represents each program qubit with multiple physical qubits
(n− c → N variables), where n ≪ N .

Skipper employs the majority vote scheme to unembed and
retrive the value of program qubits (N → n − c length
bitstring). The values of the c pruned program qubits are then
reinstated (n− c → n length bitstring).

F. Deriving the Final Output
In Skipper, all 2c sub-problems are executed independently,

each one corresponding to a separate sub-space of the primary
problem. Consequently, in Skipper, the sample with the lowest
energy or objective value is deemed as the ultimate output,
with the originating sub-space of this global optimum being
of no consequence.

G. Overhead of Skipper
Let c be the number of pruned chains, e denote the edges

in the problem graph, r symbolize the number of trials on
the QA, while n and N correspond to the number of program
and physical qubits, respectively. Skipper supports up to eleven
cuts, requiring at most 2048 independent quantum executables.
All sub-problems use one embedding, maintaining constant
complexity (O(1)). With c ≪ n ≪ N ≪ r, Skipper’s time
complexity is O (2c (rN + c)), and memory usage scales as
O(rN2c). Notably, c is independent of problem size, with a
maximum of eleven chain prunes.
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IV. SKIPPER EVALUATIONS

A. Methodology
Hardware & Software Platform—For our evaluations, we
used the 5,761-qubit D-Wave Advantage System with a 20-
microsecond annealing time, following the device-specific
recommended anneal schedule. Each problem was run for
4,000 trials. We employed the minorminer tool [6] to discover
embeddings for arbitrary problem Hamiltonians on D-Wave
QA working graph.
Benchmarking—We evaluate Skipper using Power-Law
graphs generated by the Barabasi–Albert (BA) algorithm [5]
with different preferential attachment factor values: m = 1
to 6, denoted as BA-1 to BA-6. These graphs represent
most real-world applications [7], spanning from sparse (BA-
1) to highly connected (BA-6) topologies. Edge weights are
assigned randomly using a standard normal distribution, a
common practice in benchmarking QAs [3], [4].
Figure of merit—We use the Energy Residual (ER) to assess
the reliability of QA as

Energy Residual (ER) = |Emin − Eglobal| , (2)

where Eglobal represents the global minimum of the bench-
mark problem, and Emin corresponds to the best solution
obtained by the QA. A lower ER is desired. We used the
state-of-the-art MQC technique [4] to approximate the global
optimum of the benchmarks.

B. Results
1) Impact on Capacity of QAs: Figure 8(a) demonstrates

that Skipper reduces underutilization of QA qubits by up to
57% (average 22.14%) with up to eleven trimmed chains.

We define the Embedding Factor (EF) of QAs as the ratio
of program qubit count to physical qubit count, denoted as
EF = Program Qubit Count

Physical Qubit Count . A value of EF = 0 indicates a failed
embedding, while EF = 1 reflects a successful representation
of every program qubit by a physical qubit (higher is desired).
The capacity of QAs to handle specific graph types (BA-1
to BA-6) is measured by the maximum attainable EF value.
In Skipper, Fig. 8(a) shows that QA capacity improves with
increasing c across various graph topologies. Figure 8(b)
demonstrates that Skipper enables the embedding of larger
problems onto current QAs, with an increase of up to 59.61%
(average 28.26%). It is important to note that this growth in the
number of program qubits necessitates a substantial increase
in the number of physical qubits, as one program qubit is
represented by multiple physical qubits.

2) Boosting QA Reliability: In addition to addressing larger
problem sizes on existing QA architectures, Skipper can be
employed to enhance the reliability of currently executable
quantum programs. Figure 9(a) shows that increasing the
number of skipped chains in Skipper reduces the Energy
Residual (ER), indicating a progressive approach towards the
global optimum. Moreover, Figure 9(b) shows a remarkable
maximum reduction of 44.4% (average 33.08%) in the gap
between the global optimum and the best solution achieved
by QAs using Skipper, when up to five chains are pruned,
compared to the baseline.

Skipper’s performance remains consistent regardless of the
increasing density of problem graphs (from BA2 to BA6).
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Fig. 8. (a) Relative Number of Unused Physical Qubits in Skipper for up to
11 Chain Cuts, Compared to the Baseline. Lower is better. (b) Relative QA
capacity in Skipper compared to baseline. Higher is better.
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Fig. 9. Relative Energy Residual (ER) in Skipper compared to baseline
(lower is better). (a) Relative ER for different graphs as c increases. (b) Overall
relative ER for up to five chain cuts.

V. CONCLUSION

We introduce Skipper, a software scheme designed to im-
prove the capacity and fidelity of QAs. By observing that chain
lengths in QAs follow a “Power-Law” distribution, Skipper
strategically prunes these dominant chains. This is achieved
by replacing their corresponding program qubits with two
potential measurement outcomes, resulting in the liberation of
all qubits involved in the dominant chains, as well as freeing an
additional 25% of isolated qubits previously trapped in chains.
Using a 5761-qubit QA, Skipper managed to tackle up to 59%
larger problems (avg 28%) and reduced the error by up to 44%
(avg 33%) when pruning up to eleven dominant chains.
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