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Abstract—The security goals of cloud providers and users
include memory confidentiality and integrity, which requires
implementing replay attack protection (RAP). RAP can be
achieved using integrity trees or mutually authenticated channels.
Integrity trees incur significant performance overheads and are
impractical for protecting large memories. Mutually authenticated
channels have been proposed only for packetized memory
interfaces that address only a very small niche domain, require
fundamental changes to memory system architecture, and assume
fully-trusted modules. We propose SecDDR, a low-cost RAP that
targets direct-attached memories, like DDRx. SecDDR avoids
memory-side data authentication, and thus, only adds a small
amount of logic to memory components and does not change
the underlying DDR protocol, making it practical for widespread
adoption. In contrast to prior mutual authentication proposals,
which require trusting the entire memory module, SecDDR targets
untrusted modules by placing its limited security logic on the
DRAM die (or package) of the ECC chip. Our evaluation shows
that SecDDR performs within 1% of an encryption-only memory
without RAP and that SecDDR provides 18.8% and 7.8% average
performance improvements (up to 190.4% and 24.8%) relative to
a 64-ary integrity tree and an authenticated channel, respectively.

Index Terms—Memory security, Replay attacks, Memory
integrity

I. INTRODUCTION

Trusted data-center infrastructure is crucial for users to
move their applications and data to the cloud. One risk is
attacks on main memory that have been demonstrated for
accessing private data [17], [27], [28], [55] and even for
taking over entire servers [24], [48]. To mitigate against main
memory vulnerabilities and physical attacks, trusted execution
environments (TEE), such as Intel Software Guard Extensions
(SGX) [15], provide secure off-chip memory that ensures data
confidentiality and integrity.

Securing memory incurs application slowdown because
each memory access requires additional security metadata
accesses. Of particular interest to this paper is that for integrity
protection, each data block is guarded by a cryptographic
message authentication code (MAC), which is stored with the
data in the memory. The processor has to fetch the stored
MAC to verify data integrity. In this paper, we focus solely
on reducing the memory integrity overheads and rely on
unmodified prevalent confidentiality schemes [3], [15], [18].

The MAC itself must also be protected to provide complete
integrity guarantees and prevent replay attacks. In a replay
attack, the attacker bypasses the integrity verification by
replaying an older pair of data and its MAC (e.g., a 72-byte
tuple for 64-byte data and an 8-byte MAC). This pair appears
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to be correct on the processor, however, it is stale and may
corrupt execution. For replay attack protection (RAP), secure
processors may create an integrity tree over the MACs or over
the encryption counters [15], [44]. The processor traverses
the tree from the leaf to the root to verify the integrity and
freshness of the data or counters. The root of the tree is always
stored on chip and cannot be tampered with. This integrity tree
increases memory bandwidth pressure and access latency as it
requires several additional accesses to traverse.

While prior work has proposed techniques to lower the
cost of MACs [10], [46] and other security metadata [57],
integrity trees continue to limit scalability and performance of
secure memories. This is because the tree traversal overhead
is proportional to its size and height, which depends on
the protected memory size. Applications with large memory
footprints experience a significant slowdown due to either
expensive tree walks or the extra data movement caused by the
numerous page faults required to manage the small efficiently-
protected memory space afforded by small integrity trees [53].

Prior work, such as compact high-arity trees [45], [53],
has had only limited success in addressing this harsh tradeoff
between per-access integrity tree overhead and a small protected
memory. This crucial limitation of integrity trees continues
to be a major obstacle to widespread commercial adoption
of complete memory protection. For example, while new
products have extended memory encryption to the entire
memory space (e.g., Total Memory Encryption (TME) [18]
and Secure Encrypted Virtualization (SEV) [3]), replay attack
protection is either missing, or is restricted to only a small
portion of memory (e.g., 96MB for Intel SGX and a small
portion of memory in Apple’s Secure Enclave Processor [4]).

We propose SecDDR to protect the DDR interface against
practical replay attacks at much lower cost than current
industrial and academic approaches. SecDDR uses a narrow
secure channel to encrypt the MAC (E-MAC) and protect it
while data is transferred between the processor and memory.
This prevents an attacker from replaying a stale (Data, MAC)
pair as the plain-text MAC is not observable. The channel
counters are not stored and are incremented at each memory
transaction, making E-MACs temporally unique such that an
E-MAC is never repeated with its data. MACs are stored un-
encrypted in memory, protecting the integrity of the data at rest.
SecDDR performs MAC verification only on the processor.

The E-MACs fully guarantee data integrity, but are vul-
nerable to a stale-data attack where the attacker manipulates
the command and address signals to force a memory write



to not reach its destination address. The old (Data, MAC)
are returned when that address is read again, providing a
stale pair. We protect against such attacks by introducing
encrypted write cyclic redundancy code (CRC) that extends
the extended write CRC (eWCRC) approach of All-Inclusive
ECC (AI-ECC) [23] to allow the memory device to identify
mismatched addresses and data before performing the write,
thus detecting any tampering. Like E-MACs, we encrypt the
eWCRC to both prevent an attacker from choosing values that
can still pass the non-cryptographic CRC check and to prevent
new information leakage.

Mutually authenticated channels between the processor and
memory have also been proposed to defeat replay attacks
without an integrity tree. InvisiMem [2] applies this to the
packetized protocol of the Hybrid Memory Cube (HMC) [37].
However, direct adaptation of InvisiMem to DDRx dual
in-line memory modules (DIMM) is impractical. First, the
security guarantees of InvisiMem (and any mutual authenticated
channel) require that the entire DIMM be trusted. This is
acceptable for the logic and memory layers in an HMC, but
does not hold true for commodity DIMM-style modules that
comprise multiple discrete components. One could extend
InvisiMem’s trusted computing base (TCB) to include the entire
module, however, this leaves the system vulnerable to physical
attacks on the DIMM. Moreover, mutual authentication for
DDRx requires fundamental changes as DDRx is not packetized,
has strict standardized timing parameters, and commodity
DIMMs do not have a centralized data buffer in which mutual
authentication can be computed (Section VI).

We develop SecDDR to overcome the challenges of provid-
ing a low-cost and scalable RAP for commodity DDRx modules.
In contrast with prior work [2], which its successful adoption
requires trusting the entire memory module, SecDDR can be
easily tailored for untrusted DIMMs (as well as trusted) with
negligible performance overhead, eliminating the vulnerability
to on-DIMM physical attacks and malicious units. To this
end, we place SecDDR’s limited security logic in some of
the DRAM chips (the ECC chips). While implementing this
logic on the DRAM die is costly, it is practical considering
advancements in logic-in-memory technologies demonstrated
by DDRS5 on-die ECC and recent industrial processing-in-
memory prototypes [26], [29], [30], [40]. We anticipate this
to be a boon to memory vendors as the market for server
memory is large, as well as to processor vendors who can offer
highly-secure memory with less overhead.

Overall, this paper makes the following contributions:

« We analyze different replay attack scenarios and observe
that replay attacks can be mitigated by protecting only
the MACs as they traverse the memory channel.

o We propose SecDDR, a low-cost replay attack protection
mechanism for the DDRx standard. SecDDR uses dedi-
cated encryption units to encrypt MACs, protecting them
on the bus, and synchronized channel encryption counters
to protect against data-at-rest attacks.

« To protect against on-DIMM vulnerabilities, we develop
SecDDR for untrusted DIMMs, including address manip-

ulation and man-in-the-middle attacks. We further discuss
how SecDDR is compatible with trusted DIMMs as well.

« SecDDR enables low-overhead integrity protection while
supporting both counter-mode encryption and recent
commercial approaches that forego counters for the AES-
XTS encryption scheme [3], [18]. We show that AES-XTS
provides a substantial performance boost over counter-
mode encryption and is compatible with SecDDR but not
with state-of-the-art integrity-tree designs.

« We evaluate SecDDR and show that it provides 18.8% and
7.8% average performance improvements (up to 190.4%
and 24.8%) relative to a 64-ary integrity tree and an
authenticated channel based on InvisiMem, respectively.
SecDDR performs within 1% and 3% of encrypt-only
memories with AES-XTS and AES-CNT, respectively.

II. BACKGROUND & MOTIVATION
A. Threat Model

We consider a threat model similar to SGX [8], [15]. The
software that runs in the secure environment (e.g., the enclave)
is the only software part of the Trusted Computing Base (TCB).
Other processes (including the OS and the Hypervisor) are
untrusted and are restricted with a hardware-based isolation. An
adversary can perform passive (eavesdropping on application
information) or active (tampering with the data) physical attacks.
The processor chip is part of the TCB and cannot be tampered
with. The attacker can target any off-chip component, including
the memory bus and DIMMs.

We consider a modern DDR4/5 module architecture (DIMM)
to cover the attack surface of a memory module. A memory
module is composed of several DRAM chips. Each chip has
a narrow interface (e.g., 4, 8, or 16 bits). To create a wider
data bus, multiple chips are organized in groups called ranks,
all operating in lockstep within a rank. A module can have
multiple ranks for higher capacity.

The large number of memory chips on a high-capacity
DIMM increases the capacitive load on the memory bus and
the module’s interconnects, which adversely impacts signal
stability and integrity. To mitigate this problem, industry has
adopted registered DIMMs (RDIMM) and load-reduced DIMMs
(LRDIMM). In these designs, the I/O signals to each of the
DRAM chips are decoupled by adding extra buffer chips to
the module [43], [54]. Buffer chips include a single centralized
registered clock driver (RCD) chip for the command, control,
clock, and address (CCCA) signals, and several distributed data
buffers (DB) for buffering the data pins. Whereas RDIMMs
only have the RCD to buffer the CCCA, LRDIMMs have both
RCD and distributed DBs to buffer both CCCA and data.

In line with prior work [2], [51], we consider attacks that
target the interconnects on the DIMM, but keep physical attacks
on internal circuits within a package, such as the processor
chip, DBs, RCD, and the DRAM chips out of scope. In-
package attacks are significantly harder to perform as they
require successfully desoldering packages, removing different
transistor layers to reach the target cells or connections, and
tapping circuits that are at micron/nanometer scale while



maintaining high-performance operation within a running
system. We do not consider address/command traffic, bus
utilization, power, and electromagnetic side-channels because
these are confidentiality issues. This is out of the scope of this
paper as our focus is integrity protection and our approach
does not affect the confidentiality mechanisms and SecDDR
does not open additional side channels (see Section III-D).

B. Secure Memory Basics

Ensuring the off-chip data security has two aspects: confiden-
tiality and integrity. Confidentiality is needed to protect data
privacy. Integrity is needed to protect the correctness of the
off-chip data, i.e., ensuring that data has been indeed written
by the trusted software running on the trusted processor and
has not been modified by an adversary in the interim.

Data Confidentiality. Secure processors use encryption to
ensure data confidentiality. Intel SGX [15] uses counter-mode
encryption, in which each cache-line is associated with an
encryption counter that is stored off-chip. Recent products
(e.g., Intel TME [18] and AMD SEV [3]) have managed to
extend memory encryption to the entire memory space by
adopting low-cost XOR-Encrypt-XOR (XEX) encryption mode
(e.g., AES-XTS) [56], omitting the encryption-counter storage
and memory bandwidth overheads.

Data Integrity. To protect data integrity, each cache-line is
guarded by a message authentication code (MAC), which
can detect arbitrary data modifications. The MACs are stored
with the data in memory and need to be fetched to verify
data integrity, which incurs storage and memory bandwidth
overheads. To provide low-cost integrity protection, recent
products (e.g., Intel TDX [19], [20]) and academic proposals
(e.g., SafeGuard [10]) place both MAC and error correction
code (ECC) in the ECC chips and transfer them using the ECC
portion of the bus. This eliminates the storage and bandwidth
overheads of the MACs while maintaining ECC protection [10].
In this paper, we consider a baseline system equipped
with similar low-cost confidentiality and integrity mechanisms.
Unfortunately, MACs alone cannot provide complete integrity
protection as they must also be protected to prevent replay
attacks. In the next section, we discuss how a replay attack is
performed and explain current mitigation techniques.

C. Replay Attacks & Defenses

In this section, we formally define replay attacks and describe
how they can bypass integrity checks. We explain which data is
vulnerable to replay attacks and discuss the existing mitigations.

1) How to Perform a Replay Attack?

A replay attack can bypass integrity verification if it does not
result in a MAC mismatch. Any corruption in the data or its
MAC causes an integrity verification failure with sufficiently
high probability, except when both data and its MAC are
replayed at once. In other words, if (¢,m)f is the state of
the cache-line ¢ at address a with its MAC m at time ¢g, and
(c,m)¢ 1is the state at time ¢; > to, overwriting the tuple
(e,m)¢, with (c,m)¢ would pass the MAC verification of

the line c. Note that it is important to replay the tuple to
the same address since physical addresses are included in
the MAC [15], [57]. Thus, the attacker has to precisely track
memory addresses, memoize changes to a specific location
over time, and precisely replay a (Data, MAC) tuple to avoid
signaling an integrity violation. Figure 1 depicts logical view
of a replay attack on address a. Integrity verification passes at
time to.
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Fig. 1: Logical view of replay attack on address a.

2) Which Data is Vulnerable to a Replay Attack?
We categorize different types of replay attacks based on
whether they are done on data at rest or data in motion.

Data at Rest. Off-chip data at rest is the data that is stored in
memory that the application is not currently operating on. TEEs
protect secure environments (enclaves) using hardware-based
isolation mechanisms [8] so that different processes (including
the OS) cannot access each other’s data. Thus, a software-based
replay attack could not succeed.

The attacker could attempt to replay the data indirectly by
inducing bit-flips (e.g., via Row-Hammer [24] or causing soft
errors), however, we consider this type of attack impractical.
Theoretically, it is not impossible to perform a replay attack
by bit-flips, however, the likelihood of success would be
extremely low as the attack needs to flip enough bits such that
(Data, MAC) match precisely. All demonstrated Row-Hammer
attacks only induce a few bit-flips per-line (fewer than 10) [13],
[22]. We do not know of any real-world replay attacks that
have occurred using these means.

The attacker can target data at rest using DIMM substitution.
The attacker keeps a version of the data by removing the DIMM
and replaying the application state by plugging in that DIMM
later. This attack relies on the data remanence effect [17].!

Data in Motion. Off-chip data in motion is data that is being
transferred between the memory and the processor, such as
an LLC fill or write-back. The replay attack is a Man-In-The-
Middle attack, where the attacker either interposes traffic on the
bus between the processor and the memory module or uses a
malicious DIMM that is capable of analyzing and intercepting
on-DIMM interconnect (e.g., via a trojan).

3) Current Defenses Against Replay Attacks

Integrity Trees. To defeat replay attacks, secure processors
create an integrity tree over the MACs [12] or over the
encryption counters [15], [44]. The processor traverses the tree

ITheoretically, the attacker can detach the memory chips from the module
PCB and use a different PCB to replay the data. While this attack is possible
on a module assumed to be trusted with no on-DIMM protection, SecDDR
defeats this attack, as we describe in Section III-E.



from the leaf to the root to verify the integrity and freshness
of the data or counters. The root is always stored on-chip and
cannot be tampered with. For more details on tree designs and
traversal refer to prior work [8], [15], [44], [45], [53], [57].

Mutual Authentication. Mutually authenticated channels
between the processor and memory defeat replay attacks
without an integrity tree. Each memory transaction on the bus
is protected using a unique and dedicated per-transaction MAC
(MAC;). A MAC, is generated with a transaction secret key
(K4), the data, and a non-repeating nonce, such as a counter
(Cy), which both ends (the processor and the DIMM) are
equipped with. C; is incremented at each transaction and always
has the same value on both ends. At each transaction, the sender
(processor on writes and DIMM on reads), uses C; to compute
MAC; for the transmitted data, i.e., MAC; = Hg,(Data, C}).
On the receiving end, the MAC is recomputed and compared
against the received MAC, to verify data integrity and freshness
before being stored in memory or used in the processor. Because
C} is unique, replay attacks are detected.

D. Goal: Practical Replay Attack Protection

Ideally, replay attack protection should be scalable, low-
cost, and provide complete protection. Integrity trees do not
scale to large capacity memories. Prior attempts that create
a mutually authenticated channel on the memory bus require
trusting the entire module and use packetized protocols, which
are not applicable to modern DDRx DIMM design constraints.
Our goal is to develop a low-cost solution that meets these
requirements. Our aim is to make this solution practical for
widespread adoption, and applicable to contemporary DIMMs
without modifying the underlying memory protocol.

III. SECDDR: LOwW-COST REPLAY ATTACK PROTECTION

SecDDR is based on the insight that integrity can be provided
by blocking replay attacks on the bus. In brief, SecDDR
creates a replay-protected channel on the memory bus by
modulating the MACs for the data that is in transfer on the bus,
as summarized in Section III-A. Section III-B describes how
SecDDR protects against attacks on CCCA signals that feed
stale data to the processor. We discuss how SecDDR protects
from DIMM-substitution attacks in Section III-C. We describe
SecDDR’s TCB in Section III-E. Section III-F describes system
initialization and the attestation process.

A. Replay-Protected Bus Using E-MACs

Although a mutually authenticated bus (Section II-C) protects
the integrity of data in motion, it is not sufficient to protect
integrity of data at rest. We need to store a MAC with the data
in memory to verify its correctness on subsequent accesses
(as in SGX/TDX). However, both (MAC;) and (C};) must be
stored together for later verification, as (C}) is incremented
dynamically with every direction. This has a very high 25%
total storage overhead for 64-bit counters and MACs.

One alternative is to discard MAC, and delegate integrity
protection of the data at rest to the memory module. On
each data write, after verifying MAC;, the memory module

generates a new MAC and stores it with the data. On reads, the
memory module first performs a MAC verification, and if this
verification passes, it can then generate MAC; and transmit the
data on the bus. InvisiMem [2] uses this technique, however,
adapting this approach requires trusting the entire DIMM and
fundamental changes in the DDRx module architecture (see
Section VI), making it impractical.
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Fig. 2: SecDDR overview.

Given that replay attacks require bringing data into motion
and that replay attack protection in mutual authentication is
provided by making MAC; temporally unique, we propose to
eliminate memory-side integrity check via MAC encryption.

SecDDR uses Encrypted MACs (E-MACs) to protect the bus.
On a data write, the processor’s memory encryption engine
generates a MAC using MAC = Hy(data, addr). However,
before transferring this MAC on the bus, it is first encrypted to
generate the E-MAC. Figure 2 shows an overview of SecDDR
as it uses MACs to protect data at rest and repurposes them
for protecting the data in motion. To generate the E-MAC,
we XOR the MAC with a one time pad (OTP,) generated
using the transaction counter C}. This effectively makes the
MAC temporally unique and capable of detecting memory bus
replay attacks (same as MAC; in mutual authentication). The
per-rank transaction counter is incremented at both the memory
controller and memory module.

In SecDDR, only the processor performs integrity verifica-
tion, and as a result, there is an important difference between
how the processor and the DIMM use E-MACs. On each
receiving end, we first XOR the E-MAC with the OTP; to
decrypt it and retrieve the original MAC. On the DIMM, this
MAC is not used for verification and is simply stored, and the
C} discarded. Since this MAC is not verified on the DIMM,
any attack at the time of write will remain undetected until the
next read, just as with integrity trees. On the processor, this
MAC is used for integrity verification, and a mismatch signals
a failure, which could be due to multiple different sources:

« Bit-flips on the data-bus on a data read/write.

« Bit-flips while data was stored in the memory.

« Replay attack on the data read.

« Replay attack on a prior data write.

The processor cannot distinguish between different attack
types, however, it can detect that an attack has occurred and
that the data has been tampered with, which is what matters



for guaranteeing integrity. This is true since tampering with
the E-MAC causes a wrong MAC to be computed after it is
XOR-ed with the OTP;. This is also true for write accesses,
except the wrong MAC is stored, and its verification is deferred
until the next read.

Compatibility with On-Die ECC. SecDDR provides replay
attack protection by encrypting the MACs (E-MACs) to make
them temporally unique. Although we have developed SecDDR
based on state-of-the-art designs that place MACs in the rank-
level ECC to mitigate MAC access overheads [10], [19], [46],
MAC encryption is effective regardless of these optimizations.

B. Ensuring Command & Address Integrity

Attacks that we have considered so far are accomplished by
directly targeting the data. However, the attacker can modify
the CCCA signals to corrupt data integrity.

Attack Scenario. In SecDDR, any data corruption (including
replay attacks) that happens at the time of write is not detected
immediately and is deferred until the subsequent read. This
method is safe only if the corrupted data is written in place,
overriding the previous version of the (Data,MAC) tuple.
However, if the write is redirected to a different memory
location, the stale (Data, MAC) will remain in place, and the
processor cannot tell that it is out of date.

Figure 3 shows an example in which the attacker creates
such a scenario by corrupting the write address. Assume the
processor reads the cache-line ¢ at ¢y, updates it to a new
value ¢’ at t1, and attempts to read it at a later time ¢5. In this
case, between the time that the processor initially reads ¢ and
when it wants to write ¢/, the DRAM row that ¢ belongs to
(row X) is closed. The memory controller has to first open
row X, however, the attacker intercepts the Activate command
and changes the row address to a different row (row Y). As
a result, when the processor performs the write, ¢’ will be
written to the wrong row, leaving the original location with
the stale (Data, MAC). When the processor attempts to read
the data at to, it opens row X reading the stale tuple, which
passes MAC verification, completing the replay attack cycle.

In a similar attack, instead of corrupting the row address,
the attacker can change the column address, writing ¢’ to a
different column in the original row. Note that if the processor
ever reads the location that the attacker has redirected the
writes to (i.e., row Y or the wrong column), SecDDR detects
the attack as the line address is included in the MAC [15].
However, the attacker can orchestrate the attack in a way that
remains undetected. Alternatively, the attacker can simply drop
the write request instead of redirecting it to a different location.
However, SecDDR can detect this case since dropping a request
will cause a C'; mismatch between the processor and memory.

All-Inclusive ECC (AI-ECC) [23]. CCCA corruption can
also happen from naturally occurring faults. AI-ECC mitigates
these errors by extending the existing reliability measures of
contemporary DRAM chips that protect data integrity to also
protect the CCCA signals. For early-detection of write data
transmission errors, DRAM chips use write cyclic redundancy
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Fig. 3: Performing replay attack by corrupting the address bus.
The attacker corrupts the row address of the Activate command
when the processor is writing to cache-line c.

codes (WCRC) [35], [36], which are generated over the data
transmitted to each chip. Enabling WCRC requires increasing
the write burst length from 8 to 10 in DDR4 (16 to 18 in DDRS)),
in which the WCRC is transmitted to each chip over the last
two beats (i.e., 16-bit WCRC with x8 device). Before storing
the data, each DRAM chip internally recomputes the WCRC
to make sure transmission was error-free. AI-ECC? proposes
extended write CRC (eWCRC), which enhances the WCRC to
also include the rank, bank, row, and column address of the
write to protect address bus integrity, as shown in Figure 4.
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Fig. 4: AI-ECC’s eWCRC [23]. The memory controller encodes
the write address with the data in the WCRC. Each chip uses
the address and data to verify the transaction.

SecDDR with Encrypted eWCRC. SecDDR defeats stale-
data attacks from misdirected writes by enabling eWCRC and
encrypting it, similarly to the E-MAC. The eWCRC of the ECC
chip is generated before encrypting the MAC, and it is verified
in the ECC chip after decryption of the E-MAC. However,
because the eWCRC is not a cryptographic hash, the adversary
can target specific bits in the message such that the corrupted
eWCRC check would incorrectly pass. This is true even if
the eWCRC is encrypted with the OTP; used for the E-MAC.
SecDDR therefore uses a separate OTP}’ for write commands
that uses the same key and transaction counter, but also includes
the address used in eWCRC. This ensures that any corruptions
to the address would flip numerous bits in the message and the
eWCRC would detect the corruption. This approach increases
the write latency because generating the OTP}’ only starts
after the write command is sent to the SecDDR DRAM chip
and takes longer than tWCL. Importantly, the read latency is
unaffected because the processor performs MAC verification.

2AI-ECC makes additional contributions to protect command and clock
signals, however, these cases are detectable in an integrity-protected memory,
and we do not further discuss them here.



An attempt to induce stale data by dropping a write transaction
fails because C; would not be incremented on the memory
side, leading all following reads to fail verification. Finally,
the attacker can potentially avoid updating a memory location
by converting a write command to a read (and intercepting the
response so the processor is not notified), which does not affect

synchronization of the counters, and thus, remains undetectable.

This attack can be defeated by simply using only even counter
values for reads and odd counter values for writes so that
command corruption results in a counter mismatch.

Security of Encrypted eWCRC. Assuming the worst-case
bit error rate (BER) of 10716 on the CCCA signals that is
allowed by the JEDEC standard [36], channel transmission
rate of 3200M Tps3, and 26 CCCA and data signals for an x8
device [36], we expect to observe one CCCA error every 11.13
days per memory channel on average. Because the attacker only
observes the eWCRC and MAC:s in their counter-encrypted
form, birthday attacks on the eWCRC are not possible. In a
brute force attack, each attempt has a success rate of 2716 with
the 16b eWCRC. Thus, even with a success probability of only
50%, the attacker must perform at least 4.5 x 10* attempts.
Given that CCCA errors due to natural faults are rare and
that a higher than-expected transmission error rate indicates
an active attack, it takes 1,385 years to exhaust all trials on a
single memory channel. In practice, the BER is much lower
than the DDRx standard specifies, in the range of 10722 to
10721 23], increasing the brute force attack duration to 138
million years. Even if the attacker launches a parallel attack
on 1,000 nodes that each has 16 memory channels, the attack
would still take more than 86,000 years.

C. DIMM-Substitution Attack Protection

Attack Scenario. An adversary can perform a replay attack via
DIMM-substitution by taking advantage of the data remanence
effect (Cold-boot Attacks [17]) to replay a victim application’s
state across boot or wake-up episodes. The attacker causes the
system to crash or go to an idle state (i.e., DRAM self-refresh
mode), takes away the DIMM, and freezes it to preserve the
application state (and potentially copies it). After reboot or
wake-up, the victim process continues execution as usual. At a
later time, the attacker forces the system into crash/idle again.
In the last step, instead of rebooting from the most recent state,
the attacker uses the preserved old state, which forces the
victim application to redo the already-performed computations,
completing the replay attack cycle.

SecDDR’s Efficacy Against the Attack. SecDDR defeats this
type of attack by using the transaction counters (C;). When
the attacker tries to wake-up the system using the old state, it
is improbable that C; on the DIMM and the processor would
match (the likelihood of a match is 2%), causing the OTP; on
the DIMM and the processor to be different (producing and
retrieving different E-MACs), and the attack to fail. With a
64-bit C'y, we will not observe counter overflow in the system

3We use half the DDR data rate for the CCCA signals [36].

lifetime, as it takes more than 500 years to cause an overflow,
even assuming one transaction every nanosecond per rank.

Non-Adversarial DIMM Replacement. It is possible that a
DIMM should be replaced for various legitimate reasons (e.g.,
system upgrade, faulty device) that must be differentiated from
an attack. The difference between such cases and a DIMM-
substitution attack is that the processor is explicitly notified
of the replacement and expects to start from a clean state (as
opposed to continuing from the previous architectural state in
the memory). That is, any prior data in the memory should
be discarded, by clearing the memory during boot or DIMM
initialization (see Section III-F).

D. Vulnerability to Side-Channels

SecDDR does not introduce any new side-channels. All of
the used cryptographic primitives have constant latency that
is independent of the data; the latencies are either hidden
from the access critical path or are equally imposed on all
accesses. The encryption/decryption of E-MACs does not add
any timing variation to reads, as the OTP; is always pre-
computed independently of transaction timing. The CRC logic
also has constant latency. Thus, its extra latency and that of the
longer write burst remains indistinguishable among different
writes. With SecDDR, writes are slower than reads, however,
this does not open a new physical side-channel as the command
type and flow of traffic are already observable on the memory
bus. From the software perspective, this is not a new side-
channel as writes are already slower than reads because the
memory controller prioritizes reads.

E. Trusted Computing Base for SecDDR

The processor chip is the only hardware component in SGX’s
TCB. We must extend the TCB to include SecDDR’s security
logic. This logic includes the secret key register, the encryption
units for generating E-MACs, and the attestation logic.

Data
Chip) C1 | C2 | C3 | RGD C4  C5|Ce | C7 |nod
0 Chip

1 1 1 1 1 1 1 1 *
DB DB DB DB DB DB DB DB DB

Fig. 5: SecDDR’s hardware TCB. CPU and the ECC chip(s)
are in the TCB. The ECC chip(s) contains the security logic.

Figure 5 shows SecDDR’s TCB.* A powerful adversary
can initiate the attack from within the DIMM by tapping or
tampering with the on-DIMM components or using a malicious
DIMM. To defeat these scenarios, we place SecDDR’s security
logic within the the ECC chip(s), making the ECC chip(s) part
of the TCB. Only trusting the ECC chip(s) is sufficient to detect
all active attacks, as tampering with the data chips will cause
a MAC mismatch. If the memory module has multiple ranks,
the ECC chip(s) in each rank are independent. The processor
must establish a separate secure E-MAC channel and use a
different transaction counter for each rank.

4To fairly compare with prior work [2], we discuss SecDDR’s compatibility
with trusted memories in Section VI-C.



E Initialization & Attestation in SecDDR

Memory Attestation. We adopt an attestation protocol similar
to prior proposals [2], [6], [49]. The memory manufacturer
embeds endorsement public-private keys (EK, and EKj)
in each rank’s ECC chip(s). While F K, is accessible for
attestation, EK s never leaves the chip.

At each power up or DIMM replacement, the processor and
each rank use public-key encryption to agree on a new shared
key, i.e., the transaction key (K;). We use an authenticated
key-exchange protocol that is protected against impersonation
and man-in-the-middle attacks [8], [9]. For authentication, we
use EK; to sign the memory module’s key-exchange messages.
The DIMM'’s certificate and EK, should also be shared with the
processor to authenticate the key-agreement and to be verified
against the DIMM’’s certificate via a trusted certificate authority
(CA). This information can be shared either during the key
exchange [9], or it can be manually entered by the trusted
system-integrator [6]. The CA can be the memory vendor or
a third party. Certificates may be cached in system-encrypted
memory and periodically checked against revocation lists.

After confirming the memory module’s identity and sharing
K, the processor and memory agree on a common C. The
processor chooses an initial counter value for each rank and
transfers it to the DIMMs. C; can be shared in plain-text
and does not require integrity protection; tampering with the
counter results in counter mismatch between the processor and
memory, which will be detected through MAC verification
failures. We can initialize the counter with a random number,
or we can use a non-volatile register for the processor’s C to
use monotonically increasing values for the processor lifetime.

Finally, the processor actively clears memory (writing zeros)
to protect from DIMM substitution or replaying stale pre-boot
state. Note that attestation is infrequent (at each boot, DIMM
power-up, or after non-adversarial DIMM replacement) and
only incurs a slight slowdown at that time (seconds). DRAM-
timing re-calibration, wake-up from sleep, and other cases
where DRAM is already initialized do not require attestation.

Remote Attestation. SecDDR’s DIMM attestation and estab-
lishing the secure E-MAC channel on the bus are transparent
to the remote attestation of the processor and the software
running in an enclave. We can use the same protocol as in
SGX to attest the processor, retrieve an enclave’s measurement,
and create a secure channel to a remote client [8].

IV. EXPERIMENTAL METHODOLOGY

A. Simulation Framework

Simulator. We use Scarab [34] for simulation. Scarab uses Intel
Pin [31] as the functional model. Main memory is modeled
using Ramulator [25]. The virtual page size is 4KB with random
policy for virtual page to physical frame mapping. Table I shows
the configuration parameters.

Workloads. We use the SimPoints [50] methodology to
create 200-million instruction representative regions of the
SPEC-2017 [1] rate benchmarks and GAP Benchmark Suite

(GAPBS) [7]. Workloads with LLC MPKI > 10.0 are consid-
ered as memory intensive. We simulate a 4-core system with
each SimPoint replicated four times.

TABLE I: Configuration Parameters

Core 6-wide fetch/retire Out-of-order, 224 entry ROB,
97 entry RS, TAGE-SC-L branch predictor,
3.2GHz, 4 cores

L1 Cache Private 32KB d- & 32KB i-cache, 64B line, 4-

way
Shared 4MB, 64B line, 16-way

Stream Prefetcher

Shared 128KB, 64B line, 8-way

40 processor-cycles encryption and MAC
16GB DRAM, 1 channel, 2 ranks, 4 bank-groups,
16 banks, 8Gb_x8. 64 Read- and 64 Write-entry
memory controller queues.

DDR4-3200 at 1600MHz, tCL/tCCDS/tCCDL/
tCWLAAWTRS/tWTRL/tRP/tRCD/tRAS = 22/4/
10/16/4/12/22/22/56 cycles

Last Level Cache
Prefetcher
Metadata Cache
Security Mechanisms
Main Memory

Memory Timings

B. Evaluated Systems

We compare all configurations with a secure baseline that
provides memory encryption and integrity protection, however,
it lacks replay attack protection, to resemble Intel TDX as the
state-of-the-art secure memory design in industrial products.
Except in the encrypt-only configurations, MACs are placed in
the ECC chips [10], [19]. We consider both counter-mode and
AES-XTS encryption modes in our evaluation because they
offer a security—performance tradeoff.

We compare 5 main system configurations. We also compare
SecDDR directly to InvisiMem [2] in Section VI.

1) Baseline: The baseline secure system that follows recent
academic work with a 64-ary integrity tree and counter-mode
encryption. The integrity tree is built on the encryption counters
with on-chip caching for both the tree and the encryption
counters. We assume an idealized tree and encryption counters
with no counter overflow. The encryption-counter lines and the
tree nodes have the same number of counters (64). We allow
parallel tree-level verification to reduce the overall verification
latency. We do not allow speculative use of data.

2) SecDDR+CTR: SecDDR with the same counter-mode
encryption as the baseline. We assume OTP; latency can be
hidden. For eWCRC, we increase the write burst length from 8
to 10 (¢BL =5 for writes). While eWCRC enhances the reli-
ability for all configurations and has only a small performance
impact, we make a conservative performance comparison and
enable eWCRC only for SecDDR configurations. Note that
for DDR5 memories the impact of increasing the write burst
length is smaller — from 16 to 18 [36].

3) Encrypt-only, CTR: An upper-bound encryption-only
secure system that assumes integrity rather than ensuring it.

4) SecDDR+XTS: A higher-performance variant of SecDDR
that avoids counters overhead with AES-XTS encryption.

5) Encrypt-only, XTS: An AES-XTS encrypt-only system.

To model the AES-XTS encryption overhead, we add the
encryption latency to each memory access. AES-XTS does not
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Fig. 6: Performance results. Normalized performance (IPC) to the Intel TDX baseline.

rely on encryption counters and encryption does not generate
any additional memory requests. Although AES-XTS has been
adopted as the industry standard for memory encryption [3],
[18], its security guarantees are not identical to those of counter-
mode encryption in SGX. Specifically, AES-XTS encryption
no longer has femporal variation, meaning if a plain-text line
(line-sized block at a specific memory address) has the same
value at two different times, it will be encrypted to the same
cipher-text, potentially leaking information [56]. Extending
SecDDR as described in Section III to operate with counter-
mode encryption is straightforward: Encryption counters are
stored and cached as in the baseline secure system but their
integrity is protected using per-line MACs, just like data.

V. EVALUATION

A. Performance Results

Overall Performance. Figure 6 shows the performance of
the different configurations (total IPC) normalized to the TDX
baseline. SecDDR+CTR improves average performance by
9.6% relative to the 64-ary tree baseline, performing within
3.0% of the encrypt-only system with counter-mode encryption.
For memory intensive benchmarks, the average improvement
is 18.0%. The largest speedup is observed for pr, bc, sssp,
omnetpp, and xz that gain 64.7%, 51.2%, 49.4%, 35.9%, and
21.5%, respectively. These applications exhibit random memory
access patterns and thus low locality. As a result, each data
access requires traversing a different branch of the tree, which
makes the metadata cache less effective, resulting in multiple
off-chip accesses per data access for integrity tree traversal.
Only /bm exhibits a small slowdown of 1.6% because it is
write-intensive and is penalized by the longer write burst length
of eWCRC that we only add to SecDDR.

Encryption Modes. Using AES-XTS, SecDDR+XTS pro-
vides 18.8% average performance improvement relative to
the integrity-tree baseline and 5.4% better than counter-mode
encrypt-only because it eliminates the overhead of accessing
counters (37.7% and 11.6% for memory intensive workloads,
respectively). SecDDR+XTS has negligible overhead (<1%)

compared with the encrypt-only system (with XTS), which is
mainly caused by the extra write burst length due to eWCRC.
cam4 shows slight speedup (1.6%) with SecDDR+XTS, which
appears to be from fewer prefetch requests due to better
timeliness. However, this does not change the overall conclusion
and we do not consider as an improvement of SecDDR.

A few benchmarks (perlbench, gcc, xalancbmk, x264, cac-
tuBSSN, blender, bfs, and tc) exhibit higher performance with
counter mode. These benchmarks have high locality and the
counter cache has low enough miss rate (Figure 7) such
that the latency saved by pre-computing OTP and hiding
the encryption/decryption latency outweighs the overhead of
fetching counters from memory. In contrast, AES-XTS never
accesses counters but always incurs the encryption latency.
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Fig. 7: Metadata cache behavior.

Note that in this comparison, the security guarantees of
encryption modes in SecDDR+XTS and the integrity tree are
not identical. However, assuming AES-XTS is acceptable for
the security demands, applying state-of-the-art counter-based
trees would be infeasible, and one needs to use hash-based
Merkle Trees, which drastically hurts performance.

Sensitivity to Tree Arity. Figure 8 provides a comparison
of different arity values to represent different tree types. The
128-ary design represents the state-of-the-art counter-based tree,
MorphTree [45], which removes one level of the tree at the
cost of greater complexity compared to our 64-arity baseline.



Compared with the 128-ary tree, SecDDR+CTR performs 6.3%
better on average and has the advantage of scaling to high-
capacity memories. Encrypt-only configurations with 64- and
128-counter exhibit similar performance. With 128-packing,
each counter line spans two adjacent 4KB frames, but the
random page mapping of our evaluation limits this advantage.
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Fig. 8: Sensitivity to tree-arity and counter-packing.

We also evaluate the 8-ary design to represent hash-based
Merkle Trees, which compute the hash over MACs rather
than counters and can be used with AES-XTS. However,
the performance penalty is very severe, incurring a 38.8%
slowdown. Note that in addition to its compatibility with AES-
XTS, the 8-ary design also differs in its placements of MACs.
Instead of placing MACs in the ECC chips [10], [19], the 8
MAC:s that are hashed together in the tree should be placed
in a contiguous block in memory. Otherwise, these MACs
must be gathered from their respective locations, increasing
the overhead. Thus, it is better to place ECC in the ECC
chips in this design. The reliability of this organization is not
identical to that of our other configurations, though prior work
has established that the reliability is similar [10].

B. Area & Power Overheads

To estimate the area overhead of implementing SecDDR’s
security logic on the DRAM die, we follow the methodology
of prior work [14], [58] that report numbers based on older
generation of 45nm technology to account for the lower density
and fewer metal layers in < 22nm DRAM process technology.

E-MAC Generation. On the processor, we need a 16-byte
register for the secret key (K3), an 8-byte counter (C}), and
an AES unit. In each ECC chip, we need a 16-byte register
for K, an 8-byte counter, and an AES unit. The AES engine
can be implemented with 0.15mm? area overhead using 45nm
technology and provides encryption throughput of 53Gbps at
2.1GHz [33]. Table II summarizes the power overhead of AES
engines in SecDDR. To estimate the power, we scale the power
linearly assuming 500MHz DRAM core frequency and round
the number of AES engines to meet the transfer rate of the
chip, which is 12.8Gbps and 25.6Gbps for DDR4-3200 x4 and
x8 chips, which results in the total of 70.8mW and 106.3mW
extra power, respectively. SecDDR logic is only implemented
in 2 out of 18 (x4) or 1 out of 9 (x8) DDR4 chips in each

rank (i.e., the ECC chips).> Considering 290-350mW for one
DRAM chip (9-13W for a 16GB dual rank DDR4 DIMM) [38],
the power overhead is less than 3% per-rank. For DDRS, an x4
DDRS5-8800 chip requires encryption throughput of 35.2Gbps,
which results in the total of 89.3mW extra power for 3 AES
engines operating at 1.1V. Assuming DDRS memory consumes
about 13% less power than DDR4 [47], the total overhead
remains below 5%. Note that this is a conservative estimate
given the 10nm class technology used in DDRS [21].

TABLE II: AES engine power overhead (powers are in mW).

DIMM configurations and
AES unit parameters

DDR4-3200, 1600MHz, 1.2V
x4 4Gb [ x8 8Gb

AES units per ECC chip 2 3
AES power per ECC chip 70.8 106.3
DRAM chip power 290 351.9
16GB dual rank LRDIMM power 13230 9120
Overhead per rank 2.1% 2.3%

Thus, we expect the area overhead within the SecDDR
device to be < 1.5mm?2, which is far less than the overhead
reported for recent processing-in-memory (PIM) prototypes
from memory vendors. These are capable of implementing
much more complicated logic on the DRAM die [26], [29],
[30], [40]. For instance, recent work [30] based on 20nm
DRAM process technology reports 0.712mm? area for a single
PIM execution unit, which is more than 20X larger than the
AES engine after scaling from 45nm.

Attestation. Key exchange and message signing require el-
liptic curve scalar multiplication and a hash function. Using
45nm technology, the multiplier can be implemented with
0.0209mm? [32] and the hash function (e.g., SHA-256)
with 0.0625mm? [42] area overhead. At 1.1V and the peak
operating frequency, these units consume 74mW and 50mW
power at 3GHz and 1.4GHz, respectively. Similar to the AES
engine, scaling the power to 500MHz, these units require 14.2
and 21mW extra power, respectively. Note that these units are
only needed for attestation during system initialization, and
can be turned off otherwise.

Multi-Channel Setting. SecDDR works for each memory
controller independently, replicating the above logic per channel.
We target untrusted DIMMs and each ECC chip in each rank
implements the security logic.

VI. COMPARISON WITH INVISIMEM [2]

Using mutual authentication to protect the memory bus has
been proposed by InvisiMem [2] for 3/2.5D-stacked memories.
However, adapting InvisiMem to work with commodity DIMMs
that operate using the DDRx protocol is impractical and re-
quires fundamental changes to the memory system architecture.
Although SecDDR set similar goals as InvisiMem, our approach
is effective in addressing these challenges, making SecDDR
suitable for adoption. In this section, we first provide a short
background on InvisiMem and then, discuss these challenges.

SECC is also encrypted to avoid leaking the plaintext MAC.



A. InvisiMem

InvisiMem® [2] uses the compute capability in 3/2.5D-
stacked memories and the packetized protocol of the Hybrid
Memory Cube (HMC) for address/command obfuscation and
data confidentiality and integrity protection. InvisiMem extends
the TCB to include the HMC logic layer (which contains the
memory-side security logic) to create a mutually authenticated
channel between the processor and HMC. InvisiMem takes
advantage of the packet size flexibility [37] and adds new
metadata to each HMC packet: a payload MAC that is used on
the receiving end (processor on reads and memory on writes)
to verify packet integrity and freshness.

InvisiMem deems physical attacks on the communication
between the logic layer and DRAM cells impractical since in
stacked memories, these connections go through the silicon
layers (using through-silicon vias (TSV) or silicon interposer).
This allows InvisiMem to effectively eliminate the integrity
tree as the TSVs do not need replay-protection, and thus,
storing a MAC with the data is sufficient to protect it while at
rest (e.g., against Row-Hammer). On the memory side, after
receiving a write request and verifying packet integrity, the
security logic within the HMC generates a new MAC and
stores it with the data to protect data at rest. On reads, the
security logic first reads and verifies the stored MAC and
then generates a new (channel) MAC for the packet using the
transaction timestamp (C}). Unlike InvisiMem, SecDDR avoids
a mutually-authenticated channel and leaves all authentication
to the processor, reducing complexity and latency in memory.

B. Challenges of Adapting InvisiMem for DDRx DIMMs

Adapting InvisiMem for commodity DDRx DIMMs intro-
duces challenges that are not trivial to address.

Trusted HMC vs. Untrusted DIMM. The security-guarantees
in InvisiMem are provided given that the logic layer in the
HMC is trusted as part of the TCB and the 3D-stacked DRAM
cannot be penetrated. This assumption, however, does not hold
for commodity DDRx DIMMs. One could adapt InvisiMem
for DDR DIMMs by placing the security logic in a discrete
component on the DIMM (e.g., a buffer chip). However, this
implementation does not protect the DIMM interconnects and
other components on the DIMM, leaving the system vulnerable
to malicious DIMMs and on-DIMM replay attacks. Thus, in
addition to the security logic, the threat model must consider
the entire DIMM as trusted (i.e., trusted DIMM).

To mitigate this problem, the security logic could be placed in
the DRAM chips, however, this is infeasible because InvisiMem
relies on memory-side integrity verification of every memory
transaction; an operation that requires the entire packet payload
(i.e., 64-Byte line) to be available. As opposed to an HMC in
which all DRAM vaults are connected to a centralized logic
layer, in DIMMs, data is distributed across multiple DRAM
chips, which makes this approach impractical. Alternatively,
the processor could create a separate secure channel to each
DRAM chip, but this increases cost and requires increasing

SInvisiMem has two flavors. InvisiMem_far is related to this work.

the burst length to append MAC, to each transaction (on both
reads and writes).’

As a result, the approach proposed by InvisiMem is not
suitable for commodity DDRx DIMMs that can contain
malicious components and can be easily tampered with. On the
other hand, even if the threat model with a trusted DIMM
is an acceptable option, applying InvisiMem still requires
fundamental changes in the design constraints of a modern
DDRx DIMM, which we discuss next.

Packetized Protocol vs. DDRx. InvisiMem is particularly
designed based on the packetized protocol in HMC, which
has been deprecated [39]. However, DDR is not packetized,
and given how widely it is accepted as an industry standard,
changing this protocol is extremely difficult.

Additional Latency & Changes to the DDR Timing
Parameters. InvisiMem’s memory-side integrity verification
adds additional latency to each memory access and requires
changing the DDR timing parameters. Specifically, tCL must
grow to account for the MAC latency. While this additional
latency is deterministic (i.e., the MAC latency), it is on the
critical path of every memory access.

Reduced Data-Rate due to the Centralized Buffer Chip.
Implementing the memory-side verification and delegating
the integrity-protection to the memory requires introducing
a centralized data buffer on the memory module. That is, for
memory-side MAC generation and verification, the memory
module has to gather all 64 bytes of a line to compute its
MAC. The centralized buffer, however, lowers the achievable
memory frequency and bandwidth [41], [54].
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Fig. 9: Comparison between old (a) and new (b) DIMM
architectures. (a) Centralized Memory Buffer in DDR3. (b)
Centralized buffer for Control Signals and distributed Data
Buffers in DDR4 and DDRS.

Figure 9a shows a DDR3 LRDIMM architecture with a
centralized memory buffer chip (MB). All CCCA and data
signals are first routed to the MB and then routed from the MB
to each DRAM chip [5], [54]. The distance disparity (and thus,

"We can also protect the DIMM by implementing an integrity tree on the
DIMM and placing its root in the buffer chip, however, this is not a scalable
solution.
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Fig. 10: Performance comparison with InvisiMem using realistic and unrealistic memory frequencies. Normalized performance
(IPC) to the Intel TDX baseline. All configurations use AES-XTS encryption.

the latency) between different DRAM chips to the centralized
MB limits the highest data rate and the frequency at which the
DIMM can operate [5], [41], [54]. To address this problem,
the buffer chips for the CCCA and data in DDR4 and DDRS5
LRDIMMs are distributed [43], [54], as shown in Figure 9b. As
discussed in Section II-A, The CCCA signals are buffered in
the RCD chip, whereas the data is buffered in distributed DB
chips. Distributed buffers are at a short and identical distance
from their corresponding DRAM chips across the module,
which reduces the buffering latency, enabling higher data rates.
Adding a centralized buffer is undesirable and contradicts the
main reason that newer memory technologies have transitioned
to distributed data buffers.

C. SecDDR’s Compatibility with Trusted Memory Modules

To provide an iso-secure baseline that mimics the case in
which InvisiMem’s [2] security logic is placed in a discrete
component on the DIMM, we consider SecDDR with a trusted
module that assumes on-DIMM attacks to be impossible, and
discuss the placement of the on-DIMM security logic and the
TCB components accordingly.
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Fig. 11: SecDDR’s TCB with a trusted DIMM. CPU and the
DIMM are in the TCB. ECC DB contains the security logic
and acts as the DIMM’s root-of-trust.

As shown in Figure 11, we can apply SecDDR to a trusted
module by placing the security logic inside the data buffer (DB)
of the ECC chip(s). The ECC DB acts as the DIMM’s root-
of-trust, and is responsible for attestation and establishing the
secure E-MAC channel. We assume the entire DIMM is in the
TCB. Note that an attacker can perform a man-in-the-middle

replay attack by tampering with the DIMM interconnects or
using a malicious DIMM that contains a hardware trojan.
These attacks are impractical in the 3D-stacked HMC context
of InvisiMem, but HMCs have proven non-viable in the market.

D. Performance Comparison with InvisiMem

SecDDR’s E-MACs address all the above challenges. In
contrast with memory-side MAC generation in InvisiMem,
E-MACs are computed with no significant latency on the
memory access critical path as the OTP; can be pre-computed
ahead of time. Furthermore, to encrypt MACs, counter-mode
encryption only requires XOR-ing the MAC with the OTP, that
is performed cycle-by-cycle in the ECC DB or the ECC chip
independently, and does not require any data communication
or synchronization with the data chips. Thus, SecDDR does
not require any centralized buffering, and it is compatible with
the existing LRDIMMSs that use distributed DBs.

Figure 10 shows the performance comparison between
SecDDR and InvisiMem. We assume AES-XTS in all configu-
rations. Only SecDDR is equipped with eWCRC and incurs the
longer bursts necessary for it. To evaluate InvisiMem (with a
trusted DIMM), we consider two cases: unrealistic and realistic.
In the unrealistic case, we assume the memory can operate at
1600MHz (3200MT/s) and InvisiMem’s overhead is only due
to the 2x MAC latency on the access critical path (one on the
processor and one on the DIMM). Although this configuration
has a small average overhead of 2.9% relative to SecDDR
(3.8% on memory intensive applications), it is not achievable
because the memory must run at a lower frequency due to the
centralized data buffer. The realistic implementation operates
at 1200MHz (2400MT/s) to account for this and InvisiMem
then incurs a 7.2% average performance overhead relative to
SecDDR (11.2% for the memory intensive applications).

Compared to the unrealistic idealized InvisiMem, SecDDR
performs worse on lbm, fotonik3d, and roms by 6.6%, 3.0%,
and 1%, respectively. This difference is due to the extra write
burst length in SecDDR.
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Fig. 12: Performance comparison with InvisiMem using realistic and unrealistic memory frequencies. Normalized performance
(IPC) to the Intel TDX baseline. All configurations use counter-mode encryption with 64 counters per-line.

Figure 12 provides a similar comparison using counter-mode
encryption. We observe a similar trend using counter-mode
encryption and SecDDR outperforms InvisiMem unrealistic and
realistic by 9.4% and 16.6%, respectively. Note, however, that
AES-XTS is faster and provides higher overall performance
(similar to Figure 6).

VII. OTHER RELATED WORK

Other Active Memory Designs. ObfusMem [6] was developed
concurrently with InvisiMem and obfuscates the address and
command buses with a point-to-point mechanism between
the processor and the memory. Data integrity is delegated
to integrity trees, limiting its scalability. SecureDIMM [49]
provides address and command confidentiality by encrypting
the memory bus, however, integrity protection is not provided.
SecureDIMM uses Freecursive ORAM [11] to provide on-
DIMM security. A similar proposal by Gundu et al. [16]
off-loads integrity trees to the memory. Unfortunately, similar
to InvisiMem, these designs rely on centralized buffer chips,
which is not applicable to modern modules.

Reducing Overheads for Secure Memory. Synergy [46] is a
reliability-security co-design that uses ECC to eliminate the
MAC bandwidth overhead in ECC-DIMMs. SafeGuard [10]
eliminates the storage and memory overhead of parities in
Synergy. VAULT [53] builds a high arity tree by extending
split-counters [57] to higher levels of a counter-based tree.
Morphable-Counters [45] is a 128-ary tree that dynamically
allocates more bits for frequently updated counters to reduce
counter overflow. Taassori et al. [52] propose a compact tree
design to reduce the parity update overheads in Synergy.

VIII. CONCLUSION & FUTURE WORK

Integrity trees are not scalable to protect large-scale mem-
ories due to the severe performance overhead. While mutual
authentication is promising, existing proposals require funda-
mental changes in the memory system architecture. In this
paper, we show that by identifying practical types of replay

attacks, we can provide a low-cost scheme to protect the DDR
interface against them. We propose SecDDR, which creates
a reply-protected bus by encrypting the MACs. SecDDR has
a negligible performance overhead and does not change the
underlying DDR protocol. SecDDR can be extended to use
the on-DIMM encryption units to encrypt the address and
command for traffic obliviousness.
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