
Low-Cost Inter-Linked Subarrays (LISA):

Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Chang†, Prashant J. Nair�, Donghyuk Lee†, Saugata Ghose†, Moinuddin K. Qureshi�, and Onur Mutlu†

†Carnegie Mellon University �Georgia Institute of Technology

ABSTRACT

This paper introduces a new DRAM design that enables fast
and energy-efficient bulk data movement across subarrays in a
DRAM chip. While bulk data movement is a key operation in
many applications and operating systems, contemporary systems
perform this movement inefficiently, by transferring data from
DRAM to the processor, and then back to DRAM, across a narrow
off-chip channel. The use of this narrow channel for bulk data
movement results in high latency and energy consumption. Prior
work proposed to avoid these high costs by exploiting the existing
wide internal DRAM bandwidth for bulk data movement, but
the limited connectivity of wires within DRAM allows fast data
movement within only a single DRAM subarray. Each subarray
is only a few megabytes in size, greatly restricting the range over
which fast bulk data movement can happen within DRAM.
We propose a new DRAM substrate, Low-Cost Inter-Linked

Subarrays (LISA), whose goal is to enable fast and efficient data
movement across a large range of memory at low cost. LISA adds
low-cost connections between adjacent subarrays. By using these
connections to interconnect the existing internal wires (bitlines)
of adjacent subarrays, LISA enables wide-bandwidth data trans-
fer across multiple subarrays with little (only 0.8%) DRAM area
overhead. As a DRAM substrate, LISA is versatile, enabling an
array of new applications. We describe and evaluate three such
applications in detail: (1) fast inter-subarray bulk data copy,
(2) in-DRAM caching using a DRAM architecture whose rows
have heterogeneous access latencies, and (3) accelerated bitline
precharging by linking multiple precharge units together. Our
extensive evaluations show that each of LISA’s three applications
significantly improves performance and memory energy effi-
ciency, and their combined benefit is higher than the benefit of
each alone, on a variety of workloads and system configurations.

1. Introduction

Bulk data movement, the movement of thousands or mil-
lions of bytes between two memory locations, is a common
operation performed by an increasing number of real-world
applications (e.g., [28, 40, 56, 63, 67, 69, 71, 74, 83]). Therefore,
it has been the target of several architectural optimizations
(e.g., [1, 26, 69, 80, 83]). In fact, bulk data movement is impor-
tant enough that modern commercial processors are adding
specialized support to improve its performance, such as the
ERMSB instruction recently added to the x86 ISA [17].
In today’s systems, to perform a bulk data movement be-

tween two locations in memory, the data needs to go through
the processor even though both the source and destination are
within memory. To perform the movement, the data is first
read out one cache line at a time from the source location in
memory into the processor caches, over a pin-limited off-chip

channel (typically 64 bits wide). Then, the data is written back
to memory, again one cache line at a time over the pin-limited
channel, into the destination location. By going through the
processor, this data movement incurs a significant penalty in
terms of latency and energy consumption.

To address the inefficiencies of traversing the pin-limited
channel, a number of mechanisms have been proposed to accel-
erate bulk data movement (e.g., [26, 45, 69, 83]). The state-of-
the-art mechanism, RowClone [69], performs data movement
completely within a DRAM chip, avoiding costly data transfers
over the pin-limited memory channel. However, its effective-
ness is limited because RowClone can enable fast data move-
ment only when the source and destination are within the
same DRAM subarray. A DRAM chip is divided into multiple
banks (typically 8), each of which is further split into many sub-
arrays (16 to 64) [36], shown in Figure 1a, to ensure reasonable
read and write latencies at high density [4, 22, 24, 36, 77]. Each
subarray is a two-dimensional array with hundreds of rows of
DRAM cells, and contains only a few megabytes of data (e.g.,
4MB in a rank of eight 1Gb DDR3 DRAM chips with 32 subar-
rays per bank). While two DRAM rows in the same subarray
are connected via a wide (e.g., 8K bits) bitline interface, rows in
different subarrays are connected via only a narrow 64-bit data
bus within the DRAM chip (Figure 1a). Therefore, even for
previously-proposed in-DRAM data movement mechanisms
such as RowClone [69], inter-subarray bulk data movement
incurs long latency and high memory energy consumption
even though data does not move out of the DRAM chip.

Row Buffer

Slow

Internal
Data Bus

Subarray
Cell

Bitlines

64b

(a) RowClone [69]

8Kb Fast

Isolation
Transistor

(b) LISA

Figure 1: Transferring data between subarrays using the in-
ternal data bus takes a long time in state-of-the-art DRAM
design, RowClone [69] (a). Our work, LISA, enables fast inter-
subarray data movement with a low-cost substrate (b).

While it is clear that fast inter-subarray data movement can
have several applications that improve system performance
and memory energy efficiency [28, 56, 63, 67, 69, 83], there is
currently no mechanism that performs such data movement
quickly and efficiently. This is because no wide datapath ex-
ists today between subarrays within the same bank (i.e., the
connectivity of subarrays is low in modern DRAM). Our goal
is to design a low-cost DRAM substrate that enables fast and
energy-efficient data movement across subarrays.

978-1-4673-9211-2/16/$31.00 ©2016 IEEE
568

Wemake two key observations that allow us to improve the
connectivity of subarrays within each bank in modern DRAM.
First, accessing data in DRAM causes the transfer of an entire
row of DRAM cells to a buffer (i.e., the row buffer, where the
row data temporarily resides while it is read or written) via
the subarray’s bitlines. Each bitline connects a column of cells
to the row buffer, interconnecting every row within the same
subarray (Figure 1a). Therefore, the bitlines essentially serve
as a very wide bus that transfers a row’s worth of data (e.g.,
8K bits) at once. Second, subarrays within the same bank are
placed in close proximity to each other. Thus, the bitlines of a
subarray are very close to (but are not currently connected to)
the bitlines of neighboring subarrays (as shown in Figure 1a).

Key Idea. Based on these two observations, we intro-
duce a new DRAM substrate, called Low-cost Inter-linked
SubArrays (LISA). LISA enables low-latency, high-bandwidth
inter-subarray connectivity by linking neighboring subarrays’
bitlines together with isolation transistors, as illustrated in Fig-
ure 1b. We use the new inter-subarray connection in LISA to
develop a new DRAM operation, row buffer movement (RBM),
which moves data that is latched in an activated row buffer in
one subarray into an inactive row buffer in another subarray,
without having to send data through the narrow internal data
bus in DRAM. RBM exploits the fact that the activated row
buffer has enough drive strength to induce charge perturba-
tion within the idle (i.e., precharged) bitlines of neighboring
subarrays, allowing the destination row buffer to sense and
latch this data when the isolation transistors are enabled.
By using a rigorous DRAM circuit model that conforms to

the JEDEC standards [22] and ITRS specifications [18, 19], we
show that RBM performs inter-subarray data movement at 26x
the bandwidth of a modern 64-bit DDR4-2400memory channel
(500 GB/s vs. 19.2 GB/s; see §3.3), even after we conservatively
add a large (60%) timing margin to account for process and
temperature variation.

Applications of LISA. We exploit LISA’s fast inter-subarray
movement to enable many applications that can improve sys-
tem performance and energy efficiency. We implement and
evaluate the following three applications of LISA:
• Bulk data copying. Fast inter-subarray data movement
can eliminate long data movement latencies for copies be-
tween two locations in the same DRAM chip. Prior work
showed that such copy operations are widely used in today’s
operating systems [56, 63] and datacenters [28]. We propose
Rapid Inter-Subarray Copy (RISC), a new bulk data copying
mechanism based on LISA’s RBM operation, to reduce the
latency and DRAM energy of an inter-subarray copy by 9.2x
and 48.1x, respectively, over the best previous mechanism,
RowClone [69] (§4).

• Enabling access latency heterogeneity within DRAM.
Prior works [40, 71] introduced non-uniform access laten-
cies within DRAM, and harnessed this heterogeneity to pro-
vide a data caching mechanism within DRAM for hot (i.e.,
frequently-accessed) pages. However, these works do not
achieve either one of the following goals: (1) low area over-
head, and (2) fast data movement from the slow portion of
DRAM to the fast portion. By exploiting the LISA substrate,

we propose a new DRAM design, VarIabLe LAtency (VILLA)
DRAM, with asymmetric subarrays that reduce the access
latency to hot rows by up to 63%, delivering high system
performance and achieving both goals of low overhead and
fast data movement (§5).

• Reducing precharge latency. Precharge is the process of
preparing the subarray for the next memory access [22, 36,
39, 40]. It incurs latency that is on the critical path of a
bank-conflict memory access. The precharge latency of a
subarray is limited by the drive strength of the precharge
unit attached to its row buffer. We demonstrate that LISA
enables a new mechanism, LInked Precharge (LIP), which
connects a subarray’s precharge unit with the idle precharge
units in the neighboring subarrays, thereby accelerating
precharge and reducing its latency by 2.6x (§6).

These three mechanisms are complementary to each other, and
we show that when combined, they provide additive system
performance and energy efficiency improvements (§9.4). LISA
is a versatile DRAM substrate, capable of supporting several
other applications beyond these three, such as performing
efficient data remapping to avoid conflicts in systems that
support subarray-level parallelism [36], and improving the
efficiency of bulk bitwise operations in DRAM [67] (see §10).

This paper makes the following major contributions:

• We propose a new DRAM substrate, Low-cost Inter-linked
SubArrays (LISA), which provides high-bandwidth connec-
tivity between subarrays within the same bank to support
bulk data movement at low latency, energy, and cost (§3).

• We propose and evaluate three new applications that take
advantage of LISA: (1) Rapid Inter-Subarray Copy (RISC),
which copies data across subarrays at low latency and low
DRAM energy; (2) Variable Latency (VILLA) DRAM, which
reduces the access latency of hot data by caching it in fast
subarrays; and (3) Linked Precharge (LIP), which reduces
the precharge latency for a subarray by linking its precharge
units with neighboring idle precharge units.

• We extensively evaluate LISA’s applications individually
and combined together. Our evaluation shows that (1) RISC
improves average system performance by 66% over work-
loads that perform intensive bulk data movement and
(2) VILLA/LIP improve performance by 5%/8% over a wide
variety of workloads. Combining all three applications im-
proves system performance by 94% and reduces memory
energy by 49% on a 4-core system running workloads with
intensive bulk data movement (§9.4).

2. Background: DRAM Organization

A modern DRAM system consists of a hierarchy of compo-
nents: channels, ranks, banks, and subarrays. A memory chan-
nel drives DRAM commands, addresses, and data between a
memory controller and a group of DRAM ranks. Within a rank,
there are multiple banks that can serve memory requests (i.e.,
reads or writes) concurrently, independent of one another.1

1Physically, a rank consists of multiple DRAM chips. Every chip in a rank
operates in lockstep to serve fragments of data for the same request. Many
prior works provide further details on DRAM rank organization [77, 82].

569

2.1. DRAM Subarrays

In this work, we focus on operations across subarrays within
the same bank. Typically, a bank is subdivided into multiple
subarrays [4, 36, 69, 79], as shown in Figure 2. Each subarray
consists of a 2D-array of DRAM cells that are connected to
sense amplifiers through bitlines. Because the size of a sense
amplifier is more than 100x the size of a cell [40], modern
DRAM designs fit in only enough sense amplifiers in a row
to sense half a row of cells. To sense the entire row of cells,
each subarray has bitlines that connect to two rows of sense
amplifiers — one above and one below the cell array (1 and
2 in Figure 2, for Subarray 1). This DRAM design is known as
the open bitline architecture, and is commonly used to achieve
high-density DRAM [42, 75]. For the rest of the paper, we refer
to a single row of sense amplifiers, which holds the data from
half a row of activated cells, as a row buffer.

GSA

Internal
Data
Bus

...

64b

Bank I/O

Sense
Amplifier

Precharge
Unit

Bitline

Bitline

Bitline

Bitline

Wordline

Global
Sense Amplifiers

Subarray 0

SA SA SASA
1

R
ow

 D
ec

od
er

SASASASA
2

Subarray 1

3

4
5

6

Figure 2: Bank and subarray organization in a DRAM chip.

2.2. DRAM Subarray Operation

Accessing data in a subarray requires two steps. The DRAM
row (typically 8KB across a rank of eight x8 chips) must first be
activated. Only after activation completes, a column command
(i.e., a READ/WRITE) can operate on a piece of data (typically 64B
across a rank; the size of a single cache line) from that row.
When an ACTIVATE command with a row address is issued,

the data stored within a row in a subarray is read by two row
buffers (i.e., the row buffer at the top of the subarray 1 and
the one at the bottom 2). First, a wordline corresponding
to the row address is selected by the subarray’s row decoder.
Then, the top row buffer and the bottom row buffer each sense
the charge stored in half of the row’s cells through the bitlines,
and amplify the charge to full digital logic values (0 or 1) to
latch in the cells’ data.
After an ACTIVATE finishes latching a row of cells into the

row buffers, a READ or a WRITE can be issued. Because a typical
read/write memory request is made at the granularity of a
single cache line, only a subset of bits are selected from a
subarray’s row buffer by the column decoder. On a READ, the
selected column bits are sent to the global sense amplifiers
through the internal data bus (also known as the global data
lines) 3 , which has a narrow width of 64B across a rank of
eight chips. The global sense amplifiers 4 then drive the data

to the bank I/O logic 5 , which sends the data out of the DRAM
chip to the memory controller.

While the row is activated, a consecutive column command
to the same row can access the data from the row buffer with-
out performing an additional ACTIVATE. This is called a row
buffer hit. In order to access a different row, a PRECHARGE com-
mand is required to reinitialize the bitlines’ values for another
ACTIVATE. This re-initialization process is completed by a set of
precharge units 6 in the row buffer. For more detail on DRAM
commands and internal DRAM operation, we refer the reader
to prior works [36, 39, 40, 44, 69, 71].

3. Low-Cost Inter-Linked Subarrays (LISA)

We propose a new DRAM substrate, LISA, which enables
fast and energy-efficient data movement across subarrays
within a DRAM chip. First, we discuss the low-cost design
changes to DRAM to enable high-bandwidth connectivity
across neighboring subarrays (Section 3.1). We then introduce
a new DRAM command that uses this new connectivity to
perform bulk data movement (Section 3.2). Finally, we conduct
circuit-level studies to determine the latency of this command
(Sections 3.3 and 3.4).

3.1. LISA Design

LISA is built upon two key characteristics of DRAM. First,
large data bandwidth within a subarray is already available
in today’s DRAM chips. A row activation transfers an entire
DRAM row (e.g., 8KB across all chips in a rank) into the row
buffer via the bitlines of the subarray. These bitlines essen-
tially serve as a wide bus that transfers an entire row of data in
parallel to the respective subarray’s row buffer. Second, every
subarray has its own set of bitlines, and subarrays within the
same bank are placed in close proximity to each other. There-
fore, a subarray’s bitlines are very close to its neighboring
subarrays’ bitlines, although these bitlines are not directly
connected together.2

By leveraging these two characteristics, we propose to build
a wide connection path between subarrayswithin the same bank
at low cost, to overcome the problem of a narrow connection
path between subarrays in commodity DRAM chips (i.e., the
internal data bus 3 in Figure 2). Figure 3 shows the subarray
structures in LISA. To form a new, low-cost inter-subarray dat-
apath with the same wide bandwidth that already exists inside
a subarray, we join neighboring subarrays’ bitlines together
using isolation transistors. We call each of these isolation tran-
sistors a link. A link connects the bitlines for the same column
of two adjacent subarrays.
When the isolation transistor is turned on (i.e., the link is

enabled), the bitlines of two adjacent subarrays are connected.
Thus, the sense amplifier of a subarray that has already driven
its bitlines (due to an ACTIVATE) can also drive its neighboring
subarray’s precharged bitlines through the enabled link. This
causes the neighboring sense amplifiers to sense the charge
difference, and simultaneously help drive both sets of bitlines.
When the isolation transistor is turned off (i.e., the link is

2Note that matching the bitline pitch across subarrays is important for a
high-yield DRAM process [42, 75].

570

Top Row Buffer
(src)

Bottom Row Buffer
(dst)

Isolation
Transistor (Link)Subarray 0

Subarray 1

Subarray 2

A

B

Figure 3: Inter-linked subarrays in LISA.

disabled), the neighboring subarrays are disconnected from
each other and thus operate as in conventional DRAM.

3.2. Row Buffer Movement (RBM) Through LISA

Now that we have inserted physical links to provide high-
bandwidth connections across subarrays, we must provide
a way for the memory controller to make use of these new
connections. Therefore, we introduce a new DRAM command,
RBM, which triggers an operation to move data from one row
buffer (half a row of data) to another row buffer within the
same bank through these links. This operation serves as the
building block for our architectural optimizations.

To help explain the RBM process between two row buffers,
we assume that the top row buffer and the bottom row buffer
in Figure 3 are the source (src) and destination (dst) of an
example RBM operation, respectively, and that src is activated
with the content of a row from Subarray 0. To perform this

RBM, the memory controller enables the links (A and B)
between src and dst, thereby connecting the two row buffers’
bitlines together (bitline of src to bitline of dst, and bitline
of src to bitline of dst).
Figure 4 illustrates how RBM drives the data from src to

dst. For clarity, we show only one column from each row
buffer. State 1 shows the initial values of the bitlines (BL and
BL) attached to the row buffers — src is activated and has
fully driven its bitlines (indicated by thick bitlines), and dst

is in the precharged state (thin bitlines indicating a voltage
state of VDD/2). In state 2 , the links between src and dst

are turned on. The charge of the src bitline (BL) flows to the
connected bitline (BL) of dst, raising the voltage level of dst’s
BL to VDD/2 + Δ. The other bitlines (BL) have the opposite
charge flow direction, where the charge flows from the BL of
dst to the BL of src. This phase of charge flowing between
the bitlines is known as charge sharing. It triggers dst’s row
buffer to sense the increase of differential voltage between
BL and BL, and amplify the voltage difference further. As
a result, both src and dst start driving the bitlines with the
same values. This double sense amplification process pushes
both sets of bitlines to reach the final fully sensed state (3),
thus completing the RBM from src to dst.
Extending this process, RBM can move data between two

row buffers that are not adjacent to each other as well. For
example, RBM can move data from the src row buffer (in Fig-
ure 3) to a row buffer, dst2, that is two subarrays away (i.e.,
the bottom row buffer of Subarray 2, not shown in Figure 3).
This operation is similar to the movement shown in Figure 4,
except that the RBM command turns on two extra links (Ł 2

VDD

Activated

VDD- VDD/2- VDD 0

Charge Sharing &
Double Amplification21 Activated RB 3 Fully Sensed

0
0+ 0

BL BL BL BL BL BL

VDD

src

dst

src

dst

src

dstPrecharged
(VDD/2)

Link

VDD/2+ Ł

Figure 4: Row buffer movement process using LISA.

in Figure 4), which connect the bitlines of dst to the bitlines
of dst2, in state 2 . By enabling RBM to perform row buffer
movement across non-adjacent subarrays via a single com-
mand, instead of requiring multiple commands, the movement
latency and command bandwidth are reduced.

3.3. Row Buffer Movement (RBM) Latency

To validate the RBM process over LISA links and evaluate
its latency, we build a model of LISA using the Spectre Circuit
Simulator [2], with the NCSU FreePDK 45nm library [54]. We
configure the DRAMusing the JEDECDDR3-1600 timings [22],
and attach each bitline to 512 DRAM cells [40, 71]. We conser-
vatively perform our evaluations using worst-case cells, with
the resistance and capacitance parameters specified in the
ITRS reports [18, 19] for the metal lanes. Furthermore, we
conservatively model the worst RC drop (and hence latency)
by evaluating cells located at the edges of subarrays.

We now analyze the process of using one RBM operation to
move data between two non-adjacent row buffers that are two
subarrays apart. To help the explanation, we use an example
that performs RBM from RB0 to RB2, as shown on the left side
of Figure 5. The right side of the figure shows the voltage
of a single bitline BL from each subarray during the RBM
process over time. The voltage of the BL bitlines show the
same behavior, but have inverted values. We now explain this
RBM process step by step.

Figure 5: SPICE simulation results for transferring data across
two subarrays with LISA.

First, before the RBM command is issued, an ACTIVATE com-
mand is sent to RB0 at time 0. After roughly 21ns (1), the
bitline reaches VDD , which indicates the cells have been fully
restored (tRAS). Note that, in our simulation, restoration hap-
pens more quickly than the standard-specified tRAS value of
35ns, as the standard includes a guardband on top of the typical
cell restoration time to account for process and temperature

571

variation [3, 39]. This amount of margin is on par with values
experimentally observed in commodity DRAMs at 55°C [39].

Second, at 35ns (2), the memory controller sends the RBM
command to move data from RB0 to RB2. RBM simultaneously
turns on the four links (circled on the left in Figure 5) that
connect the subarrays’ bitlines.
Third, after a small amount of time (3), the voltage of

RB0’s bitline drops to about 0.9V, as the fully-driven bitlines
of RB0 are now charge sharing with the precharged bitlines
attached to RB1 and RB2. This causes both RB1 and RB2 to sense
the charge difference and start amplifying the bitline values.
Finally, after amplifying the bitlines for a few nanoseconds
(4 at 40ns), all three bitlines become fully driven with the
value that is originally stored in RB0.

We thus demonstrate that RBM moves data from one row
buffer to a row buffer two subarrays away at very low latency.
Our SPICE simulation shows that the RBM latency across two
LISA links is approximately 5ns (2 → 4). To be conserva-
tive, we do not allow data movement across more than two
subarrays with a single RBM command.3

3.4. Handling Process and Temperature Variation

On top of using worst-case cells in our SPICE model, we
add in a latency guardband to the RBM latency to account for
process and temperature variation, as DRAM manufacturers
commonly do [3, 39]. For instance, the ACTIVATE timing (tRCD)
has been observed to have margins of 13.3% [3] and 17.3% [39]
for different types of commodity DRAMs. To conservatively
account for process and temperature variation in LISA, we add
a large timing margin, of 60%, to the RBM latency. Even then,
RBM latency is 8ns and RBM provides a 500 GB/s data transfer
bandwidth across two subarrays that are one subarray apart
from each other, which is 26x the bandwidth of a DDR4-2400
DRAM channel (19.2 GB/s) [24].

4. Application 1: Rapid Inter-Subarray Bulk
Data Copying (LISA-RISC)

Due to the narrow memory channel width, bulk copy op-
erations used by applications and operating systems are per-
formance limiters in today’s systems [26, 28, 69, 83]. These
operations are commonly performed due to the memcpy and
memmov. Recent work reported that these two operations con-
sume 4-5% of all of Google’s datacenter cycles, making them
an important target for lightweight hardware acceleration [28].
As we show in Section 4.1, the state-of-the-art solution, Row-
Clone [69], has poor performance for such operations when
they are performed across subarrays in the same bank.
Our goal is to provide an architectural mechanism to ac-

celerate these inter-subarray copy operations in DRAM. We
propose LISA-RISC, which uses the RBM operation in LISA to
perform rapid data copying. We describe the high-level oper-
ation of LISA-RISC (Section 4.2), and then provide a detailed
look at the memory controller command sequence required to
implement LISA-RISC (Section 4.3).

3In other words, RBM has two variants, one that moves data between
immediately adjacent subarrays (Figure 4) and one that moves data between
subarrays that are one subarray apart from each other (Figure 5).

4.1. Shortcomings of the State-of-the-Art

Previously, we have described the state-of-the-art work,
RowClone [69], which addresses the problem of costly data
movement over memory channels by coping data completely
in DRAM. However, RowClone does not provide fast data copy
between subarrays. The main latency benefit of RowClone
comes from intra-subarray copy (RC-IntraSA for short) as it
copies data at the row granularity. In contrast, inter-subarray
RowClone (RC-InterSA) requires transferring data at the cache
line granularity (64B) through the internal data bus in DRAM.
Consequently, RC-InterSA incurs 16x longer latency than RC-
IntraSA. Furthermore, RC-InterSA is a long blocking operation
that prevents reading from or writing to the other banks in
the same rank, reducing bank-level parallelism [38, 53].

To demonstrate the ineffectiveness of RC-InterSA, we com-
pare it to today’s currently-used copy mechanism, memcpy,
which moves data via the memory channel. In contrast to
RC-InterSA, which copies data in DRAM, memcpy copies data
by sequentially reading out source data from the memory and
then writing it to the destination data in the on-chip caches.
Figure 6 compares the average system performance and queu-
ing latency of RC-InterSA and memcpy, on a quad-core system
across 50 workloads that contain bulk (8KB) data copies (see
Section 8 for our methodology). RC-InterSA actually degrades
system performance by 24% relative to memcpy, mainly be-
cause RC-InterSA increases the overall memory queuing la-
tency by 2.88x, as it blocks other memory requests from being
serviced by the memory controller performing the RC-InterSA
copy. In contrast, memcpy is not a long or blocking DRAM
command, but rather a long sequence of memory requests
that can be interrupted by other critical memory requests,
as the memory scheduler can issue memory requests out of
order [34, 35, 52, 53, 62, 73, 78, 84].

 0

 1

 2

 3

GMean

W
ei

gh
te

d
Sp

ee
du

p

-24.0%

 0
 200
 400
 600
 800

 1000

GMean

Q
ue

ue
in

g
La

te
nc

y
 (c

yc
le

s)

2.88x memcpy
RC-InterSA

Figure 6: Comparison of RowClone tomemcpy over themem-
ory channel, onworkloads that performbulk data copy across
subarrays on a 4-core system.

On the other hand, RC-InterSA offers energy savings of
5.1% on average over memcpy by not transferring the data over
the memory channel. Overall, these results show that neither
of the existing mechanisms (memcpy or RowClone) offers fast
and energy-efficient bulk data copy across subarrays.

4.2. In-DRAM Rapid Inter-Subarray Copy (RISC)

Our goal is to design a new mechanism that enables low-
latency and energy-efficient memory copy between rows in
different subarrays within the same bank. To this end, we
propose a new in-DRAM copy mechanism that uses LISA to
exploit the high-bandwidth links between subarrays. The key
idea, step by step, is to: (1) activate a source row in a subarray;
(2) rapidly transfer the data in the activated source row buffers
to the destination subarray’s row buffers, through LISA’s wide

572

inter-subarray links, without using the narrow internal data
bus; and (3) activate the destination row, which enables the
contents of the destination row buffers to be latched into the
destination row. We call this inter-subarray row-to-row copy
mechanism LISA-Rapid Inter-Subarray Copy (LISA-RISC).

As LISA-RISC uses the full row bandwidth provided by LISA,
it reduces the copy latency by 9.2x compared to RC-InterSA
(see Section 4.5). An additional benefit of using LISA-RISC is
that its inter-subarray copy operations are performed com-
pletely inside a bank. As the internal DRAM data bus is un-
touched, other banks can concurrently serve memory requests,
exploiting bank-level parallelism. This newmechanism is com-
plementary to RowClone, which performs fast intra-subarray
copies. Together, our mechanism and RowClone can enable
a complete set of fast in-DRAM copy techniques in future
systems. We now explain the step-by-step operation of how
LISA-RISC copies data across subarrays.

4.3. Detailed Operation of LISA-RISC

Figure 7 shows the command service timelines for both
LISA-RISC and RC-InterSA, for copying a single row of data
across two subarrays, as we show on the left. Data is copied
from subarray SA0 to SA2. We illustrate four row buffers (RB0–
RB3): recall from Section 2.1 that in order to activate one row,
a subarray must use two row buffers (at the top and bottom),
as each row buffer contains only half a row of data. As a result,
LISA-RISC must copy half a row at a time, first moving the
contents of RB1 into RB3, and then the contents of RB0 into
RB2, using two RBM commands.

First, the LISA-RISC memory controller activates the source
row (ACTSA0) to latch its data into two row buffers (RB0 and
RB1). Second, LISA-RISC invokes the first RBM operation
(RBM1→3) to move data from the bottom source row buffer
(RB1) to the respective destination row buffer (RB3), thereby
linking RB1 to both RB2 and RB3, which activates both RB2
and RB3. After this step, LISA-RISC cannot immediately in-
voke another RBM to transfer the remaining half of the source
row in RB0 into RB2, as a row buffer (RB2) needs to be in the
precharged state in order to receive data from an activated row
buffer (RB0). Therefore, LISA-RISC completes copying the first
half of the source data into the destination row before invok-
ing the second RBM, by writing the row buffer (RB3) into the
cells through an activation (ACTSA2). This activation enables
the contents of the sense amplifiers (RB3) to be driven into
the destination row. To address the issue that modern DRAM
chips do not allow a second ACTIVATE to an already-activated
bank, we use the back-to-back ACTIVATE command that is used
to support RowClone [69].

Third, to move data from RB0 to RB2 to complete the copy
transaction, we need to precharge both RB1 and RB2. The
challenge here is to precharge all row buffers except RB0. This
cannot be accomplished in today’s DRAM because a precharge
is applied at the bank level to all row buffers. Therefore, we
propose to add a new precharge-exception command, which
prevents a row buffer from being precharged and keeps it
activated. This bank-wide exception signal is supplied to all
row buffers, and when raised for a particular row buffer, the
selected row buffer retains its state while the other row buffers
are precharged. After the precharge-exception (PREE) is com-
plete, we then invoke the second RBM (RBM0→2) to copy RB0
to RB2, which is followed by an activation (ACTSA2′) to write
RB2 into SA2. Finally, LISA-RISC finishes the copy by issuing
a PRECHARGE command (PRE in Figure 7) to the bank.

In comparison, the command service timeline of RC-InterSA
is much longer, as RowClone can copy only one cache line of
data at a time (as opposed to half a row buffer). This requires
128 serial cache line transfers to read the data from RB0 and RB1
into a temporary row in another bank, followed by another
128 serial cache line transfers to write the data into RB2 and
RB3. LISA-RISC, by moving half a row using a single RBM
command, achieves 9.2x lower latency than RC-InterSA.

4.4. Data Coherence

When a copy is performed in DRAM, one potential disad-
vantage is that the data stored in the DRAM may not be the
most recent version, as the processor may have dirty cache
lines that belong to the section of memory being copied. Prior
works on in-DRAM migration have proposed techniques to
accommodate data coherence [67, 69]. Alternatively, we can
accelerate coherence operations by using structures like the
Dirty-Block Index [66].

4.5. Comparison of Copy Techniques

Figure 8 shows the DRAM latency and DRAM energy con-
sumption of different copy commands for copying a row of
data (8KB). The exact latency and energy numbers are listed
in Table 1.4 We derive the copy latency of each command se-
quence using equations based on the DDR3-1600 timings [22]
(available in our technical report [5]), and the DRAM energy
using the Micron power calculator [49]. For LISA-RISC, we
define a hop as the number of subarrays that LISA-RISC needs
to copy data across to move the data from the source subarray
to the destination subarray. For example, if the source and des-
tination subarrays are adjacent to each other, the number of

4Our reported numbers differ from prior work [69] because: (1) we use
faster DRAM timing parameters (1600-11-11-11 vs 1066-8-8-8), and (2) we use
the 8KB row size of most commercial DRAM instead of 4KB [69].

ACTSA0 PRERD0 RD126...RC-InterSA
(SA0 SA2)

LISA-RISC
(SA0 SA2)

Time

RBM1 3ACTSA0 PREEACTSA2 PREACTSA2

ACTSA2 PREWR0 WR127...

RBM0 2

RD1 RD127 WR1 WR126

9.2x reduction in latency

Serial cache line transfers

Bulk row buffer transfers
Copy

RB0

RB1

RB2

RB3

SA0

SA1

SA2

Figure 7: Command service timelines of a row copy for LISA-RISC and RC-InterSA (command latencies not drawn to scale).

573

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400

En
er

gy
 (μ

J)

Latency (ns)

InterSA

InterBankInt
raS

A

1 7 15 hops
Improvement of LISA-RISC memcpy

RowClone
LISA-RISC

Figure 8: Latency and DRAM energy of 8KB copy.

Copy Commands (8KB) Latency (ns) Energy (μJ)

memcpy (via mem. channel) 1366.25 6.2

RC-InterSA / Bank / IntraSA 1363.75 / 701.25 / 83.75 4.33 / 2.08 / 0.06

LISA-RISC (1 / 7 / 15 hops) 148.5 / 196.5 / 260.5 0.09 / 0.12 / 0.17

Table 1: Copy latency and DRAM energy.

hops is 1. The DRAM chips that we evaluate have 16 subarrays
per bank, so the maximum number of hops is 15.

We make two observations from these numbers. First, al-
though RC-InterSA incurs similar latencies as memcpy, it con-
sumes 29.6% less energy, as it does not transfer data over the
channel and DRAM I/O for each copy operation. However, as
we showed in Section 4.1, RC-InterSA incurs a higher system
performance penalty because it is a long-latency blockingmem-
ory command. Second, copying between subarrays using LISA
achieves significantly lower latency and energy compared to
RowClone, even though the total latency of LISA-RISC grows
linearly with the hop count.

By exploiting the LISA substrate, we thus provide a more
complete set of in-DRAM copy mechanisms. Our workload
evaluation results show that LISA-RISC outperforms RC-
InterSA and memcpy: its average performance improvement
and energy reduction over the best performing inter-subarray
copy mechanism (i.e., memcpy) are 66.2% and 55.4%, respec-
tively, on a quad-core system, across 50 workloads that per-
form bulk copies (see Section 9.1).

5. Application 2: In-DRAM Caching Using
Heterogeneous Subarrays (LISA-VILLA)

Our second application aims to reduce the DRAM access
latency for frequently-accessed (hot) data. Prior work intro-
duces heterogeneity into DRAM, where one region has a fast
access latency but small capacity (fewer DRAM rows), while
the other has a slow access latency but high capacity (many
more rows) [40, 71]. To yield the highest performance benefits,
the fast region is used as a dynamic cache that stores the hot
rows. There are two design constraints that must be consid-
ered: (1) ease of implementation, as the fast caching structure
needs to be low-cost and non-intrusive; and (2) data move-
ment cost, as the caching mechanism should adapt to dynamic
program phase changes, which can lead to changes in the set
of hot DRAM rows. As we show in Section 5.1, prior work has
not balanced the trade-off between these two constraints.

Our goal is to design a heterogeneous DRAM that offers fast
data movement with a low-cost and easy-to-implement de-
sign. To this end, we propose LISA-VILLA (VarIabLe LAtency),
a mechanism that uses LISA to provide fast row movement
into the cache when the set of hot DRAM rows changes.

LISA-VILLA is also easy to implement, as discussed in Sec-
tion 5.2. We describe our hot row caching policy in Section 5.3.

5.1. Shortcomings of the State-of-the-Art
We observe that two state-of-the-art techniques for hetero-

geneity within a DRAM chip are not effective at providing
both ease of implementation and low movement cost.
CHARM [71] introduces heterogeneity within a rank by

designing a few fast banks with (1) shorter bitlines for faster
data sensing, and (2) closer placement to the chip I/O for faster
data transfers. To exploit these low-latency banks, CHARM
uses an OS-managed mechanism to statically allocate hot data
to them based on program profile information. Unfortunately,
this approach cannot adapt to program phase changes, lim-
iting its performance gains. If it were to adopt dynamic hot
data management, CHARM would incur high movement cost
over the narrow 64-bit internal data bus in DRAM, as illus-
trated in Figure 9a, since it does not provide high-bandwidth
connectivity between banks.

High Movement Cost

Fast Bank Slow Bank

64b Internal
Data Bus

(a) CHARM [71]

Underutilized
Cache Space

Near
Seg.

Far
Seg.

Isolation
Transistors

(b) TL-DRAM [40]

Figure 9: Drawbacks of existing heterogeneous DRAMs.

TL-DRAM [40] provides heterogeneity within a subarray by
dividing it into fast (near) and slow (far) segments that have
short and long bitlines, respectively, using isolation transistors.
To manage the fast segment as an OS-transparent hardware
cache, TL-DRAM proposes a fast intra-subarray movement
scheme similar to RowClone [69]. The main disadvantage
is that TL-DRAM needs to cache each hot row in two near
segments, as shown in Figure 9b, as each subarray uses two
row buffers on opposite ends to sense data in the open-bitline
architecture. This prevents TL-DRAM from using the full near
segment capacity. TL-DRAM’s area overhead is also sizable
(3.15%) in an open-bitline architecture. As we can see, neither
CHARM nor TL-DRAM strike a good trade-off between the
two design constraints.

5.2. Variable Latency (VILLA) DRAM
We propose to introduce heterogeneity within a bank by de-

signing heterogeneous-latency subarrays. We call this heteroge-
neous DRAM design VarIabLe LAtency DRAM (VILLA-DRAM).
To design a low-cost fast subarray, we take an approach similar
to prior work, attaching fewer cells to each bitline to reduce
the parasitic capacitance and resistance. This reduces the sens-
ing (tRCD), restoration (tRAS), and precharge (tRP) time of the
fast subarrays [40, 51, 71]. In this work, we focus on managing
the fast subarrays in hardware, as it offers better adaptivity to
dynamic changes in the hot data set.
In order to take advantage of VILLA-DRAM, we rely on

LISA-RISC to rapidly copy rows across subarrays, which sig-
nificantly reduces the caching latency. We call this synergistic

574

design, which builds VILLA-DRAM using the LISA substrate,
LISA-VILLA. Nonetheless, the cost of transferring data to a fast
subarray is still non-negligible, especially if the fast subarray
is far from the subarray where the data to be cached resides.
Therefore, an intelligent cost-aware mechanism is required to
make astute decisions on which data to cache and when.

5.3. Caching Policy for LISA-VILLA

We design a simple epoch-based caching policy to evaluate
the benefits of caching a row in LISA-VILLA. Every epoch,
we track the number of accesses to rows by using a set of
1024 saturating counters for each bank.5 The counter values
are halved every epoch to prevent staleness. At the end of an
epoch, we mark the 16 most frequently-accessed rows as hot,
and cache them when they are accessed the next time. For our
cache replacement policy, we use the benefit-based caching
policy proposed by Lee et al. [40]. Specifically, it uses a benefit
counter for each row cached in the fast subarray: whenever a
cached row is accessed, its counter is incremented. The row
with the least benefit is replaced when a new row needs to
be inserted. Note that a large body of work proposed various
caching policies (e.g., [11, 13, 15, 25, 30, 48, 61, 68, 81]), each
of which can potentially be used with LISA-VILLA.
Our evaluation shows that LISA-VILLA improves system

performance by 5.1% on average, and up to 16.1%, for a range
of 4-core workloads (see Section 9.2).

6. Application 3: Fast Precharge Using Linked
Precharge Units (LISA-LIP)

Our third application aims to accelerate the process of
precharge. The precharge time for a subarray is determined
by the drive strength of the precharge unit. We observe that
in modern DRAM, while a subarray is being precharged, the
precharge units (PUs) of other subarrays remain idle.
We propose to exploit these idle PUs to accelerate a

precharge operation by connecting them to the subarray that
is being precharged. Our mechanism, LISA-LInked Precharge
(LISA-LIP), precharges a subarray using two sets of PUs: one
from the row buffer that is being precharged, and a second set
from a neighboring subarray’s row buffer (which is already in
the precharged state), by enabling the links between the two
subarrays.
Figure 10 shows the process of linked precharging using

LISA. Initially, only one subarray (top) is fully activated
(state 1) while the neighboring (bottom) subarray is in
the precharged state. The neighboring subarray is in the
precharged state, as only one subarray in a bank can be acti-
vated at a time, while the other subarrays remain precharged.
In state 2 , we begin the precharge operation by disabling the
sense amplifier in the top row buffer and enabling its PU. After
we enable the links between the top and bottom subarrays,
the bitlines start sharing charge with each other, and both PUs
simultaneously reinitialize the bitlines, eventually fully pulling
the bitlines to VDD/2 (state 3). Note that we are using two
PUs to pull down only one set of activated bitlines, which is
why the precharge process is shorter.

5The hardware cost of these counters is low, requiring only 6KB of storage
in the memory controller (see Section 7.1).

VDD

VDD/2

Link

Precharged

Activated

VDD-

VDD/2+

VDD/2-

Charge Sharing &
Double Precharging21 Activated RB 3 Fully Precharged

Precharge
Enabled

0 0+

VDD/2 VDD/2

VDD/2

VDD/2

VDD/2

Figure 10: Linked precharging through LISA.

To evaluate the accelerated precharge process, we use the
same methodology described in Section 3.3 and simulate the
linked precharge operation in SPICE. Figure 11 shows the
resulting timing diagram. During the first 2ns, the wordline
is lowered to disconnect the cells from the bitlines 1 . Then,
we enable the links to begin precharging the bitlines 2 . The
result shows that the precharge latency reduces significantly
due to having two PUs to perform the precharge. LISA enables
a shorter precharge latency of approximately 3.5ns 3 versus
the baseline precharge latency of 13.1ns 4 .

Figure 11: SPICE simulation of precharge operation.

To account for process and temperature variation, we
add a guardband to the SPICE-reported latency, increasing
it to 5ns (i.e., by 42.9%), which still achieves 2.6x lower
precharge latency than the baseline. Our evaluation shows that
LISA-LIP improves performance by 10.3% on average, across
50 four-core workloads (see Section 9.3).

7. Hardware Cost

7.1. Die Area Overhead

To evaluate the area overhead of adding isolation transistors,
we use area values from prior work, which adds isolation
transistors to disconnect bitlines from sense amplifiers [55].
That work shows that adding an isolation transistor to every
bitline incurs a total of 0.8% die area overhead in a 28nmDRAM
process technology. Similar to prior work that adds isolation
transistors to DRAM [40, 55], our LISA substrate also requires
additional control logic outside the DRAM banks to control
the isolation transistors, which incurs a small amount of area
and is non-intrusive to the cell arrays. For LISA-VILLA, we use
1024 six-bit saturating counters to track the access frequency
of rows in every bank; this requires an additional 6KB storage
within a memory controller connected to one rank.

7.2. Handling Repaired Rows

To improve yield, DRAM manufacturers often employ post-
manufacturing repair techniques that can remap faulty rows
to spare rows provisioned in every subarray [31]. Therefore,
consecutive row addresses as observed by the memory con-
troller may physically reside in different subarrays. To handle

575

this issue for techniques that require the controller to know
the subarray a row resides in (e.g., RowClone [69], LISA-RISC),
a simple approach can be used to expose the repaired row
information to the memory controller. Since DRAM already
stores faulty rows’ remapping information inside the chip, this
information can be exposed to the controller through the serial
presence detect (SPD) [23], which is an EEPROM that stores
DRAM information such as timing parameters. The memory
controller can read this stored information at system boot time
so that it can correctly determine a repaired row’s location
in DRAM. Note that similar techniques may be necessary for
other mechanisms that require information about physical
location of rows in DRAM (e.g., [4, 29, 33, 36, 40, 43]).

8. Methodology

We evaluate our system using a variant of Ramulator [32],
an open-source cycle-accurate DRAM simulator, driven by
traces generated from Pin [46]. We will make our simulator
publicly available [6]. We use a row buffer policy that closes
a row only when there are no more outstanding requests in
the memory controller to the same row [62]. Unless stated
otherwise, our simulator uses the parameters listed in Table 2.

Processor 1–4 OoO cores, 4GHz, 3-wide issue

Cache L1: 64KB, L2: 512KB per core, L3: 4MB, 64B lines

Mem. Controller 64/64-entry read/write queue, FR-FCFS [62, 84]

DRAM
DDR3-1600 [50], 1–2 channels, 1 rank/channel,
8 banks/rank, 16 subarrays/bank

Table 2: Evaluated system configuration.

Benchmarks and Workloads. We primarily use bench-
marks from TPC(-C/-H) [76], DynoGraph (BFS, Page-
Rank) [58], SPEC CPU2006 [72], and STREAM [47], along
with a random-access microbenchmark similar to HPCC Ran-
domAccess [14]. Because these benchmarks predominantly
stress the CPU and memory while rarely invoking memcpy, we
use the following benchmarks to evaluate different copy mech-
anisms: (1) bootup, (2) forkbench, and (3) Unix shell. These
were shared by the authors of RowClone [69]. The bootup
benchmark consists of a trace collected while a Debian oper-
ating system was booting up. The forkbench kernel forks a
child process that copies 1K pages from the parent process by
randomly accessing them from a 64MB array. The Unix shell
is a script that runs find in a directory along with ls on each
subdirectory. More information on these is in [69].

To evaluate the benefits of different data copy mechanisms
in isolation, we use a copy-aware page mapping policy that
allocates destination pages to certain DRAM structures (i.e.,
subarrays, banks) such that only the specified copymechanism
is used for copy operations. For example, when evaluating
RC-IntraSA, the page mapper allocates the destination page
only within the same subarray as the source page [69].

To construct multi-core workloads for evaluating the bene-
fits of data copy mechanisms, we randomly assemble 50 work-
loads, each comprising 50% copy-intensive benchmarks and
50% non-copy-intensive benchmarks. To evaluate the benefits
of in-DRAM caching and reduced precharge time, we restrict
our workloads to randomly-selected memory-intensive (≥ 5

misses per thousand instructions) non-copy-intensive bench-
marks. Due to the large number of workloads, we present
detailed results for only five workload mixes (Table 3), along
with the average results across all 50 workloads.

Mix 1 tpcc64, forkbench, libquantum, bootup
Mix 2 bootup, xalancbmk, pagerank, forkbench
Mix 3 libquantum, pagerank, forkbench, bootup
Mix 4 mcf, forkbench, random, forkbench
Mix 5 bfs, bootup, tpch2, bootup

Table 3: A subset of copy workloads with detailed results.

Performance Metrics. We measure single-core and
multi-core performance using IPC and Weighted Speedup
(WS) [70], respectively. Prior work showed that WS is a
measure of system throughput [8]. To report DRAM energy
consumption, we use the Micron power calculator [49]. We
run all workloads for 100 million instructions, as done in
many recent works [35, 36, 40, 41, 52].

VILLA-DRAM Configuration. For our simulated VILLA-
DRAM, each fast subarray consists of 32 rows to achieve low
latency on sensing, precharge, and restoration (a typical subar-
ray has 512 rows). Our SPICE simulation reports the following
new timing parameters for a 32-row subarray: tRCD=7.5ns,
tRP=8.5ns, and tRAS=13ns, which are reduced from the origi-
nal timings by respectively, 45.5%, 38.2%, and 62.9%. For each
bank, we allocate 4 fast subarrays in addition to the 16 512-row
subarrays, incurring a 1.6% area overhead. We set the epoch
length for our caching policy to 10,000 cycles.

9. Evaluation

We quantitatively evaluate our proposed applications of
LISA: (1) rapid bulk copying (LISA-RISC), (2) in-DRAM caching
with heterogeneous subarrays (LISA-VILLA), and (3) reduced
precharge time (LISA-LIP).

9.1. Bulk Memory Copy

9.1.1. Single-Core Workloads. Figure 12 shows the per-
formance of three copy benchmarks on a single-core sys-
tem with one memory channel and 1MB of last-level cache
(LLC). We evaluate the following bulk copy mechanisms:
(1) memcpy, which copies data over the memory channel;
(2) RowClone [69]; and (3) LISA-RISC. We use two different
hop counts between the source and destination subarray for
LISA-RISC: 15 (longest) and 1 (shortest). They are labeled as
LISA-RISC-15 and LISA-RISC-1, respectively, in the figure. We
make four major observations.
First, LISA-RISC achieves significant improvement over

RC-InterSA for all three benchmarks in terms of both IPC
and memory energy consumption, shown in Figure 12a and
Figure 12b, respectively. This shows that the LISA substrate is
effective at performing fast inter-subarray copies.
Second, both LISA-RISC-1 and LISA-RISC-15 significantly

reduce the memory energy consumption over memcpy. This is
due to (1) reduced memory traffic over the channel by keeping
the data within DRAM, and (2) higher performance.

Third, LISA-RISC-1/-15 provides 12.6%/10.6%, 4.9x/4.3x, and
1.8%/0.7% speedup for bootup, forkbench, and shell, re-
spectively, over memcpy. The performance gains are smaller

576

 0
 0.5

 1
 1.5

 2
 2.5

 3

bootup forkbench shell

IP
C

12.6%
4.9x

1.8%

memcpy
RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(a) IPC

 0
 0.2
 0.4
 0.6
 0.8

 1

bootup forkbench shellN
or

m
. D

RA
M

 E
ne

rg
y

-58.0% -94.7% -77.1%
memcpy

RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(b) Energy

 0.5

 1

 2

 4

bootup forkbench shell

N
or

m
al

iz
ed

 IP
C

(lo
g2

)

18.2%

4.2x

44.7%

256KB
512KB

1MB
2MB
4MB

(c) LISA’s performance improvement over memcpy as LLC size varies

Figure 12: Comparison of copy mechanisms in a single-core
system. Value (%) on top indicates the improvement of LISA-
RISC-1 over memcpy.

for bootup and shell. Both of these benchmarks invoke
fewer copy operations (i.e., 2171 and 2682, respectively) than
forkbench, which invokes a large number (40952) of copies.
As a result, forkbench is more sensitive to thememory latency
of copy commands. Furthermore, the large LLC capacity (1MB)
helps absorb the majority of memory writes resulting from
memcpy for bootup and shell, thereby reducing the effective
latency of memcpy.

Fourth, RC-InterSA performsworse than memcpy for bootup
and shell due to its long blocking copy operations. Although,
it attains a 19.4% improvement on forkbench because memcpy
causes severe cache pollution by installing a large amount of
copied data into the LLC. Compared to the 20% cache hit rate
for memcpy, RC-InterSA has a much higher hit rate of 67.2%
for forkbench. The copy performance of memcpy is strongly
correlated with the LLC management policy and size.
To understand performance sensitivity to LLC size, Fig-

ure 12c shows the speedup of LISA-RISC-1 over memcpy for
different LLC capacities. Wemake two observations, which are
also similar for LISA-RISC-15 (not shown). First, for bootup
and shell, the speedup of LISA over memcpy reduces as the
LLC size increases because the destination locations of memcpy
operations are more likely to hit in the larger cache.

Second, for forkbench, LISA-RISC’s performance gain over
memcpy decreases as cache size reduces from 1MB to 256KB.
This is because the LLC hit rate reduces much more signifi-
cantly for LISA-RISC, from 67% (1MB) to 10% (256KB), than for
memcpy (from 20% at 1MB, to 19% at 256KB). When forkbench
uses LISA-RISC for copying data, its working set mainly con-
sists of non-copy data, which has good locality. As the LLC
size reduces by 4x, the working set no longer fits in the smaller
cache, thus causing a significant hit rate reduction. On the

other hand, when memcpy is used as the copy mechanism,
the working set of forkbench is mainly from bulk copy data,
and is less susceptible to cache size reduction. Nonetheless,
LISA-RISC still provides an improvement of 4.2x even with a
256KB cache.

We conclude that LISA-RISC significantly improves perfor-
mance and memory energy efficiency in single-core workloads
that invoke bulk copies.

9.1.2. Multi-Core Workloads. Figure 13 shows the system
performance and energy efficiency (i.e., memory energy per
instruction) of different copy mechanisms across 50 work-
loads, on a quad-core system with two channels and 4MB of
LLC. The error bars in this figure (and other figures) indicate
the 25th and 75th percentile values across all 50 workloads.
Similar to the performance trends seen in the single-core sys-
tem, LISA-RISC consistently outperforms other mechanisms
at copying data between subarrays. LISA-RISC-1 attains a high
average system performance improvement of 66.2% and 2.2x
over memcpy and RC-InterSA, respectively. Although Mix 5
has the smallest number of copy operations out of the five
presented workload mixes, LISA-RISC still improves its per-
formance by 6.7% over memcpy. By moving copied data only
within DRAM, LISA-RISC significantly reduces memory en-
ergy consumption (55.4% on average) over memcpy. In sum-
mary, LISA-RISC provides both high performance and high
memory energy efficiency for bulk data copying for a wide
variety of single- and multi-core workloads.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

Mix1 Mix2 Mix3 Mix4 Mix5 GMean50

N
or

m
al

iz
ed

 W
S

Workloads

66.2% RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(a) Weighted speedup normalized to memcpy

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Mix1 Mix2 Mix3 Mix4 Mix5 HMean50N
or

m
al

iz
ed

 M
em

or
y

En
er

gy
/In

str
uc

tio
n

Workloads

-55.4%
RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(b) Memory energy efficiency normalized to memcpy

Figure 13: Four-core system evaluation: (a) weighted speedup
and (b) memory energy per instruction.

9.2. In-DRAM Caching with LISA-VILLA

Figure 14 shows the system performance improvement of
LISA-VILLA over a baseline without any fast subarrays in a
four-core system. It also shows the hit rate in VILLA-DRAM,
i.e., the fraction of accesses that hit in the fast subarrays. We
make two main observations. First, by exploiting LISA-RISC
to quickly cache data in VILLA-DRAM, LISA-VILLA improves
system performance for a wide variety of workloads — by
up to 16.1%, with a geometric mean of 5.1%. This is mainly
due to reduced DRAM latency of accesses that hit in the fast
subarrays (which comprise 16MB of total storage across two
memory channels). The performance improvement heavily

577

correlates with the VILLA cache hit rate. Our work does not
focus on optimizing the caching scheme, but the hit rate may
be increased by an enhanced caching policy (e.g., [61, 68]),
which can further improve system performance.

 0.95
 1

 1.05
 1.1

 1.15

 0 10 20 30 40 50
 0
 10
 20
 30
 40
 50
 60
 70

N
or

m
al

iz
ed

 W
S

V
ILLA

 H
it Rate (%

)

Workloads

LISA-VILLA
Cache Hit Rate

 0
 0.2
 0.4
 0.6
 0.8

 1

GMean

N
or

m
al

iz
ed

 W
S

RC-InterSA
LISA-VILLA

Figure 14: Performance improvement and hit rate with LISA-
VILLA, and performance comparison to using RC-InterSA
with VILLA-DRAM.

Second, the VILLA-DRAM design, which consists of hetero-
geneous subarrays, is not practical without LISA. Figure 14
shows that using RC-InterSA to move data into the cache
reduces performance by 52.3% due to slow data movement,
which overshadows the benefits of caching. The results indi-
cate that LISA is an important substrate to enable not only
fast bulk data copy, but also a fast in-DRAM caching scheme.

9.3. Accelerated Precharge with LISA-LIP

Figure 15 shows the system performance improvement
of LISA-LIP over a baseline that uses the standard DRAM
precharge latency, as well as LISA-LIP’s row-buffer hit rate,
on a four-core system across 50 workloads. LISA-LIP attains a
maximum gain of 13.2%, with a mean improvement of 8.1%.
The performance gain becomes higher as the row-buffer hit
rate decreases, which leads to more precharge commands.
These results show that LISA is a versatile substrate that effec-
tively reduces precharge latency in addition to accelerating
data movement.

 0.95
 1

 1.05
 1.1

 1.15

 0 10 20 30 40 50
 10
 20
 30
 40
 50
 60
 70

N
or

m
al

iz
ed

 W
S RB H

it Rate (%
)

Workloads

LISA-LIP Speedup RB Hit Rate

Figure 15: Speedup and row buffer (RB) hit rate of LISA-LIP.

We also evaluate the effectiveness of combining LISA-VILLA
and LISA-LIP (not shown, but available in our technical re-
port [5]). The combined mechanism, which is transparent to
software, improves system performance by 12.2% on average
and up to 23.8% across the same set of 50 workloads without
bulk copies. Thus, LISA is an effective substrate that can enable
mechanisms to fundamentally reduce memory latency.

9.4. Putting Everything Together

As all of the three proposed applications are complementary
to each other, we evaluate the effect of putting them together
on a four-core system. Figure 16 shows the system perfor-
mance improvement of adding LISA-VILLA to LISA-RISC (15
hops), as well as combining all three optimizations, compared
to our baseline using memcpy and standard DDR3-1600 mem-
ory. We draw several key conclusions. First, the performance
benefits from each scheme are additive. On average, adding
LISA-VILLA improves performance by 16.5% over LISA-RISC

alone, and adding LISA-LIP further provides an 8.8% gain over
LISA-(RISC+VILLA). Second, although LISA-RISC alone pro-
vides a majority of the performance improvement over the
baseline (59.6% on average), the use of both LISA-VILLA and
LISA-LIP further improves performance, resulting in an aver-
age performance gain of 94.8% and memory energy reduction
(not plotted) of 49.0%. Taken together, these results indicate
that LISA is an effective substrate that enables a wide range
of high-performance and energy-efficient applications in the
DRAM system.

 0.5

 1

 2

 4

 8

 0 10 20 30 40 50

N
or

m
al

iz
ed

 W
S

(lo
g2

)

Workloads

LISA-(RISC+VILLA+LIP)
LISA-(RISC+VILLA)

LISA-RISC-15

Figure 16: Combined WS improvement of LISA applications.

9.5. Sensitivity to System Configuration

Figure 17 shows the weighted speedup for memcpy and
LISA-All (i.e., all three applications) on a 4-core system using
varying memory channel counts and LLC sizes. The results
show that performance improvement increases with fewer
memory channels, as memory contention increases. On the
other hand, adding more memory channels increases memory-
level parallelism, allowing more of the copy latency to be
hidden. Similar trends are observed with the LLC capacity. As
LLC size decreases, the working set becomes less likely to fit
with memcpy, worsening its performance. LISA-All provides
significant performance benefits for all configurations.

 0
 2
 4
 6
 8

 10

W
ei

gh
te

d
Sp

ee
du

p

Memory Channels LLC Size

2.1x 1.9x 1.8x
2.0x 1.9x 1.9x

memcpy
LISA-All

Figure 17: Performance sensitivity to channels and LLC size.

9.6. Effect of Copy Distance on LISA-RISC

Table 4 shows that the performance gain and memory en-
ergy savings of LISA-RISC over memcpy increases as the copy
distance reduces. This is because with fewer subarrays be-
tween the source and destination subarrays, the number of
RBM commands invoked by LISA-RISC reduces accordingly,
which decreases the latency and memory energy consumption
of bulk data copy.

Copy Distance (hops) 1 3 7 15 31 63

RISC Copy Latency (ns) 148.5 164.5 196.5 260.5 388.5 644.5

WS Improvement (%) 66.2 65.3 63.3 59.6 53.0 42.4

DRAM Energy Savings (%) 55.4 55.2 54.6 53.6 51.9 48.9

Table 4: Effect of copy distance on LISA-RISC.

10. Other Applications Enabled by LISA

We describe two additional applications that can potentially
benefit from LISA. We describe them at a high level, and defer
evaluations to future work.

578

Reducing Subarray Conflicts via Remapping. When two
memory requests access two different rows in the same bank,
they have to be served serially, even if they are to different sub-
arrays. To mitigate such bank conflicts, Kim et al. [36] propose
subarray-level parallelism (SALP), which enables multiple sub-
arrays to remain activated at the same time. However, if two ac-
cesses are to the same subarray, they still have to be served se-
rially. This problem is exacerbated when frequently-accessed
rows reside in the same subarray. To help alleviate such sub-
array conflicts, LISA can enable a simple mechanism that ef-
ficiently remaps or moves the conflicting rows to different
subarrays by exploiting fast RBM operations.

Extending the Range of In-DRAM Bulk Operations. To
accelerate bitwise operations, Seshadri et al. [67] propose a
new mechanism that performs bulk bitwise AND and OR op-
erations in DRAM. Their mechanism is restricted to applying
bitwise operations only on rows within the same subarray
as it requires the copying of source rows before performing
the bitwise operation. The high cost of inter-subarray copies
makes the benefit of this mechanism inapplicable to data re-
siding in rows in different subarrays. LISA can enable efficient
inter-subarray bitwise operations by using LISA-RISC to copy
rows to the same subarray at low latency and low energy.

11. Related Work

To our knowledge, this is the first work to propose a DRAM
substrate that supports fast data movement between subarrays
in the same bank, which enables a wide variety of applications
for DRAM systems. We already provided extensive compar-
isons to RowClone [69], CHARM [71], and TL-DRAM [40].
We now discuss prior works that focus on each of the opti-
mizations that LISA enables.

Bulk Data Transfer Mechanisms. Prior works [9, 10, 27]
have added scratchpad memories to reduce CPU pressure dur-
ing bulk data transfers, which can also enable sophisticated
data movement (e.g., scatter-gather), but they still require data
to first be moved on-chip. A patent proposes a DRAM that can
copy a page across memory blocks [65], but lacks concrete
analysis and evaluation of the underlying copy operations.
Intel I/O Acceleration Technology [16] allows for memory-to-
memory DMA transfers across a network, but cannot transfer
data within main memory.

Zhao et al. [83] propose to add a bulk data movement engine
inside thememory controller to speed up bulk-copy operations.
Jiang et al. [26] design a different copy engine, placed within
the cache controller, to alleviate pipeline and cache stalls that
occur when these transfers take place. However, these works
do not directly address the problem of data movement across
the narrow memory channel.
A concurrent work by Lu et al. [45] proposes a het-

erogeneous DRAM design similar to VILLA-DRAM, called
DAS-DRAM, but with a very different data movement mecha-
nism from LISA. It introduces a row ofmigration cells into each
subarray to move rows across subarrays. Unfortunately, the
latency of DAS-DRAM is not scalable with movement distance,
because it requires writing the migrating row into each inter-
mediate subarray’s migration cells before the row reaches its

destination, which prolongs data transfer latency. In contrast,
LISA provides a direct path to transfer data between row buffers
without requiring intermediate data writes into the subarray.

Caching. Several prior works (e.g., [11, 13, 15, 30]) have pro-
posed to add a small SRAM cache to DRAM chips, which
obtains lower access latency at the cost of high area overhead.
Many other works (e.g., [7, 20, 21, 57, 59, 60, 61, 68]) have
proposed various cache management policies. Such caching
policies can potentially be integrated with LISA-VILLA to
achieve a better hit rate in the fast subarrays.

Reducing DRAM Latency. Several types of DRAM provide
low latency, such as Micron’s RLDRAM [51] or Fujitsu’s FC-
DRAM [64]. These have fewer cells connected to each bitline,
which comes with a large overhead [36, 40].

O et al. [55] propose to add isolation transistors that sepa-
rate bitlines from their sense amplifiers so that the bitlines can
be precharged without deactivating the row buffer. This helps
to hide the latency impact of precharge. These isolation tran-
sistors are orthogonal to isolation transistors in LISA, which
interconnect bitlines of neighboring subarrays, and LISA can
be combined with [55] to further improve performance. LISA
can also be combined with many other proposals that reduce
DRAM latency (e.g., [4, 12, 36, 37, 39, 40]).

12. Conclusion

We present a new DRAM substrate, low-cost inter-linked
subarrays (LISA), that expedites bulk data movement across
subarrays in DRAM. LISA achieves this by creating a new
high-bandwidth datapath at low cost between subarrays, via
the insertion of a small number of isolation transistors. We
describe and evaluate three applications that are enabled by
LISA. First, LISA significantly reduces the latency and memory
energy consumption of bulk copy operations between subar-
rays over two state-of-the-art mechanisms [69]. Second, LISA
enables an effective in-DRAM caching scheme on a new het-
erogeneous DRAM organization, which uses fast subarrays for
caching hot data in every bank. Third, we reduce precharge la-
tency by connecting two precharge units of adjacent subarrays
together using LISA. We experimentally show that the three
applications of LISA greatly improve system performance and
memory energy efficiency when used individually or together,
across a variety of workloads and system configurations.

We conclude that LISA is an effective substrate that enables
several effective applications. We believe that this substrate,
which enables low-cost interconnections between DRAM sub-
arrays, can pave the way for other applications that can further
improve system performance and energy efficiency through
fast data movement in DRAM.

Acknowledgments

We thank the anonymous reviewers and SAFARI group

members for their helpful feedback. We acknowledge the sup-

port of Google, Intel, Nvidia, Samsung, and VMware. This

research was supported in part by the ISTC-CC, SRC, CFAR,

and NSF (grants 1212962, 1319587, and 1320531). Kevin Chang

is supported in part by the SRCEA/Intel Fellowship.

579

References

[1] S. Blagodurov et al., “A Case for NUMA-Aware Contention Management
on Multicore Systems,” in USENIX ATC, 2011.

[2] Cadence Design Systems, Inc., “Spectre Circuit Simulator,” http://www.
cadence.com/products/rf/spectre_circuit/pages/default.aspx.

[3] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in
DRAMs for Run-Time Performance Optimization,” in DATE, 2014.

[4] K. K. Chang et al., “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” in HPCA, 2014.

[5] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): A New
DRAM Substrate with Higher Connectivity,” Carnegie Mellon Univ.,
SAFARI Research Group, Tech. Rep., 2016.

[6] CMU SAFARI Research Group, https://github.com/CMU-SAFARI.
[7] J. D. Collins and D. M. Tullsen, “Hardware Identification of Cache Con-

flict Misses,” in MICRO, 1999.
[8] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” IEEE Micro, 2008.
[9] M. Gschwind, “Chip Multiprocessing and the Cell Broadband Engine,”

in CF, 2006.
[10] J. Gummaraju et al., “Architectural Support for the Stream Execution

Model on General-Purpose Processors,” in PACT, 2007.
[11] C. A. Hart, “CDRAM in a Unified Memory Architecture,” in Intl. Com-

puter Conference, 1994.
[12] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting

Row Access Locality,” in HPCA, 2016.
[13] H. Hidaka et al., “The Cache DRAM Architecture,” IEEE Micro, 1990.
[14] HPC Challenge, “RandomAccess,” http://icl.cs.utk.edu/hpcc.
[15] W.-C. Hsu and J. E. Smith, “Performance of Cached DRAMOrganizations

in Vector Supercomputers,” in ISCA, 1993.
[16] Intel Corp., “Intel®I/O Acceleration Technology,” http://www.intel.com/

content/www/us/en/wireless-network/accel-technology.html.
[17] Intel Corp., “Intel 64 and IA-32 Architectures Optimization Reference

Manual,” 2012.
[18] ITRS, http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/

2013ITRS/2013Tables/FEP_2013Tables.xlsx, 2013.
[19] ITRS, http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/

2013ITRS/2013Tables/Interconnect_2013Tables.xlsx, 2013.
[20] A. Jaleel et al., “Adaptive Insertion Policies for Managing Shared Caches,”

in PACT, 2008.
[21] A. Jaleel et al., “High Performance Cache Replacement Using Re-

reference Interval Prediction (RRIP),” in ISCA, 2010.
[22] JEDEC, “DDR3 SDRAM Standard,” 2010.
[23] JEDEC, “Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for

DDR3 SDRAM Modules,” 2011.
[24] JEDEC, “DDR4 SDRAM Standard,” 2012.
[25] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM Caching for CMP

Server Platforms,” in HPCA, 2010.
[26] X. Jiang et al., “Architecture Support for Improving Bulk Memory Copy-

ing and Initialization Performance,” in PACT, 2009.
[27] J. A. Kahle et al., “Introduction to the Cell Multiprocessor,” IBM JRD,

2005.
[28] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” in ISCA, 2015.
[29] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance

DRAM Process Scaling,” in The Memory Forum, 2014.
[30] G. Kedem and R. P. Koganti, “WCDRAM: A Fully Associative Integrated

Cached-DRAM with Wide Cache Lines,” CS-1997-03, Duke, 1997.
[31] B. Keeth and R. J. Baker, DRAM Circuit Design: A Tutorial. Wiley, 2000.
[32] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL,

2015.
[33] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.
[34] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling

Algorithm for Multiple Memory Controllers,” in HPCA, 2010.
[35] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differ-

ences in Memory Access Behavior,” in MICRO, 2010.
[36] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP)

in DRAM,” in ISCA, 2012.
[37] C. J. Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing

Write-Caused Interference in Memory Systems,” Tech. Rep., 2010.
[38] C. J. Lee et al., “Improving Memory Bank-Level Parallelism in the Pres-

ence of Prefetching,” in MICRO, 2009.
[39] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for

the Common-Case,” in HPCA, 2015.
[40] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost

DRAM Architecture,” in HPCA, 2013.
[41] D. Lee et al., “Simultaneous Multi Layer Access: A High Bandwidth and

Low Cost 3D-Stacked Memory Interface,” TACO, 2016.
[42] K.-N. Lim et al., “A 1.2V 23nm 6F2 4Gb DDR3 SDRAMwith Local-Bitline

Sense Amplifier, Hybrid LIO Sense Amplifier and Dummy-Less Array
Architecture,” in ISSCC, 2012.

[43] J. Liu et al., “An Experimental Study of Data Retention Behavior in Mod-
ern DRAM Devices: Implications for Retention Time Profiling Mecha-
nisms,” in ISCA, 2013.

[44] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in
ISCA, 2012.

[45] S.-L. Lu et al., “Improving DRAM Latency with Dynamic Asymmetric
Subarray,” in MICRO, 2015.

[46] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in PLDI, 2005.

[47] J. D. McCalpin, “STREAM Benchmark.”
[48] J. Meza et al., “Enabling Efficient and Scalable Hybrid Memories Using

Fine-Granularity DRAM Cache Management,” CAL, 2012.
[49] Micron Technology, “Calculating Memory System Power for DDR3,”

2007.
[50] Micron Technology, Inc., “4Gb: x4, x8, x16 DDR3 SDRAM,” 2011.
[51] Micron Technology, Inc., “576Mb: x18, x36 RLDRAM3,” 2011.
[52] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling

for Chip Multiprocessors,” in MICRO, 2007.
[53] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: En-

hancing Both Performance and Fairness of Shared DRAM Systems,” in
ISCA, 2008.

[54] North Carolina State Univ., “FreePDK45,” http://www.eda.ncsu.edu/wiki/
FreePDK.

[55] S. O et al., “Row-Buffer Decoupling: A Case for Low-Latency DRAM
Microarchitecture,” in ISCA, 2014.

[56] J. K. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast
as Hardware?” in USENIX Summer Conf., 1990.

[57] T. Piquet et al., “Exploiting Single-Usage for Effective Memory Manage-
ment,” in ACSAC, 2007.

[58] J. Poovey et al., “DynoGraph,” https://github.com/sirpoovey/
DynoGraph.

[59] M. Qureshi et al., “A Case for MLP-Aware Cache Replacement,” in ISCA,
2006.

[60] M. Qureshi and Y. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches,” in MICRO, 2006.

[61] M. K. Qureshi et al., “Adaptive Insertion Policies for High-Performance
Caching,” in ISCA, 2007.

[62] S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
[63] M. Rosenblum et al., “The Impact of Architectural Trends on Operating

System Performance,” in SOSP, 1995.
[64] Y. Sato et al., “Fast cycle RAM (FCRAM): A 20-ns Random Row Access,

Pipe-Lined Operating DRAM,” in VLSIC, 1998.
[65] S.-Y. Seo, “Methods of Copying a Page in a Memory Device and Meth-

ods of Managing Pages in a Memory System,” U.S. Patent Application
20140185395, 2014.

[66] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.
[67] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[68] V. Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to

Address Both Cache Pollution and Thrashing,” in PACT, 2012.
[69] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk

Data Copy and Initialization,” in MICRO, 2013.
[70] A. Snavely and D. Tullsen, “Symbiotic Jobscheduling for a Simultaneous

Multithreading Processor,” in ASPLOS, 2000.
[71] Y. H. Son et al., “Reducing Memory Access Latency with Asymmetric

DRAM Bank Organizations,” in ISCA, 2013.
[72] Standard Performance Evaluation Corp., “SPEC CPU2006 Benchmarks,”

http://www.spec.org/cpu2006.
[73] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achieving

High Performance and Fairness at Low Cost,” in ICCD, 2014.
[74] K. Sudan et al., “Micro-Pages: Increasing DRAM Efficiency with Locality-

Aware Data Placement,” in ASPLOS, 2010.
[75] T. Takahashi et al., “A Multigigabit DRAM Technology with 6F2 Open-

Bitline Cell, Distributed Overdriven Sensing, and Stacked-Flash Fuse,”
JSSC, 2001.

[76] Transaction Performance Processing Council, “TPC Benchmarks,” http:
//www.tpc.org/.

[77] A. N. Udipi et al., “Rethinking DRAM Design and Organization for
Energy-Constrained Multi-Cores,” in ISCA, 2010.

[78] H. Usui et al., “DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware Accelerators,”
TACO, 2016.

[79] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in MICRO, 2010.

[80] S. Wong et al., “A Hardware Cache memcpy Accelerator,” in FPT, 2006.
[81] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid

Memories,” in ICCD, 2012.
[82] T. Zhang et al., “Half-DRAM: A High-Bandwidth and Low-Power DRAM

Architecture from the Rethinking Of Fine-grained Activation,” in ISCA,
2014.

[83] L. Zhao et al., “Hardware Support for Bulk Data Movement in Server
Platforms,” in ICCD, 2005.

[84] W. Zuravleff and T. Robinson, “Controller for a Synchronous DRAMThat
Maximizes Throughput by Allowing Memory Requests and Commands
to Be Issued Out of Order,” U.S. Patent 5630096, 1997.

580

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

