
Enabling Transparent Memory-Compression for Commodity Memory Systems

Vinson Young* , Sanjay Kariyappa* , Moinuddin K. Qureshi

Georgia Institute of Technology
{vyoung,sanjaykariyappa,moin}@gatech.edu

Abstract—Transparent Memory-Compression (TMC) allows the
system to obtain the bandwidth benefits of memory compression
in an OS-transparent manner. Unfortunately, prior designs for
TMC (MemZip) rely on using non-commodity memory modules,
which can limit their adoption. We show that TMC can be
implemented with commodity memories by storing multiple
compressed lines in a single memory location and retrieving
all these lines in a single memory access, thereby increasing
the effective memory bandwidth. TMC requires metadata to
specify the compressibility and location of the line. Unfortunately,
even with dedicated metadata caches, maintaining and accessing
this metadata incurs significant bandwidth overheads and causes
slowdown. Our goal is to enable TMC for commodity memories
by eliminating the bandwidth overheads of metadata accesses.

This paper proposes PTMC (Practical and Transparent Memory-
Compression), a simple design for obtaining bandwidth benefits
of memory compression while relying only on commodity (non-
ECC) memory modules and avoiding any OS support. Our
design uses a novel inline-metadata mechanism, whereby the
compressibility of the line can be determined by scanning the line
for a special marker word, eliminating the overheads of metadata
access. We also develop a low-cost Line Location Predictor (LLP)
that can determine the location of the line with 98% accuracy
and a dynamic solution that disables compression if the benefits
of compression are smaller than the overheads. Our evaluations
show that PTMC provides a speedup of up to 73%, is robust
(no slowdown for any workload), and can be implemented with
a total storage overhead of less than 300 bytes.

Index Terms—Memory; Compression; Bandwidth; DRAM;

I. INTRODUCTION

As modern compute systems pack more and more cores
on the processor chip, the memory systems must also scale
proportionally in terms of bandwidth in order to supply data to
all the cores. Unfortunately, memory bandwidth is dictated
by the pin count of the processor chip, and this limited
memory bandwidth is one of the bottlenecks for system
performance. Data compression is a promising solution for
increasing the effective bandwidth of the memory system.
Prior works on memory compression [1] [2] [3] aim to obtain
both the capacity and bandwidth benefits from compression,
trying to accommodate as many pages as possible in the main
memory, depending on the compressibility of the data. As
the effective memory capacity of such designs can change
at runtime, these designs need support from the Operating
System (OS) or the hypervisor, to handle the dynamically
changing memory capacity. Unfortunately, this means that
such memory compression solutions are not viable unless
both the hardware vendors (e.g. Intel, AMD etc.) and the
OS vendors (Microsoft, Linux etc.) can coordinate with each
other on the interfaces, or such solutions will be limited to

*These authors contributed equally to this work.

systems where the same vendor provides both the hardware and
the OS. Ideally, we want a memory-compression design that
can be implemented entirely in hardware, without requiring
any OS/hypervisor support. Transparent Memory-Compression
(TMC) can provide bandwidth benefits of memory compression
in an OS-transparent manner by trying to exploit only the
increased bandwidth and not the extra capacity.1

An example of TMC is the MemZip [5] design that tries to
increase the memory bandwidth using hardware-based com-
pression and avoids any OS support. Unfortunately, MemZip
requires significant changes to the memory organization and
the memory access protocols. Instead of striping the line across
all the chips on a memory DIMM, MemZip places the entire
line in one chip, and changes the number of bursts required to
stream out the line, depending on the compressibility of the line.
MemZip requires significant changes to the data organization
of commodity memories and the memory controller to support
variable burst lengths. Ideally, we want to enable TMC for
commodity memory modules while retaining conventional data
organization and bus protocols.

We observe that TMC can be implemented with commodity
memories by storing multiple compressed lines in a single
memory location and retrieving all these lines in a single
memory access, thereby increasing the effective bandwidth. For
example, if two neighboring lines A and B are compressible
then they can both be stored in the location of A, and a single
access to A can provide both A and B, as shown in Figure 1(a).
If the lines are not compressible (such as lines X and Y) then
they can be resident in their respective locations.

Compression can change both the size and location of the
line. Without additional information, the memory controller
would not know how to interpret the data obtained from
the memory (compressed or uncompressed). For example, an
access to A can either give only A (uncompressed) or both
A and B (compressed). Therefore, all compressed-memory
designs require additional metadata information that indicates
the compression status of each line. Thus, for lines A and B
the compression status would be 1 (compressed) and for lines
X and Y the compression status would be 0 (uncompressed).

1In fact, Qualcomm’s Centriq [4] system was recently announced with a
feature that tries to provide higher bandwidth through memory compression
while forgoing the extra capacity available from memory compression. Centriq’s
design relies on a large linesize of 128 bytes, striping this wide line across two
channels, having ECC DIMMs in each channel to track compression status,
and obtaining the 128-byte line from one channel if the line is compressible.
Ideally, we want to obtain bandwidth benefits independent of linesize, without
relying on ECC DIMMs, and without getting limited to 2x compression
ratio. Nonetheless, the Centriq announcement shows the commercial appeal
of Transparent Memory-Compression.

(d) TMC (With Metadata Accesses)

X Y Metadata

AB Metadata

[Accesses=5]

A

X

B

Y

[Accesses=4]

(b) No Compression

X

AB

YYX

AB

Even−LineOdd−Line

1

0

Metadata
Table

Compressed?

1 0

(a) TMC on Commodity Memory

[Accesses=3]

(c) Ideal−TMC (No Metadata)

Fig. 1. (a) Transparent Memory-Compression (TMC) design for commodity memories. Sequence of accesses to read 4 lines: A, B, X, Y for (b) uncompressed
memory, (c) ideal compressed memory, and (d) TMC with metadata lookups. Note that the metadata overhead is not unique to TMC and also occurs in all
prior designs of compressed memory.

Conventional designs for memory compression typically store
the per-line metadata in a Metadata Table, which is stored in
a dedicated region of memory. Unfortunately, accessing the
metadata can incur significant bandwidth overhead, even in
the presence of dedicated metadata caches [3] and can cause
significant slowdown (as much as 49%).

We explain the problem of bandwidth overhead of metadata
with an example. Figure 1(b-d) shows three memory systems,
each servicing four memory requests A, B, X and Y. A and B
are compressible and can reside in one line, whereas X and
Y are incompressible. For the baseline system (b), servicing
these four requests would require four memory accesses. For
an idealized compressed memory system (c) (that does not
require metadata lookup), lines A and B can be obtained in
a single access, whereas X and Y would require one access
each, for a total of 3 accesses for all the four lines. However,
when we account for metadata lookup (d), it could take up to 5
accesses to read and interpret all the lines, causing degradation
relative to an uncompressed scheme.

Our goal is to implement TMC on commodity memory
modules and without incurring the bandwidth overheads of
metadata accesses. To this end, we propose PTMC (Practical
and Transparent Memory Compression), an efficient hardware-
based main-memory compression design for improving band-
width. Our design eliminates metadata lookup by decoupling
and separately solving the issue of (i) how to interpret the data,
and (ii) where to look for the data. Overall, our design makes
the following three contributions.

Contribution-1: Inline-Metadata to Reduce Overheads To
efficiently identify if the line retrieved from memory is
compressed or not, we propose a novel inline-metadata scheme,
whereby compressed lines are required to contain a special
value, called a marker value at the end. We leverage the insight
that compressed data rarely uses the full 64-byte space, so
we can store compressed data within 60 bytes and use the
remaining four bytes to store the marker. On a read, if the line
contains the marker it is considered a compressed line and
uncompressed otherwise. The likelihood that an uncompressed
line coincidentally matches with a marker is quite small (less
than one in a billion with a 4-byte marker), and PTMC handles
such rare cases simply by identifying lines that cause marker
collisions on a write and storing such lines in an inverted form
(more details in Section IV-C).

Contribution-2: Low-Cost Predictor for Line Location The
inline-metadata scheme eliminates the need to do a separate
metadata lookup. However, we still need an efficient way to
predict the location of the line, as the location may depend on
compressibility. For example, in Figure 1(b), when A and B are
compressible, both A and B are resident in the location of A.
Therefore, the location of A remains unchanged regardless
of compression. However, for B, the location depends on
compressibility. We propose a history-based Line Location
Predictor (LLP), that can identify the correct location of the
line with a high accuracy (98%). The LLP is based on the
observation that lines within a page tend to have similar
compressibility. The prediction of LLP is verified using the
inline-marker obtained from the retrieved line, therefore, in the
common case (of correct LLP prediction) memory access is
performed with only a single memory access.

Contribution-3: Dynamic Compression for Robustness We
observe that even after eliminating the bandwidth overheads
of the metadata lookup, some workloads still have slowdown
with compression due to the inherent bandwidth overheads
associated with compressing memory. For example, the main-
tenance operation of compressing and writing back clean-lines
incurs bandwidth overhead, as those lines would not be written
to memory in an uncompressed design. For workloads with
poor reuse, this bandwidth overhead of writing compressed
data does not get amortized by the subsequent accesses.
To avoid performance degradation in such scenarios, we
develop Dynamic-PTMC, a sampling-based scheme that can
dynamically disable compression based on the cost-benefit
analysis. Dynamic-PTMC ensures no slowdown for workloads
that do not benefit from compression.2

To the best of our knowledge, PTMC is the only design that
provides bandwidth benefits of memory compression without
requiring any OS support and while using only commodity
(non-ECC) DIMMs and interfaces. It does so while retaining
support for 64-byte linesize and is also applicable to single
channel systems. Our evaluations show that PTMC provides
a speedup of up to 73%, while ensuring no slowdown for
any workloads. PTMC can be implemented with only minor
changes to the memory controller and incurs a total storage
overhead of less than 300 bytes.

2Such dynamic-compression designs become viable only with inline-
metadata and not with table-based metadata (Section V-A).

II. BACKGROUND AND MOTIVATION

We first provide the background on hardware-based memory
compression, then discuss an address mapping scheme that can
extend TMC for commodity memories, followed by discussion
on the bandwidth overhead of metadata accesses, and the
potential available from an idealized design that does not incur
metadata overheads. We finally provide an insight that can
avoid the metadata lookups.

A. Hardware-Based Memory-Compression

Compression exploits the redundancy in data values to store
the contents in reduced space. There are several compression
algorithms [6] [7] [8] [9] [10] [11] [12] in literature to compress
memory contents. A hardware-based memory compression
design uses these algorithms to increase not only the capacity
of the main memory but also the bandwidth (as the data
can be obtained with fewer accesses). Figure 2 describes the
architecture of a typical hardware-based memory compression
design. Without loss of generality, we assume that the data
obtained from compressed memory is decompressed at the
memory controller before being sent to the cache hierarchy. As
each line in memory can either be compressed or uncompressed,
depending on the data values, there is metadata required for
each line to identify the compression status (and location) of
the line. This per-line metadata is stored in a memory-mapped
table and cached on-chip in the metadata cache.

Memory
Controller

Metadata Cache:
Compressibility &

Location Info

CoreLLC

Compression-
Decompression

Engine

DRAM Metadata

Processor

Read/Write
Requests

Metadata
Transfer

Fig. 2. Overview of Typical Hardware-Based Memory Compression. Metadata
for compression status of each line is stored in memory and cached on-chip.

B. Address Mapping for Enabling TMC

Transparent Memory-Compression (TMC) can provide band-
width benefits of memory compression in an OS-transparent
manner. While prior design [5] for TMC was developed in the
context of non-commodity memory modules, we are interested
in developing a solution that works with commodity DIMMs.
We observe that TMC can be implemented with commodity
memories by co-locating multiple compressible lines at a
single location and streaming out all these lines in a single
memory accesses. Figure 3 shows a simple memory mapping
scheme that can enable TMC for commodity memories without
changing the standard burst length.

If the lines are compressible, we can place up to 4 adjacent
compressed lines in one location3 and stream out all these
lines in one access. This allows us to retrieve 4 lines at the
bandwidth cost of a single memory access and thus constitutes
bandwidth-free prefetches (our design installs all the freely
obtained lines in the L3 cache as we found that doing so
improves performance). If the lines become incompressible,
they get stored in an uncompressed format in the original
location, without having to relocate the entire page.

A B C D

A C

C D

A B

A

B D

A B

C D

B C D

2:1 compressed

uncompressed

4:1 compressed

Addr 3Addr 0 Addr 2Addr 1

Fig. 3. Address mapping to enable TMC for commodity memories (for
supporting up to 4x compression).

C. The Challenge of Metadata Accesses

An access to TMC on commodity memory would obtain
a 64-byte line; however, the memory controller would not
know if the line contains compressed data or not. For example,
an access to A would provide both A and B, if both lines
are compressible, and only A if the lines are uncompressed.
Simply obtaining the line from location A is insufficient to
provide the information about compressibility of the line. To
help interpret the lines read, conventional designs keep track
of the Compression Status Information (CSI) for each line in a
separate region in memory, which we refer to as the Metadata-
Table. Compressed memory needs the CSI to not only interpret
the data line read from memory, but also to determine the
location of the data line. Even if we provisioned only one bit
per line in memory, the size of this Metadata-Table would be
quite large (e.g., 32 MB). We can keep the metadata for TMC
in a memory-mapped table as well, similar to Figure 2. TMC
needs to access this metadata to determine the location (and
contents) of the line before servicing the read. The metadata
cache can alleviate some of these accesses; however, on a miss
in the metadata cache, the bandwidth overhead of accessing
the metadata from the Metadata-Table is still incurred.

D. Bandwidth Overhead of Metadata

Figure 4 shows the breakdown of the bandwidth consumed
by designs with table-based metadata design, normalized to the
uncompressed memory. In general, compression is effective at
reducing the number of requests for data. However, depending

3When a cacheline gets evicted from LLC, the memory controller checks if
(a) the neighboring cachelines are present in the LLC, and if (b) the group
of 2 or 4 cachelines can be compressed to the size of a single uncompressed
cacheline (64 Bytes). If so, the memory controller compacts them together and
issues a write containing the 2 or 4 compressed lines to one physical location.

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17 m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb

SPEC
G
APN

o
rm

a
liz

e
d
 B

a
n
d
w

id
th

C
o
n
s
u
m

p
ti
o
n

Data Additional Writes Metadata

Fig. 4. Bandwidth consumption for data, additional writes to compress data, and metadata for TMC design with table-based metadata, normalized to
uncompressed memory. Metadata accesses incur significant bandwidth overhead.

on the workload, the metadata cache can have poor hit-rate,
and require frequent access to obtain the metadata. These
extra metadata accesses can constitute a significant bandwidth
overhead. For example, xz needs over 50% extra bandwidth just
to fetch the metadata. Thus, schemes that require a separate
metadata lookup can end up degrading performance relative to
uncompressed memory. It is important that the implementation
of compressed memory does not degrade the performance of
such workloads and solving the challenge of bandwidth bloat
due to metadata access is key to developing an effective design.

E. Potential for Improvement

In order to evaluate the impact of metadata, we compare
the performance of a TMC design with Metadata-Table access,
to an idealized design that does not require metadata access.
The table-based design is equipped with a dedicated 32KB
of metadata cache and is designed to capture spatial locality
(similar to prior work). In contrast, the idealized compression
scheme does not maintain any metadata and simply streams
out lines in the same location that are compressed together.
Figure 5 compares the performance of the two designs.

0.40

0.60

0.80

1.00

1.20

1.40

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb

SPEC
G
AP

1.761.70

S
p

e
e
d
u

p

Ideal TMC (no metadata) TMC (with metadata)

Fig. 5. Speedup from ideal TMC (no metadata lookup) and TMC with
metadata (w/ metadata cache), relative to uncompressed memory.

While an ideal design can provide a speedup of 12.3% on
SPEC, prior designs fall short of achieving this speedup due
to the overheads associated with additional metadata-accesses.
In fact, prior schemes degrade performance significantly (up
to 49%) for many Graph (GAP) workloads. Therefore, unless
bandwidth overhead of metadata can be reduced, we can deem
TMC design as not viable for commodity memories. The goal
of our paper is to enable TMC for commodity memories by
mitigating the bandwidth overhead of metadata accesses. We
provide an insight for a practical solution.

F. Insight: Store Metadata in Unused Space

To reduce the metadata access of compressed memory, we
leverage the insight that not all the space of the 64 byte line
is used by compressed memory. For example, when we are
trying to compress two lines (A and B) they must fit within
64 bytes; however, the compressed size could still be smaller
than 64 bytes (and not large enough to store additional lines C
and D). We can leverage the unused space in the compressed
memory line to store metadata information within the line. For
example, we could require that the compressed lines store a
4-byte marker (a predefined value) at the end of the line, and
the space available to store the compressed lines would now
get reduced to 60 bytes. Figure 6 shows the probability of a
pair of adjacent lines compressing to ≤64B and ≤60B. As the
probability of compressing pairs of lines to ≤64B and ≤60B
are 38% and 36%, respectively, we find that reserving space
for this marker does not substantially impact the likelihood
of compressing two lines together and thus would not have a
significant impact on compression ratio.

0

20

40

60

80

100

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17 m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb

av
er

ag
e%

 o
f
c
o
m

p
re

s
s
ib

le
 l
in

e
s Double ≤ 64 Double ≤ 60

Fig. 6. Probability of a pair of adjacent lines compressing to ≤64B and ≤60B.
We can use 4B to store metadata, without significantly affecting compressibility.

We can use this insight to store the metadata within the line,
and avoid the bandwidth overheads of accessing the metadata
separately. If the line obtained from memory contains the
marker value, the line is deemed compressed, whereas, if
the line does not have the marker value, then it is deemed
uncompressed. However, there could be a case where the
uncompressed line coincidentally stores the marker value. A
practical solution must efficiently handle such collisions, even
though such collisions are expected to be extremely rare. We
discuss our methodology before discussing our solution.

III. METHODOLOGY

A. Framework and Configuration
We use USIMM [13], an x86 simulator with detailed memory

system model. Table I shows the configuration used in our
study. We assume a three-level cache hierarchy (L1, L2, L3
being on-chip SRAM caches). All caches use line-size of 64
bytes. The DRAM model is based on DDR4. We model a
virtual memory system to perform virtual to physical address
translations, and this ensures that the memory accesses of
different cores do not map to the same physical page. Note
that, other than the virtual memory translation, the OS is not
extended to provide any support to enable compressed memory.

For compression, we use a hybrid of FPC and BDI algorithms
and compress with the one that gives better compression.
We assume a decompression latency of 5 cycles in our
evaluations. Information about the compression algorithm used
and the compression-specific metadata (e.g. base for BDI) are
stored within the compressed line, and are counted towards
determining the size of the compressed line.

TABLE I
SYSTEM CONFIGURATION

Processors 8 cores; 3.2GHz, 4-wide OoO
Last-Level Cache 8MB, 16-way
Compression Algorithm FPC + BDI

Main Memory
Capacity 16GB
Bus Frequency 800MHz (DDR 1.6GHz)
Configuration 2 channel, 2x rank, 64-bit bus
tCAS-tRCD-tRP-tRAS 11-11-11-39 ns

B. Workloads
We use a representative slice of 1-billion instructions selected

by PinPoints [14], from benchmarks suites that include SPEC
2006 [15], SPEC 2017 [16], and GAP [17]. We evaluate all
SPEC 2006 and SPEC 2017 workloads, and mark ’06 or
’17 to denote the version when the workload is common to
both. We additionally run GAP suite, which is graph analytics
with real data sets (twitter, web sk-2005). We show
detailed evaluation of the workloads with at least five misses
per thousand instructions (MPKI). The evaluations execute
benchmarks in rate mode, where all eight cores execute the
same benchmark. Table II shows L3 miss rates and memory
footprints of the workloads we have evaluated in detail. In
addition, we also include 6 mixed workloads by randomly
mixing the SPEC and GAP workloads.

We perform timing simulation until each benchmark in
a workload executes at least 1 billion instructions. We use
weighted speedup to measure aggregate performance of the
workload normalized to the baseline uncompressed memory
and report geometric mean for the average speedup across the
15 High-MPKI SPEC workloads (7 SPEC2006, 8 SPEC2017).
Additionally, we evaluate GAP and MIX workloads to show that
our compressed memory design does not degrade performance
(in contrast to prior work) for workloads with limited spatial
locality. For other workloads that are not memory bound,
we present full results of all 64 benchmarks evaluated (29
SPEC2006, 23 SPEC2017, 6 GAP, 6 MIX) in Section VI-B.

TABLE II
WORKLOAD CHARACTERISTICS

Suite Workload L3 MPKI Footprint

SPEC

fotonik 26.2 6.8 GB
lbm17 25.5 3.4 GB
soplex 23.3 2.1 GB

libq 23.1 418 MB
mcf17 22.8 4.4 GB
milc 21.9 3.1 GB

Gems 17.2 5.8 GB
parest 16.4 465 MB
sphinx 11.9 223 MB
leslie 11.9 861 MB

cactu17 10.6 2.1 GB
omnet17 8.6 1.9 GB

gcc06 5.8 205 MB
xz 5.7 943 MB

wrf17 5.2 798 MB

GAP

bc twi 66.6 9.2 GB
bc web 7.4 10.0 GB
cc twi 101.8 6.0 GB
cc web 8.1 5.3 GB
pr twi 144.8 8.3 GB
pr web 13.1 8.2 GB

IV. DESIGN OF PRACTICAL TMC

To enable Transparent Memory-Compression for commodity
memory system while avoiding the bandwidth overhead of
metadata lookups, we propose Practical Transparent Memory
Compression (PTMC). PTMC tries to obtain bandwidth benefits
using memory compression without requiring OS support,
without changes to bus protocol, and while maintaining the
existing organization for the memory modules. Additionally, our
design avoids the use of a metadata-table using novel in-lined
markers, effectively side-stepping the overheads of metadata
access inherent to prior designs. We start by providing a brief
overview of PTMC and then explain the role of the different
components of the design.

A. Overview of PTMC

PTMC is based on two key innovations: (1) inline-metadata
and (2) line-location prediction (LLP). Figure 7 shows the
overview of PTMC. Instead of keeping metadata explicitly in a
table, inline-metadata leverages the unused space in compressed
memory lines to store a marker (4-byte value in our design).
If a line retrieved from memory has the marker value, it is
deemed to be compressed, and uncompressed otherwise. Due
to the address mapping used for TMC, the location of the
line may depend on the compressibility status of the line (for
example, a line B may be present along with line A at the
location of A, if both lines are compressible). Therefore, for
obtaining line B, TMC must access the original location of B if
B is incompressible and A otherwise. To avoid the requirement
of looking up both places, we develop a low-cost line location
predictor that can correctly predict the compressibility status
(and location) of the line with high accuracy.4

4The proposed LLP can also be used for compressed memory designs that
use table-based metadata. However, for such designs LLP does not reduce
the bandwidth overhead of metadata accesses, as metadata is required for
verifying LLP predictions. Our inline-metadata makes it possible to verify
LLP predictions with a single access to the data line, thus avoiding bandwidth
of metadata lookups.

C DA B

Read Request: Line B

Line Location
Predictor

Predicts 2:1 compression

Read Addr. 0

Line A Line B Marker

DRAM

4 B60 B

1

Confirm Prediction with Marker

2

3

4

Fig. 7. Overview of PTMC: Line location is predicted with LLP and confirmed
using the in-line Marker.

Figure 7 illustrates the sequence of events involved in a read
operation for PTMC with an example. A read request to Line B
is serviced by first consulting with the Line Location Predictor
to determine its location. In this case, the LLP predicts that
Line B is 2:1 compressed, and hence the read request is sent
to the address location of line A. The address mapping scheme
ensures that if lines A and B can be compressed together,
they must be resident at the location of line A. Once the
data is retrieved from memory, the prediction is confirmed by
checking the value of the marker (the last 4 Bytes) to ensure
that the retrieved line indeed contains the compressed line
for B. If the line does not contain the marker, then there is
a misprediction of the LLP, and we access line B from the
original location. As LLP accuracy is high, the second access
is quite uncommon. Note that there is no need for location
prediction while accessing line A, as it is always resident in
the same location, regardless of compressibility.

The two components of PTMC: 1. Line Location Predictor
and 2. Inline-Metadata work together to obtain the bandwidth
benefits of compression while avoiding the overheads associated
with accessing metadata. We now provide a detailed explanation
of each of these individual components.

B. Line Location Predictor

The address mapping scheme (discussed in Section II-B)
ensures that we can determine the location of the line if we
know the compressibility of the line with its neighbors. Thus,
the Line location Predictor (LLP) can locate the compressed
line by predicting its compression status. To design a low-
cost LLP, we exploit the observation that lines within a page
tend to have similar compressibility [3] [18].5 Figure 8 shows
LLP organization. LLP contains the Last Compressibility Table
(LCT), that tracks the last compression status seen for a given
index. The LCT is indexed with the hash of the page address.
So, for a given access, the index corresponding to the page
address is used to predict the compressibility, then line location.
The LCT is used only when a prediction is needed (e.g., Line A
is always resident in one location and does not need prediction).
We use a 512-entry LCT with storage cost of 128B.

For prior designs with metadata-table, if there is a hit in
the metadata cache, then location of the line is known and

5We describe a dynamic fallback solution in Section V-A that can disable
compression if compressibility fails to be predictable [19].

01

10

00

-
-
-

01

Hash

Page Addr

Last Compressibility Table

Predicted
Compression

Status

Line Addr

Compressed
Lookup Predicted

location

Fig. 8. Line Location Predictor uses line address and compressibility-prediction
(based on last-time compressibility) to predict location.

the line can be retrieved in one memory access. However, a
miss in the metadata cache results in two memory accesses:
one for the metadata and the second for the data. Figure 9
compares the hit-rate of the metadata cache (32KB) with the
prediction accuracy of the LLP (128 bytes). Even though the
LLP is quite small, it provides an accuracy of 98%, much
higher than the hit-rate of the metadata cache. On an LLP
misprediction (determined by our Inline-Metadata), we re-issue
the request to the other possible locations of the line and the
corresponding entry in the LCT is updated with the correct
compression status of the line.

0

20

40

60

80

100

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb

SPEC
G
AP

L
o
c
a
ti
o

n
 P

re
d
ic

ti
o
n

A
c
c
u
ra

c
y
 (

%
)

Metadata-Cache Hit LLP Prediction Accuracy

Fig. 9. Probability of finding line in one access for prior designs with metadata
cache vs PTMC with LLP.

C. Inline-Metadata

The LLP predicts the compression status and the location
of the line in memory. However, we need a way to detect
LLP mispredictions so that we don’t read incorrect data from
memory. It would be nice if the data that was read also conveys
information about the compression status of the line. This would
let us confirm the compression status (and hence the prediction)
without the need for extra metadata accesses. Our proposal is
to inline the metadata within the 64B of the line that is read
from memory using special 4 Byte value called the marker.

A B MarkerC D

Line A Line B Marker 2-to-1 compressed

4-to-1 compressed

UncompressedLine X

4 B60 B

x00000000

xFFFFFFFF

x22222222

x44444444

Fig. 10. Inline metadata using markers: Compressed lines always contain a
marker in the last four bytes.

Figure 10 shows the inline-metadata design using markers,
for lines that are compressible with 2-to-1 compression, 4-to-
1 compression, or no compression. If the line contains two
compressed lines (e.g. A and B both reside in A), then the
line is required to contain the marker corresponding to 2-to-1
compression (e.g., x22222222) in the last four bytes. Similarly,

if the line contains four compressed lines (A, B, C, and D, all
reside in A), then the line is required to contain the marker
corresponding to 4-to-1 compression (e.g., x44444444). Marker
reduces the available space for storing compressed lines to 60
bytes. If the compressed lines cannot fit within 60 bytes, then
it is stored in uncompressed form.6

An incompressible line is stored in its original form, without
any space reserved for the marker. The probability that the
uncompressed line coincidentally matches with the 32-bit
marker is quite small (less than 1 in a billion). Our solution
handles such extremely rare cases of collision with marker
values by storing such lines in an inverted form. This ensures
that the only lines in memory that contain the marker value
(in the last four bytes) are the compressed lines.

Determining Compression Status with Markers: When a
line is retrieved, the memory controller scans the last four
bytes for a match with the markers. If there is a match with
either the 2-to-1 marker or the 4-to-1 marker, we know that
the line contains compressed data for either two lines, or four
lines, respectively. If there is no match, the line is deemed to
store uncompressed data. Thus, with a single access, PTMC
obtains both the data and the compression status.

Handling Collisions with Marker via Inversion: We define
a marker collision as the scenario where the data in an
uncompressed line (last four bytes) matches with one of the
markers. Our design generates per-line markers (more details
in Attack-Resilient Marker Codes), so the likelihood of marker
collision is quite rare (less than one in a billion). However,
we still need a way to handle it without incurring significant
storage or complexity. PTMC handles marker collisions simply
by inverting the uncompressed line and writing the inverted
line to memory, as shown in Figure 11. Doing so ensures that
the only lines in memory that contain the marker (in last four
bytes) are compressed lines.

A dedicated on-chip structure, called the Line Inversion
Table (LIT), keeps track of all the lines in memory that are
stored in an inverted form. The likelihood that multiple lines
resident in memory concurrently encounter marker collisions
is negligibly small. For example, if the system continuously
writes to memory, then it will take more than 10 million years
to obtain a scenario where more than 16 lines are concurrently
stored in inverted form. Therefore, for our 16GB memory, we
provision a 16-entry LIT in PTMC.

When a line is fetched from memory, it is not only checked
against the marker, but also against the complement of the
marker. If the line matches with the inverted value of the
marker, then we know that the line is uncompressed. However,
we do not know if the retrieved data is the original data for the
line or if the line was stored in memory in an inverted form
due to a collision with the marker. In such cases, we consult
the LIT. If the line address is present in the LIT, then we know

6We choose a 4B marker because our baseline 16GB memory contains 228

lines, so a 32-bit marker would cause less than 1 colliding line residing in
memory on average, while limiting the space used for storing the marker. For
systems with hundreds of gigabytes of memory, we recommend a 5B marker.

x44444444

x0 44444444

Marker

x1 BBBBBBBB

Inverted line

Invert on collision

Line inversion
Table

-
-
-

AUpdate
LIT

Line to install in mem addr A
Marker
Collision

?

Do: & 1 2

1

2

Install as is
Yes

No

Fig. 11. Line inversion handles collisions of uncompressed lines with marker.

the line was stored in an inverted fashion and we will write
the reverted value in the LLC. Otherwise, the data obtained
from the memory is written as-is to the LLC.

On a write to the memory, if the line address is present in
the LIT, and the last four bytes of the line no longer match
with any of the markers, then we write the line in its original
form and remove this line address from the LIT. Each entry
in the LIT contains a valid bit and the line address (30 bits),
so our 16-entry LIT incurs a storage overheads of only 64
bytes. We recommend that the size of the LIT be increased in
proportion to the memory size.

Efficiently Handling LIT Overflows: In the extremely rare
cases LIT can overflow, we have two solutions to handle
this scenario: (Option-1) Make the LIT memory-mapped (one
inversion-bit for every line in memory, stored in memory)
and this can support every line in memory having a collision.
On marker-collision, the memory system has to make two
accesses: one access to the memory, and another to the LIT
to resolve collision. Under adversarial settings, the worst-case
effect would simply be twice the bandwidth consumption. We
implement updates to the LIT by resetting the LIT entry when
lines with marker-collisions are brought into the LLC and
marking these cachelines as dirty. On eviction, these lines will
be forced to go through the marker-collision check and will
appropriately set the corresponding LIT entry. (Option-2) On an
LIT overflow, PTMC can regenerate new marker values using
the random number generator, encode the entire memory with
new marker values, and resume execution. As LIT overflows
are rare (once per 10 million years), the latency of handling
LIT overflows does not affect performance.

Attack-Resilient Marker Codes: The markers in Figure 10
were chosen for simplicity of explanation. We generate per-
line markers based on a hash of the line address and the
global marker values. However, markers generated from simple
address based hash functions can be a target for a Denial-of-
Service Attack. An adversary with knowledge of the hash
function can write data values intended to cause frequent
LIT overflows resulting in severe performance degradation.
We address this vulnerability by using a cryptographically
secure hash function (e.g. such as DES [20], given that marker
generation can happen off-the-critical path) to generate marker
values on a per-line basis. This would make the marker values
impractical to guess without knowledge of the secret-keys of
the hash function, which are generated randomly for each
machine. Furthermore, the secret-keys are regenerated in the
event of an LIT overflow which changes the per-line markers.

0.40

0.60

0.80

1.00

1.20

1.40

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17 m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb
m

ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

SPEC
G
AP

M
IX

1.74

S
p
e
e
d
u
p

TMC (Metadata-Table + Cache) PTMC (Inline-Metadata + LLP)

Fig. 12. Speedup of prior TMC designs with metadata-table vs PTMC with inlined-metadata and line-location-predictor, normalized to uncompressed memory.
PTMC eliminates metadata lookup and improves performance.

Efficiently Invalidating Stale Copies of Data: Compression
can relocate the lines, and, when lines get moved, they can
leave behind a potentially stale copy of the line. For example, in
Figure 13, if adjacent lines A and B became compressible (into
values A’ and B’), we could move B’ and store lines A’ and B’
together in one physical location. However, an old value of B
would still exist in the previous location. An LLP misprediction
can result in an erroneous access to this stale data value,
which can still be interpreted as valid. Keeping all locations
of the line in sync requires significant bandwidth overheads.
Therefore, we simply mark such lines as invalid using a special
64-byte marker value, called Invalid Line Marker (Marker-IL).
Marker-IL is also initialized at boot time using a randomly
generated value. Per-line Marker-IL can be generated as in
Section IV-C. Collisions with Marker-IL are extremely rare (1
in 2512 probability, less than one in quadrillion years), and are
also handled using line inversion, and are tracked by the LIT.

Line A Line B A' B B' Invalid Marker

Before Compression After Compression Compression with
Invalidate

Stale value 64B Marker

A' B'

Fig. 13. Compression relocates lines and can create copies of data. We mark
such lines as invalid to ensure correct operation.

Handling Updates to Compressed Lines: An update to a
compressed line can render the entire group (of two or four
lines) from compressible to incompressible. Such updates must
be performed carefully so that the data of the other line(s)
in the group gets relocated to their original location(s). To
accomplish this, we need to know the compressibility of the
line when the line was obtained from memory. To track this
information, we provision 2-bits in the tag store of the LLC
that denotes the compression level when the data was read
from memory. On an eviction, we can determine if the lines
were previously uncompressed, 2-to-1 compressed, or 4-to-1
compressed by checking these two bits, and we can send writes
and invalidates (when applicable) appropriately.

Ganged Eviction: Write-back of a cacheline that belongs to a
compressed group can require a read-modify-write operation if
the other cachelines in the group are not present in the cache.
Our design avoids this by using a ganged-eviction scheme
which forces the eviction of all members of a compressed

group if one of its members gets evicted. This ensures that all
the members of a compressed group are either simultaneously
present or absent from the LLC, effectively avoiding the
need for read-modify-write. Our evaluations show that ganged
eviction has negligible impact on the LLC hit rate.7

D. Speedup of PTMC

PTMC, with its inline-metadata and LLP, can accomplish
the task of locating and interpreting lines, without the need for
a separate metadata lookup. Figure 12 shows the performance
of PTMC (with inline-metadata + LLP) compared to a practical
implementation of prior TMC designs (with metadata-table
and metadata-cache). PTMC eliminates the metadata lookup,
which significantly helps both compressible and incompressible
workloads. For SPEC and MIX workloads, PTMC provides
substantial speedup. However, for Graph (GAP) workloads,
PTMC still causes a slowdown. We investigate bandwidth of
PTMC to determine the cause.

E. Bandwidth Breakdown of PTMC

Figure 14 shows the bandwidth consumption of PTMC (with
inline-metadata + LLP), normalized to uncompressed memory.
The components of bandwidth consumption of PTMC are
data, second access due to LLP mispredictions, and clean
writebacks + invalidates (for writing compressed data). High
location prediction accuracy means we are able to effectively
remove the cost of metadata lookup, except for bc twi. For
Graph workloads, the inherent cost of compression (i.e.,
compressing and writing back clean lines, and invalidating) is
the dominant source of bandwidth overhead and the cause for
performance degradation. We develop an effective scheme to
disable compression when compression degrades performance.

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb

SPEC
G
APN

o
rm

a
liz

e
d
 B

a
n
d
w

id
th

C
o
n
s
u
m

p
ti
o
n

Data Clean Evict + Inv. LLP Mispredict

Fig. 14. Bandwidth consumption for PTMC approach, normalized to
uncompressed memory.

7We have evaluated a more complex scheme that retains lines (requires re-
fetching adjacent lines to recompress lines together), and found the difference
to be minimal. This is because the remaining lines are often similarly old and
likely to be evicted soon after.

0.40

0.60

0.80

1.00

1.20

1.40

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17 m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb
m

ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

SPEC
G
AP

M
IX

1.74

S
p
e
e
d
u
p

TMC Static-PTMC Dynamic-PTMC Ideal TMC (no metadata)

Fig. 15. Speedup of Static-PTMC, Dynamic-PTMC, and Ideal TMC, normalized to uncompressed memory. Dynamic-PTMC avoids slowdown for workloads
that do not benefit from compression, and performs similar to Ideal.

V. PTMC: DYNAMIC DESIGN

Thus far, we have focused only on avoiding the metadata
access overheads of compressed memory. However, even after
eliminating all of the bandwidth overheads of metadata, there
is still slodown for several workloads. Compression requires
additional writebacks to memory which can consume additional
bandwidth. For example, when a cacheline is found to be
compressible on eviction from LLC, it needs to be written
back in its compressed form to memory. What could have been
a clean evict in an uncompressed memory is now an additional
writeback, which becomes a bandwidth overhead.8 Additionally,
PTMC requires invalidates to be sent, which further adds to the
bandwidth cost of implementing compression. In general, if the
workload has enough reuse and spatial locality, the bandwidth
cost of compression yields bandwidth savings in the long run.
But for a workload with poor reuse and spatial locality (such
as several Graph workloads), the cost of compression does not
get recovered, causing performance degradation.

A. Design of Dynamic-PTMC

To get around the inherent cost of compression, we need
an effective mechanism to disable compression when the
costs of compression outweigh the benefits. Fortunately, due
to our robust inline-metadata approach, we can remove the
cost of compression by simply deciding to stop actively
compressing lines. This is in contrast to prior approaches as
they would need to globally decompress memory to disable
their major cost of compression, metadata-table access. We
simply need an effective mechanism to determine when to
disable compression to enable robust performance. We make
such a decision by comparing at runtime the “bandwidth cost
of doing compression” with the “bandwidth benefits from
compression,” and enabling/disabling compression based on
this cost-benefit analysis. We call this design Dynamic-PTMC.

Bandwidth Cost of Compression: The bandwidth overhead
of compression comes from sending extra writebacks (com-
pressed writebacks from clean locations), sending invalidates,
and sending requests to mispredicted locations. These are
additional requests incurred due to compression that could
have been avoided if we had used an uncompressed design.

Bandwidth Benefits of Compression: Compression pro-
vides bandwidth benefits by enabling bandwidth-free prefetch-

8PTMC installs new pages in an uncompressed form to avoid inaccurate
prefetches. We have performed evaluations where compressible lines are
initialized compressed, but we find many cases where bringing in neighboring
but never-used-together lines causes cache pollution and degrades performance.
As our primary goal is to design a robust no-hurt memory compression scheme,
we opted for a conservative approach of initializing uncompressed.

ing. On reading a compressed line, adjacent lines get fetched
without any extra bandwidth. This saves bandwidth if the
prefetched lines are useful. Tracking useful prefetches can
allow us to determine the benefits from compression.

Dynamic-PTMC monitors the bandwidth costs and benefits
of compression at run-time, to determine if compression should
be enabled or disabled. To efficiently implement Dynamic-
PTMC, we use set-sampling, whereby a small fraction of sets
in the LLC (1% in our study) always implement compression
and we track the cost-benefit statistics only for the sampled sets.
The decision for the remaining (99%) of the sets is determined
by the cost-benefit analysis on the sampled sets, as shown in
Figure 16. To track the cost and benefit of compression, we
use a simple saturating counter. The counter is decremented
on seeing the bandwidth cost and is incremented on seeing the
bandwidth benefit of compression. The Most Significant Bit
(MSB) of the counter determines if the compression should be
enabled or disabled for the remaining sets. We use a 12-bit
counter in our design. We extend Dynamic-PTMC to support
per-core decision by maintaining per core counters and a 3-bit
storage per line in the sampled sets to identify requesting core.

Sampled Set
(always compress)

Enforce
Policy

Enable

Disable

0

4096

Saturating Counter

Set 0

Set 1

Set 99

Increment
Utility Counter

Decrement
Utility Counter

2 3 4

1

1 Useful
Prefetch 2 Compressed

Writeback 3 Misprediction 4 Invalidate Request

Fig. 16. Dynamic-PTMC analyzes cost-benefit of compression on sampled
sets to decide compression policy.

B. Effectiveness of Dynamic-PTMC

Figure 15 shows the speedup of PTMC (that always tries
to compress), and Dynamic-PTMC. PTMC without Dynamic
optimization provides speedup for SPEC; however, it causes
slowdown for GAP. Meanwhile, Dynamic-PTMC eliminates all
of the degradations, ensuring robust performance – the design
is able to obtain performance when compression is beneficial
and avoid degradation when compression is harmful, be it from
increased writes or low location-prediction accuracy. Dynamic-
PTMC provides speedup of up to 74% (with worst-case
slowdown within 1%), nearing two-thirds of the performance
of an idealized TMC design that does not incur any bandwidth
overheads. Thus, Dynamic-PTMC is a robust and practical way
to implement hardware-based main memory compression.

VI. RESULTS AND ANALYSIS

A. Storage Overhead of PTMC Structures
PTMC can be implemented with minor changes at the

memory controller. Table III shows the storage overheads
required for Dynamic-PTMC. The total storage of the additional
structures at the memory controller is less than 300 bytes. In
addition to these structures, PTMC needs 2-bits in the tag-store
of each line in LLC to track prior-compressibility (<0.1%
overhead). And, per-core Dynamic-PTMC needs 4-bits per line
in sampled sets (1%) for reuse and core id.

TABLE III
STORAGE OVERHEAD OF PTMC STRUCTURES

Structure Storage Cost
Marker for 2-to-1 4 Bytes
Marker for 4-to-1 4 Bytes

Marker for Invalid Line 64 Bytes
Line Inversion Table (LIT) 64 Bytes

Line Location Predictor (LLP) 128 Bytes
Dynamic-PTMC counter 12 Bytes

Total 276 bytes

B. Extended Evaluation
We perform our study on 27 workloads that are memory

intensive. Figure 17 shows the speedup with Dynamic-PTMC
across an extended set of 64 workloads (29 SPEC2006, 23
SPEC2017, 6 GAP, and 6 mixes), including ones that are
not memory intensive. Dynamic-PTMC is robust in terms of
performance, as it avoids degradation for any of the workloads
while retaining improvement when compression helps.

0.80

1.00

1.20

1.40

1.60

1.80

S
p
e
e
d
u
p

Fig. 17. Speedup of Dynamic-PTMC for 64 workloads, sorted by speedup.

C. Impact on Energy and Power
Figure 18 shows the power, energy consumption and energy-

delay-product (EDP) of a system using Dynamic-PTMC,
normalized to a baseline uncompressed main memory. Energy
consumption is reduced as a consequence of fewer number of
requests to main memory. Overall, Dynamic-PTMC reduces
energy by 5% and improves EDP by 10%.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Speedup Power Energy EDPN
o

rm
a

liz
e

d
 t

o
 B

a
s
e

lin
e

Fig. 18. Dynamic-PTMC impact on energy and power

D. Sensitivity to Memory Channels
PTMC offers bandwidth-free adjacent-line prefetch, which

are latency benefits that exist regardless of the number of
memory channels. Table IV shows that PTMC provides
consistent speedup, even with larger number of channels.

TABLE IV
SENSITIVITY TO NUMBER OF MEMORY CHANNELS

Num. Channels Avg. SPEC Speedup
1 8.1%
2 8.5%
4 7.8%

E. Impact of PTMC on Hit-Rate of L3

Table V shows the hit rate of the L3 cache for the baseline
(uncompressed memory), and a system using PTMC. Under
PTMC, L3 Hit-rate is improved significantly. Thus, the adjacent
lines obtained due to compression with PTMC are useful, and
installing them in the L3 cache provides speedup.

TABLE V
EFFECT OF PTMC ON L3 HIT-RATE

Baseline Dynamic-PTMC
SPEC 17.3% 23.9%
GAP 15.7% 15.7%
MIX 13.3% 15.8%

F. Comparison to Larger Fetch for L3

PTMC can install adjacent lines from the memory to the L3
cache. While this may resemble prefetching, we note there is
a fundamental difference. PTMC installs additional lines in L3
only when those lines are obtained without bandwidth overhead.
Meanwhile, prefetches result in extra memory accesses which
incur additional bandwidth. We compare the performance of
next-line prefetching and Dynamic-PTMC in Table VI. PTMC
avoids the bandwidth overheads of next-line prefetching and
provides robust speedup across all workloads.

TABLE VI
COMPARISON OF PTMC TO NEXT-LINE PREFETCH

Next-Line Prefetch Dynamic-PTMC
SPEC -5.7% +8.5%
GAP -21.1% +0.0%
MIX -7.3% +4.2%

G. Applicability to Multi-Socket or DMA

Every access to a particular DRAM channel is managed by
its corresponding memory controller, even if the access is on
behalf of another socket or a DMA request. As we implement
PTMC in the memory controller, every write to or response
from DRAM can be intercepted and inverted appropriately.
Thus, PTMC works even in multi-socket or DMA scenarios.

VII. RELATED WORK

To the best of our knowledge, this is the first paper to
propose a robust hardware-based main-memory compression
for bandwidth improvement, without requiring any OS-support
and without causing changes to the memory organization and
protocols. We discuss prior research related to our study.

A. Low-Latency Compression Algorithms

As decompression latency is in the critical path of memory
accesses, hardware compression techniques typically use simple
per-line compression schemes [6] [7] [8] [9] [10] [11] [12].
We evaluate PTMC using a hybrid compression using FPC [6]
and BDI [10]. However, PTMC is orthogonal to compression
algorithm and can be implemented with any compression
algorithm, including dictionary-based [21] [22] [23] [24] [25].

0.40

0.60

0.80

1.00

1.20

1.40

fo
to

ni
k

lb
m

17

so
pl
ex lib

q

m
cf
17 m

ilc

G
em

s

pa
re

st

sp
hi
nx

le
sl
ie

ca
ct
u1

7

om
ne

t1
7

gc
c0

6 xz

w
rf1

7

bc
 tw

i

bc
 w

eb

cc
 tw

i

cc
 w

eb

pr
 tw

i

pr
 w

eb
m

ix
1

m
ix
2

m
ix
3

m
ix
4

m
ix
5

m
ix
6

SPEC
G
AP

M
IX

1.74

S
p
e
e
d
u
p

TMC w/ Metadata-Cache and Optimized for Row-Buffer Hits (Memzip / LCP) Dynamic-PTMC

Fig. 19. Performance of prior memory compression schemes that use a metadata-table (Memzip, LCP), optimized for row-buffer hits and using a 32KB
metadata cache. Prior approaches require significant bandwidth to retrieve metadata.

B. Main Memory Compression for Bandwidth
Hardware-based memory compression has been applied

to improve the bandwidth of main memory [5] [26] [27]
[28]. These works attempt to save memory bandwidth by
sending compressed data across links in fewer number of
bursts. However, commodity memory has a minimum access
granularity, so such proposals can achieve bandwidth savings
only if their systems use non-traditional DRAM organizations
(such as MiniRank [29] [30] [31]) or modify the bus protocols
or both. Meanwhile, PTMC enables compressed memory
systems using existing memory devices and protocols.

Prior studies [3] [5] advocate reducing the latency for
metadata lookups by placing the metadata in the same row as
the data, and using a metadata-cache to filter metadata lookups.
However, improving row buffer locality does not reduce the
raw bandwidth required to obtain metadata – such designs still
suffer from significant bandwidth problems. For comparison,
we implement a TMC with metadata optimized to reside in
the same row as data, and also using a 32KB metadata cache.
Figure 19 compares the performance of Dynamic-PTMC to
prior row-buffer-optimized designs. The bandwidth overhead to
obtain metadata is still significant, causing slowdown. Whereas,
Dynamic-PTMC improves performance.

The idea of in-lining metadata using a marker value was
developed independently and concurrently9 by the recent work
called Attaché [28]. While PTMC and Attaché [28] share
the similarity of using in-line metadata and a predictor for
estimating compressibility, there are three key differences. First,
Attaché requires non-commodity memories (mini-rank) to save
bandwidth, whereas PTMC is built using commodity memories.
Second, Attaché saves bandwidth directly by reducing the
number of bursts, whereas PTMC uses a constant number
of bursts and relies on spatial locality to provide bandwidth
reduction. Third, PTMC proposes a novel dynamic mechanism
that can disable compression when compression hurts (due
to extra writes or poor location-prediction accuracy) whereas
Attaché did not consist of any such mechanism.

C. Main Memory Compression for Capacity or Reliability
Hardware-based memory compression has been applied to

increase the capacity of main memory [1] [2] [3]. To locate
the line, these approaches extend the page table entries to
include information on the compressibility of the page. These
approaches are attractive as they allow locating and interpreting
lines using the TLB. However, such approaches inherently

9An earlier version of our paper was submitted to MICRO 2018 [32].

require software-support (from the OS or hypervisor) that limit
their applicability. We want a design that can be built entirely
in hardware, without any OS support.

COP [33] proposes in-lining ECC into compressed lines
and uses the ECC as markers to identify compressed lines.
Unfortunately, COP is designed to provide reliability at low
cost and provides no performance benefit if the system does
not need ECC or already has an ECC-DIMM. Whereas,
PTMC is designed to provide bandwidth benefits by fetching
multiple lines, and helps regardless of whether the system
has ECC-DIMM or not. Furthermore, COP relies on a fairly
complex mechanism to handle marker collisions (locking lines
in the LLC, memory-mapped linked-list etc.), whereas, PTMC
handles marker collisions efficiently via data inversion.

D. SRAM-Cache Compression
Prior work has looked at using compression to increase

capacity of on-chip SRAM caches. Cache compression is
typically done by accommodating more ways in a cache set and
statically allocating more tags [11] [34]. Recent proposals, such
as SCC, investigate reducing SRAM tag overhead by sharing
tags across sets [35] [36] [37] [38]. Compressed caches typically
obtain compression metadata by storing it beside the tag and
retrieving them along with tag accesses. These approaches do
not scale for memory, as there is no tag space or tag lookup
to enable easy metadata access.

The address mapping in PTMC is inspired by the placement
in SCC [36], in that the location of the line gets determined by
compressibility. However, unlike SCC, our placement ensures
that a significant fraction of lines do not change their locations,
regardless of their compression status. Furthermore, SCC
requires skewed-associative lookup of all possible positions,
which is possible to do in a cache; however, such probes of all
possible placement locations would incur intolerable bandwidth
overheads in main memory.

E. Adaptive Cache-Compression
Prior works have looked at adaptive or dynamic cache

compression [11] [34] [39] [40] to avoid performance degra-
dation due to latency overheads of decompression or due to
extra misses caused by sub-optimal replacement in compressed
caches. These designs primarily target cache hit rate. Whereas,
our main memory proposal targets bandwidth overheads
inherent in memory compression (metadata or compressed
writes). Additionally, fine-grain adaptive memory compression
has been previously unexplored, as prior approaches have had
no capability to turn off compression.

F. Predicting Cache Indices
Several studies have looked at predicting indices in asso-

ciative caches [41] [42] [43] [44] [45] [46] [47] [48] [18]. A
cache can verify such predictions simply by checking the tag,
and issuing a second request in case of a misprediction. Our
work is quite different from these, in that we try to predict
the location for memory. Since memory does not provide tags
to identify the data like caches, our solution is to inline the
compressibility information of the line using Inline-Metadata.
The Line Location Predictor utilizes this inline-metadata to
verify the location prediction and issue a request to an alternate
location on a misprediction.

VIII. CONCLUSIONS

This paper proposes PTMC (Practical and Transparent
Memory-Compression), a simple design for obtaining band-
width benefits of memory compression while relying only on
commodity (non-ECC) memory modules and avoiding any OS
support. Our design uses a novel inline-metadata mechanism,
whereby the compressibility of the line can be determined
by scanning the line for a special marker word, eliminating
the need for a separate metadata access. We also develop a
low-cost Line Location Predictor (LLP) that can determine the
location of the line with 98% accuracy. Finally, we develop
a dynamic solution that disables compression if the cost of
compression is higher than the benefits. Our evaluations show
that PTMC provides a speedup of up to 73%, is robust (no
slowdown for any workload), and can be implemented with a
storage overhead of less than 300 bytes.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our colleagues from
the Memory Systems Lab for their feedback. This work was
partially supported by a gift from Intel and from a grant from
the Semiconductor Research Corporation (SRC).

REFERENCES

[1] B. Abali et al., “Performance of hardware compressed main memory,”
in HPCA, 2001.

[2] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in ISCA, 2005.

[3] G. Pekhimenko et al., “Linearly compressed pages: A low-complexity,
low-latency main memory compression framework,” in MICRO, 2013.

[4] Qualcomm, “Qualcomm centriq 2400 processor,” https://www.qualcomm.
com/media/documents/files/qualcomm-centriq-2400-processor.pdf, 2017.

[5] A. Shafiee et al., “Memzip: Exploring unconventional benefits from
memory compression,” in HPCA, 2014.

[6] A.R. Alameldeen and D.A. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” Dept. Comp. Scie.,
Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[7] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented caches,”
in ICS, 2009.

[8] Y. Zhang, J. Yang, and R. Gupta, “Frequent value locality and value-
centric data cache design,” in SIGOPS, 2000.

[9] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in MICRO, 2000.

[10] G. Pekhimenko et al., “Base-delta-immediate compression: practical data
compression for on-chip caches,” in PACT, 2012.

[11] A.R. Alameldeen, D. Wood et al., “Adaptive cache compression for
high-performance processors,” in ISCA, 2004.

[12] J. Kim et al., “Bit-plane compression: Transforming delta for better
compression in many-core architectures,” in ISCA, 2016.

[13] N. Chatterjee et al., “Usimm: the utah simulated memory module,”
University of Utah, Tech. Rep, 2012.

[14] H. Patil et al., “Pinpointing representative portions of large intel itanium
programs with dynamic instrumentation,” in MICRO, 2004.

[15] J.L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, Sep. 2006.

[16] S.P.E. Corporation, “Spec cpu 2017,” 2017, accessed: 2017-11-10.
[17] S. Beamer, K. Asanovic, and D.A. Patterson, “The GAP benchmark

suite,” CoRR, vol. abs/1508.03619, 2015.
[18] V. Young, P.J. Nair, and M.K. Qureshi, “Dice: Compressing dram caches

for bandwidth and capacity,” in ISCA, 2017.
[19] S. Sardashti and D.A. Wood, “Could compression be of general use?

evaluating memory compression across domains,” TACO, 2017.
[20] D. Coppersmith, “The data encryption standard (des) and its strength

against attacks,” IBM J. Res. Dev., vol. 38, May 1994.
[21] X. Chen et al., “C-pack: A high-performance microprocessor cache

compression algorithm,” VLSI, 2010.
[22] T.M. Nguyen and D. Wentzlaff, “Morc: A manycore-oriented compressed

cache,” in MICRO, 2015.
[23] A. Arelakis and P. Stenstrom, “Sc2: A statistical compression cache

scheme,” in ISCA, 2014.
[24] A. Arelakis, F. Dahlgren, and P. Stenstrom, “Hycomp: A hybrid cache

compression method for selection of data-type-specific compression
methods,” in MICRO, 2015.

[25] Y. Tian et al., “Last-level cache deduplication,” in ICS, 2014.
[26] V. Sathish, M.J. Schulte, and N.S. Kim, “Lossless and lossy memory i/o

link compression for improving performance of gpgpu workloads,” in
PACT, 2012.

[27] H. Kim et al., “Reducing network-on-chip energy consumption through
spatial locality speculation,” in NOCS, 2011.

[28] M.H.S. Hong et al., “Attaché: Towards ideal memory compression by
mitigating metadata bandwidth overheads,” in MICRO, 2018.

[29] H. Zheng et al., “Mini-rank: Adaptive dram architecture for improving
memory power efficiency,” in MICRO, 2008.

[30] D.H. Yoon et al., “Adaptive granularity memory systems: A tradeoff
between storage efficiency and throughput,” in ISCA, 2011.

[31] J.H. Ahn et al., “Future scaling of processor-memory interfaces,” in SC,
2009.

[32] V. Young, S. Kariyappa, and M. Qureshi, “CRAM: Efficient Hardware-
Based Memory Compression for Bandwidth Enhancement,” https://arxiv.
org/abs/1807.07685, July 2018.

[33] D.J. Palframan, N.S. Kim, and M.H. Lipasti, “Cop: To compress and
protect main memory,” in ISCA, 2015.

[34] J. Guar, A.R. Alameldeen, and S. Subramoney, “Base-victim compression:
An opportunistic cache compression architecture,” in ISCA, 2016.

[35] S. Sardashti and D.A. Wood, “Decoupled compressed cache: Exploiting
spatial locality for energy-optimized compressed caching,” in MICRO,
2013.

[36] S. Sardashti et al., “Skewed compressed caches,” in MICRO, 2014.
[37] B. Panda and A. Seznec, “Dictionary sharing: An efficient cache

compression scheme for compressed caches,” in MICRO, 2016.
[38] S. Sardashti, A. Seznec, and D.A. Wood, “Yet another compressed cache:

A low-cost yet effective compressed cache,” TACO, 2016.
[39] Y. Xie and G.H. Loh, “Thread-aware dynamic shared cache compression

in multi-core processors,” in ICCD, 2011.
[40] S. Kim et al., “Transparent dual memory compression architecture,” in

PACT, 2017.
[41] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of

operating system and multiprogramming workloads,” TOCS, 1988.
[42] A. Agarwal and S.D. Pudar, “Column-associative caches: A technique

for reducing the miss rate of direct-mapped caches,” ISCA, 1993.
[43] J.J. Valls et al., “Ps-cache: An energy-efficient cache design for chip

multiprocessors,” J. Supercomput., 2015.
[44] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential associative

cache,” in HPCA, 1996.
[45] D.H. Albonesi, “Selective cache ways: On-demand cache resource

allocation,” in MICRO, 1999.
[46] M.D. Powell et al., “Reducing set-associative cache energy via way-

prediction and selective direct-mapping,” in MICRO, 2001.
[47] H.C. Chen and J.S. Chiang, “Low-power way-predicting cache using

valid-bit pre-decision for parallel architectures,” in AINA, 2005.
[48] A. Deb et al., “Enabling technologies for memory compression: Metadata,

mapping, and prediction,” in ICCD, 2016.

https://www.qualcomm.com/media/documents/files/qualcomm-centriq-2400-processor.pdf
https://www.qualcomm.com/media/documents/files/qualcomm-centriq-2400-processor.pdf
https://arxiv.org/abs/1807.07685
https://arxiv.org/abs/1807.07685

	Introduction
	Background and Motivation
	Hardware-Based Memory-Compression
	Address Mapping for Enabling TMC
	The Challenge of Metadata Accesses
	Bandwidth Overhead of Metadata
	Potential for Improvement
	Insight: Store Metadata in Unused Space

	Methodology
	Framework and Configuration
	Workloads

	Design of Practical TMC
	Overview of PTMC
	Line Location Predictor
	Inline-Metadata
	Speedup of PTMC
	Bandwidth Breakdown of PTMC

	PTMC: Dynamic Design
	Design of Dynamic-PTMC
	Effectiveness of Dynamic-PTMC

	Results and Analysis
	Storage Overhead of PTMC Structures
	Extended Evaluation
	Impact on Energy and Power
	Sensitivity to Memory Channels
	Impact of PTMC on Hit-Rate of L3
	Comparison to Larger Fetch for L3
	Applicability to Multi-Socket or DMA

	Related Work
	Low-Latency Compression Algorithms
	Main Memory Compression for Bandwidth
	Main Memory Compression for Capacity or Reliability
	SRAM-Cache Compression
	Adaptive Cache-Compression
	Predicting Cache Indices

	Conclusions
	References

