SafeGuard: Reducing the Security Risk from Row-Hammer
via Low-Cost Integrity Protection

Ali Fakhrzadehgan
University of Texas at Austin
alifakhrzadehgan @utexas.edu

Yale N. Patt

patt@ece.utexas.edu

Abstract—Row-Hammer (RH) is a DRAM data-disturbance
failure that occurs when a row is activated frequently, which
causes bit-flips in nearby rows. Row-Hammer is a significant
security threat as an attacker can exploit the bit-flips to do
privilege escalation and leak confidential data. While several
solutions aim to mitigate RH, such solutions depend on the RH
threshold and adversarial access patterns. Solutions developed
for a given threshold become ineffective for newer devices with
lower thresholds, and new attack patterns continue to break
existing mitigations. Currently, there is no guaranteed solution
for RH, which means that the system remains vulnerable to
security threats even in the presence of RH mitigation.

In this paper, we contend that simply relying on RH
mitigation is insufficient to provide security in the presence
of reducing threshold and motivated attackers. We propose
SafeGuard, which equips the system with low-cost integrity
protection as a defense against potential attacks that break the
RH mitigation. As SafeGuard can detect arbitrary failures, it
converts the problem of RH bit-flips from a security threat
(silent consumption of corrupted data) to a reliability concern
(detectable uncorrectable errors caused by integrity violation).
We develop SafeGuard for systems that employ ECC modules
and show that SafeGuard can provide strong detection to
both SECDED (46-bit MAC per cache-line) and Chipkill
(32-bit MAC per cache-line) while retaining the correction
capability of conventional designs. SafeGuard avoids incurring
any storage overheads in DRAM by simply reorganizing the
ECC code to operate at a cache-line granularity (64 bytes)
instead of a word granularity (8 bytes). Our evaluations show
that SafeGuard has a negligible impact on both the system
performance (0.7%) and the system reliability due to naturally
occurring errors while still providing a strong defense against
the security risk of RH by detecting arbitrary bit-flips.

Keywords-Row-Hammer; Reliability; Security; Integrity;

I. INTRODUCTION

Relentless DRAM device scaling has enabled memory
modules that can store several gigabits of data on a single
chip. While device scaling provides higher density, it brings
cells closer, which increases inter-cell interference, and leads
to new modes of failure. Row-Hammer (RH) [18], [21] is
one such data-disturbance failure, which happens when a
row is activated frequently. Each activation can leak away
a small amount of charge from nearby rows, eventually
causing bit failures. RH was publicly demonstrated in 2014,
and as technology scales, the bit-flips from RH have become
even more frequent for modern devices.

University of Texas at Austin

Prashant J. Nair
University of British Columbia
prashantnair@ece.ubc.ca

Moinuddin K. Qureshi
Georgia Tech
moin@ gatech.edu

The bit-flips from RH are not just a reliability problem
but also a security threat [2], [6], [8], [10], [11], [25],
[40]. RH provides the attacker with a powerful tool to flip
arbitrary bits. An attacker could flip bits in the Page-Tables
to access data stored at arbitrary locations or orchestrate
privilege escalation. Furthermore, the failures from RH are
data-dependent, and this property can be used to infer data
stored in nearby rows, thus violating confidentiality [25].
Therefore, RH continues to pose a severe security risk.

Developing techniques to mitigate RH has been an active
area of research [2], [18], [21], [23]. Proposed hardware-
based techniques range from increasing the refresh rate
(global methods) [21] to tracking frequently accessed rows
and refreshing the neighboring rows (precise method) [18],
[21]. Unfortunately, increasing refresh rate globally incurs
impractical overheads. Precise methods are more efficient
as they track the frequently accessed rows and invoke
mitigation only when a certain threshold is reached (or prob-
abilistically where the probability is based on the threshold).
The mitigation is typically done by issuing a row activation
to the immediate neighbors, deeming such rows as victim.

The efficacy of existing RH mitigation proposals depends
on two factors: (1) knowing the Row-Hammer Threshold
(RH-Threshold), which determines the number of activations
required on the aggressor rows flip bits in the victim row,
(2) knowing the adversarial access pattern, which captures
the order in which the aggressor rows are accessed and can
impact the number (and location) of the victim rows.

The tracking structures typically required for RH mitiga-
tion are sized for a particular RH-Threshold, and mitigation
developed for a given RH-Threshold becomes ineffective at
lower RH-Threshold. Unfortunately, RH-Threshold is not
constant across vendors and technology generations. As
shown in Figure la, RH-Threshold has reduced by almost
30x in the last seven years, from 139K (in 2014 [21]) to as
small as 4.8K (in 2020 [19]). One can expect RH-Threshold
to become even lower for future generations. We note that a
processor developed with a given mitigation needs to work
with a variety of memory modules, including that may come
after the processor is released. Using a memory module
with an RH-Threshold lower than the one assumed while
designing the mitigation would leave the system vulnerable
to RH errors and the associated security attacks.

Half-Double
£D Classic RH
1S
S § [Vietim | ——| |
= c Silent Detected
S % — % — Consumption of| [Uncorrectable|
«
‘ Q 2 4":' Corrupted Data Error
2014 2021 Year Security Threat Reliability Issue
\ \\ / (Baseline) (SafeGuard)
(a) (b) ()

Figure 1: The moving target of Row-Hammer (a) The Row-Hammer Threshold has been reducing (b) New attack patterns
break existing defenses [9] (c¢) Instead of allowing break-through attacks to become threats our solution detects such failures.

The second, more severe, weakness of existing mitigations
is that they are implicitly designed for a particular access
pattern and that the RH bit-flips are restricted to immediate
neighbors. Unfortunately, newer attacks with more intel-
ligent access patterns continue to break through existing
RH mitigation, causing failures even in the presence of
such mitigation. For example, the recently disclosed Half-
Double [9] access pattern by Google, as shown in Figure 1b,
causes failure at a distance of 2 from the aggressor and will
defeat almost all existing precise mitigation policies. The
TRRespass attack [8] develops an access pattern to cause
failure even in the presence of Targeted Refresh Rows (TRR)
(an in-DRAM mitigation employed in some DRAM chips).
Finally, ECC chips were assumed to be resilient to RH
failures, however, the ECCploit [6] attacks use the correction
latency to develop a pattern that can cause multi-bit failures
even in the presence of ECC chips. To the best of our
knowledge, currently, there is no solution that is guaranteed
to eliminate Row-Hammer.

We expect that developing even more effective mitigation
for RH will continue to be an active area of research.
However, we contend that the system must not assume that
the (current and any future) mitigation will eliminate RH,
and there will be no breakthrough attacks. All solutions rely
on a set of assumptions, and a motivated adversary could try
to break through the given mitigation by invalidating some
assumptions. Therefore, to limit the security exposure from
Row-Hammer even in the presence of RH mitigation, we
advocate SafeGuard, which equips the system with low-cost
integrity protection as a defense against potential attacks
that break through the RH mitigation. As SafeGuard can
detect arbitrary failures, it converts the severity caused by
RH bit-flips from a security risk (silent consumption of
corrupted data) to simply a reliability problem (detected
uncorrectable errors). We would like to implement Safe-
Guard with negligible storage and performance overheads.
Unfortunately, existing integrity protection proposals (e.g.,
SGX [7], [12]) store integrity protection metadata (such as
Message Authentication Code or MAC) associated with each
line in a separate area of memory and require extra mem-

ory accesses leading to significant overheads. Instead, we
develop SafeGuard in the context of ECC (Error Correcting
Code) memories, which contain extra chips to store the ECC
code. We discuss SafeGuard for both SECDED and Chipkill.

Conventional ECC schemes are designed to tolerate nat-
urally occurring errors and are typically focused on the cor-
rection strength, with detection as a byproduct. For example,
ECC DIMMs that provide Single-Error-Correcting-Double-
Error-Detecting (SECDED) operate at 8-byte granularity
(the data-bus width), with 64-bit data and 8-bit of ECC
code in each bus transfer, where the 7-bit is for SEC, and
1-bit is for DED. To develop SafeGuard at a low cost, we
observe that processors interact with memories at a cache-
line granularity (64 bytes), so we can form the ECC code
also at 64-byte granularity. SafeGuard divides the 64-bits of
ECC metadata for the 64-byte line into 10-bits for ECC-1,
8-bits for protecting against column failure, and 46-bit for in-
tegrity protection (MAC). Thus, SafeGuard provides strong
detection within the same space of ECC while still retaining
similar correction capability as conventional codes.!

Server memories are typically protected with Chip-
kill [29], which is a stronger form of ECC capable of
tolerating the failure of an entire chip. Chipkill is a symbol-
based code typically implemented with x4 memory chips,
where the DIMM contains 18 memory chips, 16 for data
and 2 for additional metadata. To implement SafeGuard with
Chipkill, we redesign Chipkill to use the two metadata chips
to store 32-bit MAC and 32-bit chip-wise parity for each
line, respectively. The MAC is used to detect errors, and
parity is used to correct chip failures. We provide extensions
that ensure high performance and resilience even in the
presence of a chip failure. With our extensions, SafeGuard
with Chipkill not only provides the correction for single-
chip failures but also the added benefit of strong detection
of arbitrary failures, which are useful to detect RH errors
due to break-through attacks.

'We observe that increasing the ECC granularity provides similar reliability
as the chance of two independent single-bit errors affecting different words
of a line is negligibly small (the main obstacle with larger granularity is
handling of column failures). We discuss this in more detail in Section IV-D.

Overall, our paper makes the following contributions:

1) We observe that even in the presence of RH mitiga-
tion, there is potential for attacks that breakthrough
causing security vulnerabilities, and the system must
be designed to handle such attacks to ensure security.

2) We propose SafeGuard that equips each line with a
low-cost integrity protection capable of detecting arbi-
trary data failures (with high probability). SafeGuard
converts the RH failures from a security threat to a
reliability issue.

3) We propose an efficient implementation of SafeGuard
with SECDED ECC modules that provides strong
detection while retaining single-bit correction.

4) We propose an efficient implementation of SafeGuard
for Chipkill, which provides strong detection while
retaining the ability to tolerate failure of a single chip.

SafeGuard incurs no additional DRAM area overheads.
Furthermore, SafeGuard retains similar performance and
reliability as conventional ECC while providing the benefit
of detecting arbitrary failures. We compare SafeGuard with
existing designs for integrity protection, such as SGX [12]
and Synergy [39], and show that SafeGuard incurs signifi-
cantly lower performance and storage overheads.

II. BACKGROUND & MOTIVATION

A. Threat Model

We assume that the attacker is remote and does not have
physical access to the system under attack. We assume
a traditional system in which the Operating System (OS)
provides isolation between different processes using virtual
memory and the page tables. The system uses DRAM
main memory that is vulnerable to Row-Hammer (RH). The
attacker process(es) runs under a user privilege. The attacker
uses the RH vulnerability to either escalate the user privilege
or manipulate data. We assume that the system already
employs RH mitigation techniques. The attacker develops
complex access patterns to break through any potential RH
mitigation. Our aim is to avoid the consumption of the
corrupted (manipulated) data via such breakthrough attacks.

B. DRAM Organization

DRAM has a hierarchical organization. DRAM modules
contain multiple banks, which can be operated in parallel and
share a common data bus. Internally, the banks are organized
as a two-dimensional array of rows and columns. To access
data from DRAM, a row must be activated, which brings
the data in a row buffer. If the memory controller needs
to access data in another row, it must first clear the row-
buffer using the precharge command, followed by activation
of the given row. DRAM cells leak data over time and
require periodic refresh operations to maintain data integrity.
Memory systems typically use a refresh period of 64ms.

C. The Row-Hammer Phenomenon

As DRAM is scaled to smaller feature sizes, the cells
are placed closer to each other, making them vulnerable
to inter-cell interference. Row-Hammer (RH) is one such
interference fault that happens when a row of cells is
accessed frequently, causing bit-flips in nearby rows. The
hammered row is often referred to as the aggressor row,
and the neighboring rows are referred to as the victim rows.
Figure 2 depicts the RH attack in which an aggressor row
causes bit-flips in its adjacent victim rows over time.

Victim
[AToTiToTol1] K0 K AIooTole
—[Ageso | = =
[1[A]A]O[1] O EENEE 0'KIEII0
Victim

>
>

Time
Figure 2: Example of a Row-Hammer Attack.

RH is caused by the interference between the aggressor
and the victim rows due to the coupling effect [18], [19],
[21]. This interference increases the amount of leakage
current in the DRAM cells within the victim row(s), which
causes them to lose their charge at a faster rate, before
the refresh operation can reinforce the charge in the cell
capacitors. Thus, for the attack to be effective, it is essential
that the victim row is not accessed (activated) while the
aggressor is being hammered, otherwise, the access will
replenish the charge in the cells of the victim row.

Row-Hammer Threshold (RH-Threshold) denotes the
number of activations required on the aggressor row(s) to
cause bit-flips in the victim rows. Unfortunately, the RH-
Threshold has been reducing steadily with each technology
generation. When the RH phenomenon was first charac-
terized in 2014, the RH-Threshold was 139K, whereas it
has reduced by more than an order of magnitude to just
4.8K [19]-9K [9] by 2020. Table I shows the RH-Threshold
for different DRAM generations over the last 7 years. As a
given standard (DDR3, DDR4, LPDDR4) can span devices
made at different technology nodes, we use old and new to
distinguish different versions. The decreasing RH-Threshold
worsens the problem of RH.

Table I: Row-Hammer Threshold Over Time

[DRAM Generation | RH-Threshold]

DDR3 (old) 139K [21]
DDR3 (new) 224K [19]
DDRA4 (old) 175K [19]
DDR4 (new) 10K [19]
LPDDR4 (old) 16.8K [19]
LPDDR4 (new) | 4.8K [19] - 9K [9]

We note that RH bit-flips is not just a reliability problem
but a severe security problem. RH gives the attacker a
powerful weapon to potentially flip any arbitrary bit in the

memory system, and the attacker can use it to flip bits in
page tables and cause privilege escalation or use the data-
dependent nature of RH failures to read confidential data.

D. Proposals for Mitigating Row-Hammer

Mitigating Row-Hammer is an active area of research
(we discuss prior work in more detail in Section VIII). The
RH defenses can broadly be classified into four categories.

First, global mitigation, whereby the refresh rate of the
entire memory is increased. Unfortunately, this is not a
viable method for tolerating RH at thresholds below 32K,
as we would need to refresh the memory in less than 2ms
(whereas it takes 2-3ms to refresh the entire memory even
if the memory spends 100% of the time only doing refresh).

Second, precise mitigation, which consists of two parts:
when to apply the mitigation and where to apply the mitiga-
tion. The when is based on the RH-Threshold, and there are
various probabilistic or tracking schemes to identify which
rows must be deemed as aggressor rows. For where, the
mitigation is typically done by refreshing the immediate
neighbors of the aggressor row based on the assumption
that the adversary is unable to cause bit-flips beyond the
immediate neighbors.

Third, isolation-based mitigation, whereby a guard row
is kept between the row with sensitive data (e.g., page
tables) and untrusted data. This mitigation relies on knowing
the distance at which RH bit-flips can occur. For example,
keeping only a single guard row is ineffective if the attacker
is somehow able to flip bits beyond the immediate neighbor.

Fourth, ECC-based mitigation, whereby the memory
contains error-correction code, which can be used to correct
RH bit-flips. This scheme is effective only at low rates of
bit-flips where the number of errors is below the strength of
the error-correction code employed in the memory module.

We note that RH mitigations are designed to target a
particular RH-Threshold. For example, for the probabilis-
tic methods, the probability of identifying the aggressor
row must be tailored carefully for a given RH-Threshold.
Similarly, the hardware structures typically employed for
tracking-based solutions are sized for a particular RH-
Threshold, and mitigation developed for a given RH-
Threshold can become ineffective at lower RH-Thresholds.
A processor designed with a particular mitigation must be
able to work with memory modules from different vendors
and different technology nodes of a generation (e.g., DDR4-
old and DDR4-new) that may arrive after the processor
is manufactured. Using a memory module with an RH-
Threshold lower than the one assumed while designing the
mitigation would leave the system vulnerable to RH errors
and the associated attacks. In addition to the reliance on RH-
Threshold, there is an even more severe vulnerability for RH
mitigation techniques, which is the reliance on knowing the
adversarial access patterns.

E. Break Row-Hammer Mitigation with Complex Patterns

RH mitigation techniques are implicitly designed with
particular assumptions around the attack patterns and Blast
Radius (the distance of the victim rows from the aggres-
sor) [27]. A solution developed for a particular attack
pattern may become vulnerable when the attacker employs
a more complex attack pattern that can defeat the hardware
structures and/or increase the blast radius. This mode of
vulnerability has been used to break several prior RH
mitigation techniques and poses a continuing risk for current
and future mitigations. We discuss three cases studies where
RH solutions were recently broken by employing intelligent
attack patterns.

Case-1: Breaking Precise Mitigation with Half-Double
Precise mitigation techniques refresh the immediate neigh-
bors, implicitly assuming that RH can flip bits only at a
distance-of-one and the rows beyond that are safe. A recent
work from Google, called Half-Double [9], shows that one
can develop attack patterns that target victim rows which are
at a distance-of-two away from the aggressor rows. Such
an attack pattern, shown in Figure 1b, can cause bit-flips
even in the presence of precise mitigation techniques. For
example, Half-Double is able to cause more than a hundred
bit-flips in LPDDR4 modules at a distance of 2 away from
the aggressor rows. The key insight in Half-Double was to
use the existing RH mitigation itself as an attack where the
immediate neighbor gets accessed enough times to cause
flips in their immediate neighboring row. As DRAM cells
scale, it is reasonable to assume that an adversary can target
victim rows even farther away from aggressor rows.

Case-2: Breaking Target-Row Refresh with TRRespass
To mitigate RH transparently within the DRAM module,
the DRAM industry developed Target Row Refresh (TRR),
whereby the memory module tracks a small number of
frequently accessed rows within each DRAM chip. When
the DRAM chip receives a refresh command, in addition
to doing the regular refresh operations for a subset of the
memory, the chip also performs RH mitigation by refreshing
the immediate neighbors of the rows in the TRR tracking
structures. DRAM-industry claimed that the RH problem
could be solved with TRR and started selling TRR-enabled
memory modules [8], [17] offering protection against RH.

Unfortunately, TRR was broken within four years of being
incorporated in DDR4 and DDRS5 [30]. A recent attack,
called TRRespass [8], exploited the fact that TRR can keep
track of only a small number of aggressor rows. Based on
this observation, TRRespass hammers a large number of
dummy rows alongside the intended aggressor rows. This
causes capacity-based evictions in the TRR tables and makes
the mechanism evict the intended aggressor row. In general,
any tracking-based mitigation scheme can be vulnerable to
such eviction-based attack patterns.

Case-3: Breaking Through ECC Memory with ECCploit
The system can use Error Correcting Codes (ECC) to rectify
RH-induced bit-flips, and this solution was deemed as robust
against RH attacks [21], assuming low rates of RH bit-flips.
Once the number of bit-flips is beyond the capability of the
ECC code, these bit-flips can become silent errors (escaped
from the ECC code) or cause miscorrection (increased errors
from ECC correction). However, at least for low rates of bit-
flips, the ECC-based scheme was deemed safe.

An overlooked aspect of ECC-based correction is that
there is a latency difference between fault-free cache-lines
and faulty cache-lines. A recent attack, called ECCploit [6],
exploits this timing-channel information to learn which pat-
terns cause RH bit-flips and use it to progressively increase
the faulty bits within a line, even if each individual bit-
flip was corrected by the ECC code. Thus, even in the
presence of ECC chips, an attacker can induce RH faults
that can bypass the detection and correction capability of
the employed ECC code.

Key Takeaway: These case studies show that existing
RH solutions continue to be vulnerable to breakthrough
attack patterns that cause bit-flips even in the presence of
mitigation. Currently, there is no guaranteed solution for
RH. Thus, even with RH mitigation, the system remains
vulnerable to RH security attacks.

F. Goal: Reducing Row-Hammer Security Risk at Low-Cost

We expect that future research to develop even more
effective RH mitigation. However, security will remain a
concern because RH-based bit-flips could still be possible
due to breakthrough attacks even in the presence of mit-
igation. If the system could detect the bit-flips that occur
due to such breakthrough attacks, then we could prevent
the program from consuming corrupted values, and thus,
avoid security threats that cause privilege escalation. Such
detection would convert the RH bit-flips from breakthrough
attacks into a reliability problem rather than a security
risk. The goal of our paper is to develop low-cost integrity
protection to reduce the security risk from breakthrough RH
attacks. We discuss our experimental methodology before
presenting our solution.

III. EXPERIMENTAL METHODOLOGY

Our proposal repurposes the ECC bits to incorporate
both the correction metadata and the metadata for integrity
protection. We perform evaluation for both performance and
overall system reliability (against naturally occurring errors)
to show that our proposal has low overhead and retains
similar correction capability as conventional ECC designs.

A. Performance Evaluation Framework

We use an execution-driven cycle-accurate simulator [31],
with the parameters described in Table II. The simulator
uses Intel Pin [28] as the functional model. Main memory
is modeled using Ramulator [22]. The virtual page size is
4KB. We assume that the baseline is already with the best
available RH mitigation, and our goal is to detect the bit-
flips that occur due to break-through attacks. We assume
that the memory is made of ECC DIMMs (configured to be
used as either SECDED code or Chipkill). To obtain a fast
MAC, we can concurrently encrypt each of the eight 64-bit
words of a line with a low-latency encryption circuit, such
as QARMA [24] (latency of 2.2ns), and perform an XOR of
the eight cipher-texts to obtain the 64-bit MAC. For shorter
MAC, the least-significant bits of MAC-64 are used.

Table II: Configuration Parameters

Core 6-wide fetch/retire 000, 224 entry ROB, 97 entry
RS, TAGE-SC-L branch predictor, 3.2GHz, 4
cores

Private 32KB d-cache, 2 cycles latency. Private
32KB i-cache. 64-Byte line, 4-way

Shared 4MB, 64-Byte line, 16-way, 18 cycles
latency, write-back, inclusive

Stream prefetcher

16GB DRAM DDR4-3200 at 1600MHz, 1 chan-
nel, 2 ranks of 16 banks, 8KB row buffer. 64
Read- and 64 Write-entry memory queues

8 processor cycles (4 memory controller cycles)

L1 Cache

Last Level Cache

Prefetcher
Main Memory

MAC latency

We use a 500 million SimPoint [41] region of the SPEC-
2017 [1] rate benchmarks. We simulate a 4-core system, and
each workload is replicated four times. We continue execu-
tion until all cores execute at least 500 million instructions.

B. Reliability Evaluation Framework

We use FaultSim [34] to evaluate systems reliability. To
evaluate SECDED, we model single-channel 16GB memory
modules with x8 devices. For Chipkill, we model single-
channel 16GB memory modules with x4 devices. We model
10 million devices using Monte-Carlo simulation for a 7-
year period. We consider a module as failed when it observes
an uncorrectable or an undetectable error. We report Proba-
bility of System Failure as the fraction of failed modules. We
use the real-world failure rates (FIT) reported in the prior
work [43], shown in Table III.

Table III: Failures per Billion Hours (FIT) per device [43].

DRAM Chip Failure Rate (FIT)
Failure Mode Transient [Permanent | Total
Single bit 14.2 18.6 32.8
Single column 1.4 5.6 7.0
Single word 1.4 0.3 1.7
Single row 0.2 8.2 8.4
Single bank 0.8 10 10.8
Multi-bank 0.3 1.4 1.7
Multi-rank 0.9 2.8 3.7

64-bit X 8 beats ’

64-byte cache-line 64-bit

(a)

64-bit X 8 beats’ 8-bit X 8 beats’
ECC-1
& 54-bit]

MAC

64-byte cache-line

(b)

Figure 3: SafeGuard with SECDED. (a) Conventional SECDED memory operates at 8-byte granularity. (b) SafeGuard design
operates at 64-byte granularity and uses the 64-bits from the ECC chips to get ECC-1 and 54-bit MAC.

IV. SAFEGUARD: LOW-COST INTEGRITY PROTECTION

We can limit the security exposure from RH (that may
happen even in the presence of RH mitigation) if we equip
each line with a strong detection code (such as Message
Authentication Code, or MAC) that can detect arbitrary fail-
ures. Secure computing designs, such as SGX [12], already
provision per-line MAC to do integrity protection against
data tampering. These designs store the MACs in a separate
area of memory, and on a memory access, they access the
MAC concurrently with the data line. Unfortunately, such
secure memory designs incur significant performance over-
heads and area overheads (12.5%, so 2GB for 16GB mem-
ory), which makes such solutions unsuitable for widespread
adoption. To enable integrity protection at negligible cost,
we propose SafeGuard, which uses ECC-based memory
modules to provide strong detection of arbitrary failures
while still ensuring that the correction capability remains
similar to conventional ECC designs. In this section, we
discuss how to design SafeGuard with SECDED memories.

A. SafeGuard with SECDED

ECC DIMMs are equipped with an additional chip to store
the metadata for the ECC code, as shown in Figure 3a. The
DIMM is designed with a 72-bit data bus, from which 64
bits carry the data, and 8 bits carry the ECC metadata. In
conventional ECC memory, each 64-bit word is protected
by an 8-bit SECDED (Single Error Correction Double Error
Detection) code. Thus, each transfer on the bus undergoes
an independent ECC check. This design has been used from
days where the processors had a small line size and memory
had the capability to transfer just one word. However,
modern processors interact with the memory at the 64-
byte cache-line granularity. Furthermore, to support memory
timings, the current memory protocols dictate a minimum
burst length of 8 [32], which means that the memory will
transfer at least 8 bursts of contiguous data for each access.
Thus, from the viewpoint of both the processor and the
memory, the granularity of interaction is 64-bytes. If we can

reorganize the ECC to operate at the granularity of 64-bytes
instead of the conventional 8-bytes, then we can do single-
error correction (ECC-1) for the 64-byte line with only 10
bits and use the remaining bits to do integrity protection.
This rethinking of granularity allows implementation of
SafeGuard at a low cost.

Figure 3b shows the design of SafeGuard with SECDED.
SafeGuard reorganizes the module-level ECC to operate at
64-byte, so it views the ECC bits as a collection of 64-
bits rather than 8 independent ECC packs of 8 bits each.
SafeGuard uses 10-bits to implement ECC-1 for the 64-byte
line and 54-bit to implement a strong detection code. We
considered using error detection codes such as CRC (Cyclic
Redundancy Code), however, such codes can be reverse-
engineered by an adversary, as they have a predictable
parity-based pattern. For strong detection, SafeGuard uses
a MAC (although any other cryptographic signature can
be used). Each memory controller contains a 16-byte key
initialized randomly at boot time. We concatenate the line
address with the key to use as the effective key.

While writing a line to the memory, the memory controller
writes the data, ECC-1, and the 54-bit MAC. ECC-1 is
computed on the 512-bit data and its 54-bit MAC. When the
processor reads a line, the memory controller first performs
ECC-1 correction (if any) and then computes the MAC
of the 512-bit data and compares it with the retrieved
MAC. A mismatch signals Detected Unrecoverable Error
(DUE). Note that SafeGuard performs the MAC verification
regardless of whether the ECC-1 performs any correction.

SafeGuard provides a much stronger detection capability
than SECDED, and we show that it still retains similar cor-
rection effectiveness (and overall system reliability against
natural faults) as conventional SECDED.

B. Reliability Implications of Increased Granularity

As SafeGuard reorganizes the ECC to operate at a 64-
byte granularity instead of an 8-byte granularity, one may
think this has an 8x higher failure rate, as we are covering

8x more area. However, the only case in which SECDED at
word granularity is stronger than ECC-1 at line granularity
(i.e., SafeGuard) is when the line simultaneously contains
multiple words, each with a single-bit fault. However, the
likelihood of such cases is extremely low. The number
of faults that the memory accumulates over time and the
probability of these faults landing on the same cache-line
follow the birthday collision probability model. That means,
given that the memory has N lines, after f faults, the
probability of the next fault landing on an already faulty
line would be % Thus, to observe a line that has at least
two faults, it requires about /N faults. Assuming a 64GB
memory (i.e., 230 lines), it requires about 32K faults to
eventually observe two bit-flips in a line. That means the
probability of a fault landing on an already faulty line
is about 32#}(From that, roughly %th land on the same
word and is not correctable by either of the schemes. Thus,
the probability of the case that SECDED is superior to
SafeGuard for single-bit errors is % * ﬁ =3.51 x 1075,

This is a negligibly small probability. For example, even if
naturally occurring single-bit faults happened at 100x higher
FIT Rate, the single-bit error rate for 64GB memory would
be once every 6 months, and it will take approximately 2,500
years to encounter a line with two independent single-bit
errors mapping to its two different words.

Note that for the previous calculations, we assumed
that the failures only occur due to single-bit faults and
these faults are completely independent. However, an in-
ternal device or circuit failure could potentially increase the
likelihood of multi-bit failures, which can cause spatially
correlated bits to fail. Table IV summarizes the correction
and detection capability of SECDED and SafeGuard against
different fault patterns. Both SECDED and SafeGuard can
correct single-bit errors. In addition, SafeGuard can provide
strong detection of arbitrary bit failures, including the ones
caused by multi-bit faults. We note that multi-bit failures
from column failures can be corrected by SECDED but not
by SafeGuard. We discuss this in more detail next.

Table IV: Resiliency of SECDED vs. SafeGuard.

DRAM Chip SECDED SafeGuard
Failure Mode Detect | Correct | Detect | Correct
Single bit v v 4 v
Single column v v v E3
E Single word 3 % v x
= Single row ® ® 4 x
= Single bank % ® v %
Z | Multi-bank x x v x
Multi-rank % % v ®

C. Tolerating Column Faults via Column Parity

Column faults typically occur because of a faulty pin or
because of the failure of the bit-line circuitry used to read
or write [20], [43]. Figure 4 shows how this fault pattern
can cause multiple bit-flips in the same position of several

words in a cache-line. In this case, the fault pattern in a
line is vertical with only one fault in each ECC code-word.
SECDED can correct these faults, while SafeGuard cannot.

2

ooon O oo OO
Faulty pin -/ v

51T
127

A\ 1-bit error in the same
position in every word
of aline

Figure 4: Cache-line fault-pattern due to a pin failure.

To mitigate column failure, we extend SafeGuard to keep
metadata that can be used to recover the data lost due to the
column failure. The failure of a single column would corrupt
8-bits of data (coming from that column) in a 64-byte line.
Therefore, to recover from column failure, our design stores
8-bits of column parity [20]. Consider that the 8-bit data
provided by a pin as a symbol, then the column-parity is
simply the XOR of the 64 symbols (one for each pin). We
call this design SafeGuard with Column Parity, and it is
shown in Figure 5.

Chip 0 Chip 1

Chip 7 ECC Chip

10-bit
ECC-1
46-bit

MAC

l X T .o X o

8 bits

Column
> Parity

Figure 5: Extending SafeGuard to tolerate column-failure.

The 64-bits from the ECC chip are divided into: 10 bits
for ECC-1, 8-bits for column-parity, and 46-bit MAC. When
a line is read from memory, we first check the MAC. In
case of a mismatch, we try ECC-1 correction and then
recheck the MAC. If that fails, we invoke the mitigation
for column failure. As we do not know the location of the
column failure, our design employs an iterative correction
mechanism, whereby in each iteration, we try recovery (by
reconstructing data for that column using the column-parity)
for one column and use the MAC check to verify if that
recovery is correct. In case of a MAC mismatch, we try

the next location. In case of a MAC match, we provide the
repaired data to the processor and remember the location of
the failed column (to speed up future recovery). If there has
been no MAC match after we tried all 64 possibilities, we
have encountered a Detected Unrecoverable Error (DUE),
which can happen multi-bit failure modality or due to RH.
SafeGuard signals the system that it has encountered a DUE.

Iterative correction can be slow, as it requires up to 64
rounds of MAC verification. Fortunately, iterative correction
is invoked only on column failures, which occur at a low rate
(on average, once every 100+ years for a 16GB DIMM). If
the column failure is transient, we incur the latency overhead
(less than one microsecond) only on rare occasions. If the
fault is permanent, we can remember the last column that
resulted in repaired data that matched with the MAC. The
correction begins first with that location, which will avoid
the penalty of iterative correction. Furthermore, in such
cases, after a few rounds of correction, we skip the first MAC
check (as it would consistently fail), and directly recover
the data, and only then do the MAC check to avoid the
latency penalty of two MAC checks. Thus, during fault-free
operation and for permanent column-failures, the latency
overhead remains approximately one MAC check (parity-
based reconstruction is fast and can be done in one cycle).

D. Reliability Evaluation

Figure 6 compares the reliability of SafeGuard (with and
without column-parity) with SECDED over a period of
seven years. SafeGuard without column parity has a 1.25x
higher failure rate than SECDED, however, SafeGuard with
column-parity has virtually identical reliability as SECDED.
Thus, SafeGuard provides strong detection while retaining
the correction capability of the conventional ECC design.

0.1 & SECDED
g A SafeGuard w/o column parity
= — SafeGuard with column parity
[s %
= 1.25x iy
s | =il . | AAATES]
?J% 0.01 %’ée‘e i
23 5o ot
g
;é KA/KK w
s |
£
=
= 0.001
2 3 4 5 6 7
Years

Figure 6: SafeGuard vs. SECDED reliability. SafeGuard pro-
vides virtually identical correction capability as SECDED.

E. Performance Evaluation

The correction latency of SafeGuard is incurred only in
case of failure (which is a rare event). Therefore, we focus on
performance during fault-free operation. SafeGuard incurs
the latency overhead of a MAC check, which is in the

critical path of the read operations and is the primary source
of performance overhead. Figure 7 shows the performance
of SafeGuard compared to the baseline. SafeGuard incurs
an average slowdown of only 0.7%. The largest slowdown
(3.6%) is incurred for Omnetpp, which is a latency-critical
workload, and the added latency impacts performance.

3 1.00
5
£0.90
o
5 0.80
e
20.70
B
g 0.60
20.50

Figure 7: Overall Performance of SafeGuard vs. SECDED.

FE. Storage and Logic Overheads

SafeGuard reuses the ECC bits and does not require
any additional DRAM storage. SafeGuard requires minor
changes to the memory controller. First, the ECC logic (3K
XOR-gates) has to operate at the line granularity. Second,
the memory controller needs a MAC computation unit and
storage of a 16-byte key. Finally, simple parity units for
vertical parities and logic to test different positions. The total
SRAM overhead is less than 32 bytes.

V. SAFEGUARD WITH CHIPKILL

Memory modules are susceptible to large granularity
failures, such as word failures, row failures, and bank fail-
ures [43]. Unfortunately, SECDED is not effective against
these failures. Systems that require a high level of relia-
bility often use a stronger form of ECC called Chipkill,
which can tolerate the failure of an entire chip. Chipkill-
equipped memories are typically created using x4 devices,
as shown in Figure 8a. This module has 18 memory
chips, 16 of which provide the 64-bit data word (4 bits
per device) and two additional chips to store the Chipkill
redundancy information. Chipkill uses a symbol-based code
and provides Single-Symbol-Correction and Double-Symbol-
Detection (SSCDSD), in which a symbol is the 4-bit data
provided by each device. Thus, Chipkill can correct up to
4-bit errors in each bus transfer, given that all errors are
confined to a single symbol.

In addition to correcting one chip failure, Chipkill can also
detect failure of two chips. However, if the fault spans more
than two chips, Chipkill either cannot detect or may mis-
correct, resulting in silent consumption of corrupted data.
Prior work [6] discusses how RH attacks can exploit this
limitation and corrupt multiple symbols simultaneously to
bypass Chipkill’s error detection. We show SafeGuard can
be designed with Chipkill to provide integrity protection.

S10 1 S11 | S12 1 S13 | S14 1 S15 | S16

t 72-bit bus X 8 beats

18 Reed-Solomon symbols (4-bit each)

=
=
=
jon
19

A

=

Symbol

DIMM front

(@)

D8 | D9 | D10 D11 D12 D13 D14 D15 Parity

t?Z-bit bus X 8 beats

Data
Chip | D1 D2
0

Peq WWIA

-
=
8
£
=
=
o

32-bit|[32-bit
MAC |[Parity|

(b)

Figure 8: SafeGuard with Chipkill. (a) Conventional Chipkill memory using symbol-based code operating on 18 x4-chips
(S0-S17), located on front and back side of the DIMM. (b) SafeGuard with Chipkill provides single-chip-correction and
integrity protection by using MAC for error detection and chip-wise parity for correction. Data is stored in plain form.

A. Organization of SafeGuard with Chipkill

Figure 8b shows SafeGuard with Chipkill organization.
Instead of using symbol-based code, SafeGuard stores data
in plain form and uses MAC for error detection and parity
for correcting failure. We use one of the chips to store a 32-
bit MAC that is generated on a line. The other chip stores
the chip-wise parity across all 17 chips (32-bits per 64-byte).

SafeGuard provides the same correction capability as in
Chipkill (i.e., SSC), while it can provide stronger error and
tampering detection, including multi-symbol failures. Using
MACs enables detection of arbitrary failures. Similar to
conventional Chipkill, SafeGuard can correct up to one com-
plete chip failure. For correction, SafeGuard uses the chip-
wise parities. Parities are generated for each bus transfer
using chip-wise XOR of data.

B. Operation of SafeGuard with Chipkill

On a data read, the processor uses the retrieved MAC
for error detection. A MAC mismatch indicates a fault and
triggers the error correction mechanism. Note that the chip-
wise parities cannot directly locate the faulty chip, and
instead, we need to search for the faulty chip iteratively. The
memory controller performs the error correction by going
through each chip, assuming the chip has been failed and
uses the parity to correct its data, as shown in Figure 9a.

In each iteration, the corrected line goes under another
round of MAC verification. If the verification passes, we
deem that the error has been successfully corrected. Other-
wise, the memory controller starts the next iteration to test
a different chip. Thus, error correction can take up to 16
iterations. In the end, if no iteration results in a MAC match,
then the system has encountered a Detected Unrecoverable
Error (DUE), either due to a larger granularity failure (e.g.,
rank failure) or due to multi-bit data tampering from Row-
Hammer that spans multiple chips. SafeGuard informs the
system about the DUE so that it can take corrective actions.

Iterative correction incurs high latency, which is in the
critical path of memory access. Note that this latency over-
head is incurred only in the presence of errors (which are
rare events), so the overall impact on system performance
is quite low during normal operations. However, in cases of
permanent chip failure, the latency overhead is significantly
high, and we discuss how to reduce that next.

f (Cache-line, MAC, Parity) \

pass. Forward f (Cache-line, MAC, Parity) \
Data
Fail ChiplD = History
ChiplD = 0 v

Recover ChiplD)

Pass. Forward

ChipID++
Data
: Pass, Forward
ChiplD++ Data
Detected
Uncorrectable
Detected
Uncorrectable K Error /

k Error j

(a) (b)

Figure 9: SafeGuard with (a) Iterative correction and (b)
Eager Correction.

C. Reliability Challenge Under Permanent Chip Failure

The first time there is a failure, we do not know the
location of the failed chip. However, when a permanent
chip failure occurs, then iterative correction is not necessary,
as we are likely to see the repair for the same failed
chip again and again. For permanent failures, we can avoid
the latency overhead of iterative correction by starting the
iterative correction from the faulty chip that failed the
last time. While such a history-based design will avoid
the latency of iterative correction, it still suffers from two
shortcomings: (1) there are two MAC checks required, one
for the data-line retrieved from memory and the second after

the repair, so the latency overhead of extra MAC-check is
still present (2) the faulty data retrieved from memory will
eventually escape the detection of the 32-bit MAC, resulting
in silent data corruption. The escape from MAC-32 happens
because under chip failure, every single memory access
will provide corrupted data, and it will take just 4 billion
memory accesses on average (less than 1 minute) to find
the corrupted data that escapes the MAC-32 check. Thus,
this simple history-based design does not provide Chipkill-
level reliability in the presence of permanent chip failures.

D. Ensuring Reliability with Eager Correction

The vulnerability from the MAC check accumulates when
we continuously send faulty data to the MAC unit. There
is a small escape probability (1/2™ for n-bit MAC) with
each check. This probability does not come into play when
checking fault-free data. Under permanent chip failure, we
expect the first MAC check to fail, and then the second
MAC check (after repair of the faulty chip) pass, and this
will happen repeatedly. To avoid the vulnerability from the
first MAC check, we propose Eager Correction, which skips
the first MAC check, eagerly repairs the data for the chip that
failed the last time, and only then performs the MAC check
on the reconstructed data. We note that if there was no faulty
chip, then eagerly reconstructing the data and then checking
the MAC will still pass (i.e., no impact on the overall
reliability of the system). Figure 9b shows the overview of
Eager Correction. If Eager Correction fails (a different chip
is faulty), then SafeGuard resorts to the iterative correction.

Eager Correction effectively mitigates the MAC-32 es-
cape vulnerability in SafeGuard in each of the following
scenarios. If the previously failed-chip is indeed the only
corrupted chip, then SafeGuard will perform the MAC-32
check exclusively on the corrected data, eliminating the
vulnerability due to the first check on the faulty data. If more
than one chip is corrupted (e.g., a multi-chip failure, or a
chip failure and some transient fault), then the correction will
produce a wrong value, which can be detected by the post-
correction MAC-32 verification and be declared as a DUE.
The only remaining case that can escape Eager Correction
is when several chips are failing interchangeably. However,
fault patterns across multiple chips are highly improbable
to occur naturally and are not expected to be repaired by
Chipkill.> Therefore, SafeGuard can simply declare a DUE
after several rounds of ping-pong between faulty chips.

2 In some rare cases, a memory system can have multiple lines with single-bit
permanent failures. Chipkill can correct such failures. However, SafeGuard
can cause an iterative correction whenever a different faulty line gets
accessed. Such a scenario can be avoided by provisioning the memory
controller with a few (4-5) spare lines, and on a correction of a single
bit fault, simply copy the corrected line into the spare lines. Subsequent
accesses to such lines are serviced by the spares in the memory controller.

E. Reliability Evaluation

To provide reliability against chip failures, we assume
that SafeGuard is implemented with Eager Correction as
the default. Figure 10 compares the reliability of SafeGuard
with Chipkill. SafeGuard provides strong detection while re-
taining the correction capability of the conventional Chipkill
design for naturally occurring errors.

To assess the effectiveness of SafeGuard at higher fault
rates, we also evaluate a system where the FIT-Rates are
increased by a factor of 10. SafeGuard continues to pro-
vide similar correction reliability as Chipkill for naturally
occurring errors while providing the additional capability of
detecting arbitrary bit-failures.

& Chipkill (1x FIT-Rate)

© — SafeGuard (1x FIT-Rate)
B A Chipkill (10x FIT-Rate)
= 0.1 SafeGuard (10x FIT-Rate)
g,o\ A A DD SDDSSDNADDNED
29 001 [ganhd
-3
f @n
g & 0.001
= OO OO
£ 00001 [0
E
(=™

000001 2 3 4 5 6 7

Years

Figure 10: Reliability of SafeGuard vs. Chipkill. SafeGuard
provides virtually identical correction capability as Chipkill.

FE. Performance Evaluation

SafeGuard incurs the latency overhead of iterative cor-
rection only in the case of failure (which is a rare event).
Therefore, we focus on performance during fault-free opera-
tion. Under normal operations, SafeGuard incurs the latency
overhead of a MAC check, which is in the critical path of
read operations and is the primary source of performance
overhead. Figure 11 shows the performance of SafeGuard
compared to the Chipkill. SafeGuard incurs an average
slowdown of only 0.7% (similar to the slowdown when im-
plemented with SECDED, as both designs have the latency
of a MAC check in the critical path).

1.00
0.90

d Performance
S

3 [

f=) (=}

Normalize

e o
[TRE-N
S S

Figure 11: Overall Performance of SafeGuard vs. Chipkill.

G. Storage and Logic Overhead

SafeGuard uses the same DIMM as Chipkill and does not
need additional DRAM storage. SafeGuard requires minor
changes to the memory controller. First, the logic to compute
the chip-wise parity. Second, MAC unit and storage of a 16-
byte key. Finally, for Eager Correction, we need a register
to track the ChipID of the faulty chip and a counter to track
the number of corrections. The total overhead of SafeGuard
with Chipkill is less than 32 bytes.

VI. COMPARISON WITH OTHER MAC ORGANIZATION

SafeGuard is a low-cost integrity protection scheme,
which provides strong detection of arbitrary failures using
per-line MAC that is kept within the ECC space. Detecting
data-corruption can also be achieved by prior secure systems
that provide memory integrity protection. However, such
techniques typically incur significant performance and stor-
age overhead, making them impractical for widespread adop-
tion. In contrast, SafeGuard provides integrity protection at
a low cost and without requiring any modification to the
existing commodity ECC DIMMs. We compare SafeGuard
with two alternative organizations to store per-line MACs.

A. Prior Memory Organizations for Integrity Protection

1. SGX-Style MAC Organization: Intel SGX [12] is a
secure computing design that provides integrity protection
guarantees for a small designated region of memory. Each
data line is protected by a per-line MAC that is stored in a
separate location in the memory and incurs 12.5% storage
overhead. On every memory access, the processor needs to
make an extra access for MAC, which increases the memory
bandwidth pressure. To make a fair comparison, we do not
consider the overheads associated with accessing any other
metadata of SGX (encryption counters or integrity trees).
2. Synergy-Style MAC Organization: Synergy [39] re-
duces the memory bandwidth required for MAC by co-
designing for security and reliability.> Synergy uses x8 ECC
DIMMs and stores the 64-bit MAC in the ECC chip and 64-
bit chip-wise parity in a different location of the memory.
Synergy eliminates the MAC access overhead caused by the
memory reads, however, writes still require two accesses
(one for data and another for parity). Synergy continues to
incur 12.5% storage overhead to store the MAC.

3We note that while our design of SafeGuard with Chipkill is inspired by
Synergy, there are key differences. Synergy was developed for x8 DIMMs
(SECDED), uses a 64-bit MAC, and stores parity in a different DIMM.
In our case, we use x4 devices, which are typically used for Chipkill. For
these DIMMs, each chip provides only 32-bits for each line and uses two
extra chips to store ECC. Thus, we are limited to using 32-bit MAC and
the remaining 32-bits for parity. As shown in Section V-C, a 32-bit MAC
does not provide Chipkill-level reliability in the presence of permanent
chip failures (this problem would not occur if we could use 64-bit MAC
as employed in Synergy). Our proposed implementation (Eager Correction)
overcomes this limitation while still retaining 32-bit MAC and avoiding the
second access for parity update.

B. Performance Comparison

Figure 12 compares the performance of SafeGuard with
SGX-style MAC and Synergy-style MAC. We use the same
MAC latency for all designs. To make a fair performance
comparison with SafeGuard, we only consider the MAC ac-
cess overhead for SGX-style MAC and Synergy-style MAC
(thus, there are no performance overheads for any other
metadata such as encryption counters or integrity trees).
SGX-style MAC and Synergy-style MAC incur 18.7% and
7.8% slowdown, respectively, whereas SafeGuard incurs
only a 0.7% slowdown.

OSGX-style MAC @ Synergy-style MAC m SafeGuard

8 1.00

=]

g

£0.80

2

ks 0.60

)

£ 0.40

=

£0.20

z

0.00
& & & E
FTSSRTLTTENSTSESIEFTEFs &

$ UIETVETS SEILFT ETF ST &
& §§ & F 95 T S 0§ € @
] g v 7§ s

Figure 12: Performance of SafeGuard vs. alternative organi-
zation for storing the per-line MAC (SGX or Synergy style).

C. Comparison of DRAM Storage Overheads

As we want the system to correct naturally occurring er-
rors, we assume a baseline memory system that is equipped
with ECC DIMM. We compare SGX-style MAC, Synergy-
style MAC, and SafeGuard in terms of DRAM overheads.
Both SGX-style MAC and Synergy-style MAC require an
overhead of 12.5% to store the MAC (or parity in case
of Synergy) in a separate region in memory. Table V
compares the storage overhead of SGX-style MAC, Synergy-
style MAC, and SafeGuard as the memory system size
is increased from 16GB to 64GB to 256GB. Both SGX-
style MAC and Synergy-style MAC significantly reduce
the usable memory space, whereas SafeGuard provides full
memory as the usable memory space. This makes SafeGuard
even more appealing for widespread adoption.

Table V: Comparison of DRAM Storage Overhead (baseline
uses ECC DIMM. All designs need 12.5% DRAM for ECC).

Baseline Usable Memory Capacity
Memory (ECC DIMM) SGX/Synergy-style MAC [SafeGuard
16GB 14GB (2GB loss) 16GB
64GB 56GB (8GB loss) 64GB
256GB 224GB (32GB loss) 256GB

D. Sensitivity to MAC Latency

SafeGuard can be used with any MAC algorithm. We
use a default MAC latency of 8 processor cycles (See
Table II). Figure 13 shows the performance overhead of
SafeGuard, SGX-Style MAC, and Synergy-style MAC as
the MAC latency is varied from 8 cycles to 80 cycles. Even
with 80 cycles MAC, SafeGuard incurs 5.8% performance
overhead, outperforming SGX-style and Synergy-style MAC
organizations by 19.5% and 7.1%, respectively, with no
additional DRAM overheads.

[OSGX-style MAC mSynergy-style MAC mSafeGuard |

8 1.00

<

£ 0.95

S

5 0.90

[-9

_?5 0.85

£ 0.80 T
=]

Z 075

8 cycles 20 cycles 40 cycles 80 cycles

Figure 13: Performance sensitivity to MAC latency.

VII. SECURITY DISCUSSION

We design SafeGuard as a low-cost integrity protection
scheme, motivated primarily by the problem of arbitrary
bit-flips from Row-Hammer. We assume that the system
employs some form of RH mitigation to correct RH faults
in the common case. So, we are mainly concerned about
attacks that break through the RH mitigation. We discuss
the security issues for our design.

A. Actions After Detection

Similar to current systems (SGX) that provide integrity
protection, SafeGuard informs the system when a DUE
(Detected Unrecoverable Error) is encountered. This lets
the system take preventative actions, such as restarting the
process, relocating the process to a different machine (in the
case of cloud systems), or rebooting the server. We observe
that with RH, the attacker can theoretically flip an arbitrary
number of bits in a line, and it is virtually impossible to rely
on ECC (or the hardware) alone to correct these errors.

B. Vulnerability to Denial-of-Service

Similar to systems that provide integrity protection, Safe-
Guard relies on the software to take corrective actions in
case of an uncorrectable error. An adversary who is able to
persistently cause failures can use this property to orchestrate
Denial-of-Service (DoS) attacks [16]. We note that in the ab-
sence of SafeGuard, the adversary would be able to silently
launch much worse attacks (such as privilege escalation), so
the SafeGuard approach is still preferable. Furthermore, in
case of persistent failures, the system can identify potentially
malicious processes and take preventative actions [10], [33].

C. Vulnerability to Replay Attacks

MAC-based checking is vulnerable to attacks that replay
an older pair of data and MAC. Our threat model assumes
a remote adversary without physical access to the system.
To the best of our knowledge, replay attacks are impractical
to launch with remotely controlled Row-Hammer (adversary
would need to know the previous value and precisely flip a
large number of bits in both the data and MAC). Therefore,
we do not consider replay attack protection in our work.

D. Vulnerability to Timing Channels

SafeGuard performs correction of faulty data, and this
correction can leak the presence of data errors due to a
timing difference. Prior work [6] used this timing channel
to progressively increase the RH bit-flips and escape the
detection of SECDED. SafeGuard provides strong detection,
so even if the attacker exploits this timing channel to
increase the number of bit-flips, SafeGuard will detect it.

RAMBIleed [25] uses the data-dependent nature of RH
to infer the data of neighboring row. While SafeGuard can
prevent data corruption (via ECC correction), the attacker
could potentially exploit the timing channel of ECC correc-
tion to break confidentiality. RAMBIleed can be prevented
using low-cost memory encryption (e.g., Intel TME [14]).

E. Vulnerability to MAC Collisions

When faulty data is checked against a MAC, there is a
small escape probability (1/2™ for n-bit MAC) with each
check. A larger MAC provides stronger protection but incurs
more storage overhead. The MAC size that is sufficient
depends on the frequency of checks of corrupted data and
the actions on detection (restart or continue). While SGX
uses 56-bit MAC, recent Intel Trust Domain Extensions
(TDX) [15] uses 28-bit MAC to protect the virtual machines.

SafeGuard uses MAC ranging from 32-bits (Chipkill) to
46-bit (SECDED). Given that RH-based bit-flips require a
long time to occur (on the granularity of refresh interval)
and the system may take preventative actions, we deem these
MAC sizes to be sufficient to prevent RH attacks.

For example, for SafeGuard with SECDED, if the break-
through attack corrupts one line in memory every refresh
period (64ms), then it will take the adversary a continuous
attack of 1000+ years with 46-bit MAC to get one episode
of MAC escape on average. For the Chipkill version (32-bit
MAC), if we use the iterative correction, the same attack rate
can exhaust the MAC detection within 6 months, as each
fault can incur up to 18 MAC verification failures. Eager
correction effectively increases the attack time by 18x to 9
years as it only requires a single MAC check. Note that these
bounds are derived assuming no preventative actions are
taken in any of the prior million(s) of times when the MAC
correctly identified the faulty lines. In reality, the system
will take some preventative actions in the interim. Thus, the
MAC sizes that we use are sufficient for SafeGuard.

VIII. OTHER RELATED WORK

Hardware-based RH defenses can be divided into tracking
(CRA [18], ProHit [42], TWIiCE [26], and Graphene [35])
and probabilistic (PRA [18], PARA [21]). Both defenses
rely on knowing the RH-Threshold and are vulnerable to
more complex patterns. BlockHammer [47] is a recent RH
mitigation that uses Bloom-Filter to detect hot-rows and
reduces the access rate to these rows, such that the number of
activations within a refresh interval remains below the RH-
Threshold. Block-Hammer can drastically increase memory
latency for some rows (e.g., at RH-Threshold of 1K, a
memory access can take more than 125 micro-seconds).
Furthermore, Block-Hammer requires knowledge of the RH-
Threshold and using a module with a lower RH-Threshold
than the one assumed while designing the system can still
lead to bit-flips, even in the presence of the solution.

ANVIL [2] is a software mitigation that uses CPU perfor-
mance counters to detect RH attacks and issues activations
to the victim rows. ANVIL relies on the RH-Threshold, and
it is vulnerable to complex attack access patterns. CATT [4],
GuardION [46], ZebRAM [23], and RIP-RH [3] create in-
DRAM isolation by allowing a guard row between adjacent
DRAM rows to protect different security domains. These
techniques only consider the immediate adjacent row and
may be vulnerable to more complex patterns.

VS-ECC [48] virtualizes ECC for non-ECC memories.
Unfortunately, it requires extra memory accesses to fetch
the ECC metadata. Bamboo ECC [20] uses vertical Reed-
Solomon [37] codes to protect against pin failures, but it
does not provide strong detection of arbitrary failures. Mor-
phable ECC [5] re-configures the ECC bits to dynamically
employ stronger (ECC-6) code at line-granularity.

Secure systems, such as SGX and Synergy, protect mem-
ory integrity, however, they incur significant slowdown.
VAULT [45] proposes a variable arity integrity tree to lower
the integrity tree accesses and uses compression to store
data and its MAC in one line. Morphable Counters [38] uses
dynamic counter formats to reduce the size of the integrity
trees. Taassori et al. [44] try to reduce the parity update
overhead of Synergy using a compact integrity tree format
that also includes parities. IVEC [13] proposes placing
parities in ECC chips using a non-bonsai MAC tree for
integrity protection. This requires MACs to be stored in
separate cache-line and makes caching them challenging.
Compared to SGX, IVEC incurs a slowdown of 26% [39].

IX. CONCLUSION

Current Row-Hammer mitigations continue to be broken
by the emergence of complex access patterns. In this paper,
we contend that as long as the system remains vulnerable
to Row-Hammer (even in the presence of mitigations), it
is important to detect the bit-flips caused by RH as silent
consumption of corrupted data can lead to security threats.
To this end, we propose SafeGuard for low-cost detection of

arbitrary data errors using per-line MACs. SafeGuard avoids
the storage and performance overheads of the conventional
integrity-protected memories. SafeGuard can effectively re-
duce the severity of RH attacks from a security risk to a
reliability issue. We implement SafeGuard in the context of
conventional ECC designs such as SECDED and Chipkill.
We show that while SafeGuard provides strong detection
of arbitrary errors, it has similar correction strength as
conventional ECC designs against naturally occurring errors.
As we step into the era of reducing memory reliability and
increasingly complex security attacks, we believe solutions
such as SafeGuard would become increasingly necessary to
protect the memory system against both conventional fault
models (well-known and characterized) and unknown fault
models (emerging and adversarial).

ACKNOWLEDGMENT

We thank Stefan Saroiu, Kaveh Razavi, and Sudhanva
Gurumurthi for their suggestions (on an earlier version of
this paper [36]) that significantly helped shape this work.
This work was supported in part by Intel, the Cockrell Foun-
dation, Arm, NSF (Award #2011145), the Natural Sciences
and Engineering Research Council of Canada (RGPIN-
2019-05059), and the SRC/DARPA Center for Research on
Intelligent Storage and Processing-in-memory (CRISP). We
thank the members of the HPS Research Group and Poulami
Das for their editorial suggestions and feedback. We also
thank TACC for providing computing resources.

REFERENCES

[1] Spec 2017. https://www.spec.org/cpu2017.

[2] Z. B. Aweke, S. E. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” in Proceedings of the Twenty-First ASPLOS’16.
Association for Computing Machinery, 2016, p. 743-755.

[3] C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Rip-
rh: Preventing rowhammer-based inter-process attacks,” in Proceed-
ings of the 2019 ACM Asia Conference on Computer and Communi-
cations Security, 2019, pp. 561-572.

[4] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t
touch this: Software-only mitigation against rowhammer attacks
targeting kernel memory,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 117-130.

[5] C. Chou, P. Nair, and M. K. Qureshi, “Reducing refresh power in
mobile devices with morphable ecc,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
2015, pp. 355-366.

[6] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correct-
ing codes: On the effectiveness of ecc memory against rowhammer
attacks,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 55-71.

[7] V. Costan and S. Devadas, “Intel sgx explained.” IJACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1-118, 2016.

[8] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many
sides of target row refresh,” in 2020 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2020, pp. 747-762.

[9] Google. “half-double”: Next-row-over assisted rowhammer. Available
Online.

https://www.spec.org/cpu2017
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245-261.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A re-
mote software-induced fault attack in javascript,” in International
conference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2016, pp. 300-321.

S. Gueron, “Memory encryption for general-purpose processors,”
IEEE Security & Privacy, vol. 14, no. 6, pp. 54-62, 2016.

R. Huang and G. E. Suh, “Ivec: Off-chip memory integrity protection
for both security and reliability,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: Association for Computing Machinery, 2010,
p. 395-406. [Online]. Available: https://doi.org/10.1145/1815961.
1816015

Intel, “Intel® architecture memory encryption technologies specifica-
tion,” Available Online.

——, “Intel® trust domain extensions, white paper,” Available Online.

Y. Jang, J. Lee, S. Lee, and T. Kim, “Sgx-bomb: Locking down
the processor via rowhammer attack,” in Proceedings of the 2nd
Workshop on System Software for Trusted Execution, ser. SysTEX’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3152701.3152709

M. Kaczmarski, “Thoughts on intel xeon €5-2600 v2 product family
performance optimisation—component selection guidelines,” 2014.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in dram memories,” IEEE CAL, vol. 14,
no. 1, pp. 9-12, 2014.

J. S. Kim, M. Patel, A. G. Yaglik¢i, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in 2020 ACM/IEEE
47th ISCA. 1EEE, 2020, pp. 638-651.

J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe, and
flexible codes for reliable computer memory,” in 2015 IEEE 21st
HPCA. IEEE, 2015, pp. 101-112.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in Pro-
ceeding of the 41st ISCA. IEEE Press, 2014, p. 361-372.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1,
pp. 45-49, 2015.

R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuf-
frida, and K. Razavi, “Zebram: comprehensive and compatible soft-
ware protection against rowhammer attacks,” in 13th {USENIX} -
({0SDI1} 18), 2018, pp. 697-710.

M. Kounavis, S. Deutsch, S. Ghosh, and D. Durham, “K-cipher: A low
latency, bit length parameterizable cipher,” in 2020 IEEE Symposium
on Computers and Communications (ISCC). IEEE, 2020, pp. 1-7.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in 2020 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2020, pp. 695-711.

E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice: preventing
row-hammering by exploiting time window counters,” in Proceedings
of the 46th ISCA, 2019, pp. 385-396.

K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci, “Stop! hammer
time: rethinking our approach to rowhammer mitigations,” in Pro-
ceedings of the Workshop on Hot Topics in Operating Systems, 2021,
pp. 88-95.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference, PLDI. New York, NY, USA:
Association for Computing Machinery, 2005, p. 190-200.

[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Advanced Micro Devices (AMD) Inc., “Bios and kernel developer’s
guide (bkdg) for amd family 15h models 00h-Ofh processors,” Jan
2013.

AVNET. Micron ddr5 sdram. Available Online.

HPS/SAFARI Research Group, “Scarab,”
hpsresearchgroup/scarab.

https://github.com/

Micron. Ddr4 sdram datasheet. Available Online.
Microsoft, “Isolation in the azure public cloud,” Available Online.

P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Faultsim: A fast,
configurable memory-reliability simulator for conventional and 3d-
stacked systems,” ACM TACO, vol. 12, no. 4, pp. 1-24, 2015.

Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in 2020
53rd Annual IEEE/ACM MICRO. 1EEE, 2020, pp. 1-13.

M. Qureshi, “Rethinking ECC in the era of row-hammer,” First
workshop on DRAM Security, co-located with ISCA 2021.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” Journal of the society for industrial and applied mathematics,
vol. 8, no. 2, pp. 300-304, 1960.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in 2018 51st Annual IEEE/ACM
MICRO. 1EEE, 2018, pp. 416-427.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE HPCA, 2018, pp. 454-465.

M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
10th ASPLOS. New York, NY, USA: Association for Computing
Machinery, 2002, p. 45-57.

M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger
against row hammering,” in Proceedings of the 54th Annual Design
Automation Conference 2017, 2017, pp. 1-6.

V. Sridharan and D. Liberty, “A study of dram failures in the field,”
in SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 1EEE,
2012, pp. 1-11.

M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-free
support for integrity and reliability,” in 2020 ACM/IEEE 47th ISCA.
IEEE, 2020, pp. 735-748.

M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification struc-
tures,” in ASPLOS, 2018, pp. 665-678.

V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “Guardion: Practical mitigation of
dma-based rowhammer attacks on arm,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assess-
ment. Springer, 2018, pp. 92-113.

A. G. Yaglik¢i, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Block-
hammer: Preventing rowhammer at low cost by blacklisting rapidly-
accessed dram rows,” in 2021 IEEE HPCA, 2021, pp. 345-358.

D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main
memory,” in Proceedings of the fifteenth International Conference
on Architectural support for programming languages and operating
systems, 2010, pp. 397-408.

https://doi.org/10.1145/1815961.1816015
https://doi.org/10.1145/1815961.1816015
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf?source=techstories.org
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://doi.org/10.1145/3152701.3152709
https://www.avnet.com/wps/portal/us/products/c/micron-ddr5/
https://github.com/hpsresearchgroup/scarab
https://github.com/hpsresearchgroup/scarab
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://docs.microsoft.com/en-us/azure/security/fundamentals/isolation-choices

	introduction
	Background & Motivation
	Threat Model
	DRAM Organization
	The Row-Hammer Phenomenon
	Proposals for Mitigating Row-Hammer
	Break Row-Hammer Mitigation with Complex Patterns
	Goal: Reducing Row-Hammer Security Risk at Low-Cost

	Experimental Methodology
	Performance Evaluation Framework
	Reliability Evaluation Framework

	SafeGuard: Low-Cost blackIntegrity Protection
	SafeGuard with SECDED
	Reliability Implications of Increased Granularity
	Tolerating Column Faults via Column Parity
	Reliability Evaluation
	Performance Evaluation
	Storage and Logic Overheads

	SafeGuard with Chipkill
	Organization of SafeGuard with Chipkill
	Operation of SafeGuard with Chipkill
	Reliability Challenge Under Permanent Chip Failure
	Ensuring Reliability with Eager Correction
	Reliability Evaluation
	Performance Evaluation
	Storage and Logic Overhead

	Comparison with Other MAC Organization
	Prior Memory Organizations for Integrity Protection
	Performance Comparison
	Comparison of DRAM Storage Overheads
	Sensitivity to MAC Latency

	Security Discussion
	Actions After Detection
	Vulnerability to Denial-of-Service
	Vulnerability to Replay Attacks
	Vulnerability to Timing Channels
	Vulnerability to MAC Collisions

	Other Related Work
	Conclusion
	References

