
AFS: Accurate, Fast, and Scalable Error-Decoding
for Fault-Tolerant Quantum Computers

Poulami Das∗§, Christopher A. Pattison†, Srilatha Manne‡, Douglas M. Carmean‡,
Krysta M. Svore‡, Moinuddin Qureshi∗, and Nicolas Delfosse‡

∗Georgia Institute of Technology, Atlanta, Georgia
†California Institute of Technology, Pasadena, California

‡Microsoft Quantum and Microsoft Research, Redmond, Washington
§poulami@gatech.edu

Abstract—Quantum computers promise computational ad-
vantages for many important problems across various ap-
plication domains. Unfortunately, physical quantum devices
are highly susceptible to errors that limit us from running
most of these quantum applications. Quantum Error Correc-
tion (QEC) codes are required to implement Fault-Tolerant
Quantum Computers (FTQC) on which computations can be
performed without encountering errors. Error decoding is a
critical component of quantum error correction and is respon-
sible for transforming a set of qubit measurements generated
by the QEC code, called the syndrome, into error locations
and error types. For the feasibility of implementation, error
decoders must not only identify errors with high accuracy,
but also be fast and scalable to a large number of qubits.
Unfortunately, most of the prior works on error decoding have
focused primarily only on the accuracy and have relied on
software implementations that are too slow to be of practical
use. Furthermore, these studies only look at designing a single
decoder and do not analyze the challenges involved in scaling
the storage and bandwidth requirements when performing
error correction in large systems with thousands of qubits.

In this paper, we present AFS, an accurate, fast, and scalable
decoder architecture that is designed to operate in the context
of systems with hundreds of logical qubits. We present the
hardware implementation of AFS, which is based on the Union
Find decoding algorithm and employs a three-stage pipelined
design. AFS provides orders of magnitude higher accuracy
compared to recent SFQ-based hardware decoders (logical
error rate of 6 × 10−10 for physical error rate of 10−3) and
low decoding latency (42ns on average), while being robust
to measurement errors introduced while extracting syndromes
during the QEC cycles. We also reduce the amount of decoding
hardware required to perform QEC simultaneously on all the
logical qubits by co-designing the micro-architecture across
multiple decoding units. Our proposed Conjoined-Decoder
Architecture (CDA) reduces the storage overhead by 70%
(10MB to 2.8MB). Finally, we reduce the bandwidth overheads
required to transmit syndromes from the qubits to the decoders
by exploiting the sparsity in the syndromes and compressing
the data. Our proposed Syndrome Compression reduces the
bandwidth requirement by 30x, on an average.

Keywords-Quantum computing, Quantum error correction,
Fault-tolerant quantum computing, Decoding, Union-Find de-
coding, Surface codes

I. INTRODUCTION

Quantum computing promises significant speed-up over
conventional computers for many important applications [71,
90, 101, 121]. The primary obstacle to practical quantum
computing is the high error-rate in quantum devices. A
Fault-Tolerant Quantum Computer (FTQC), in which quan-
tum bits, or qubits, are regularly refreshed by Quantum
Error Correction (QEC), is necessary to perform useful
computations on error-prone quantum hardware.

QEC is way more challenging than classical error correc-
tion because the error rates of qubits are orders of magnitude
higher and their inherent properties impose many fundamen-
tal restrictions. For example, qubits cannot be copied [123]
and lose their quantum state when measured. To tackle
these challenges, QEC codes [1, 3, 46, 55, 100] encode
logical qubits by using a set of data and ancilla qubits, as
shown in Figure 1(a). The data qubits represent the quantum
information, whereas the ancilla qubits periodically interact
or entangle with the data qubits as per the QEC protocol
and reveal information about errors on the data qubits upon
measurement. This process is called syndrome measurement
or extraction and the output of ancilla measurements is called
a syndrome. An error decoder processes the syndrome to
locate and identify the type of errors on the data qubits.

To be practical for implementation in an FTQC, a decoder
must satisfy three design constraints: accuracy, latency, and
scalability. The accuracy constraint suggests that the de-
coder must correctly identify all the errors (both in the data
qubits as well as measurement operations in the QEC cycles)
with a very high probability. The latency constraint requires
decoders to correct the errors within an error correction
cycle to prevent any backlog or accumulation of errors. The
scalability constraint indicates that it must be feasible to
implement the decoder in FTQCs with hundreds of logical
qubits. To scale to such large FTQCs and simultaneously
facilitate operation inside a constrained, potentially cryo-
genic [8], environment, decoders must be hardware efficient.
The proximity to the physical qubits necessitates the use of
minimal hardware to ensure that the thermal heat generated

Data Qubits

…

Ancilla Qubits

…Lo
gi

ca
l Q

ub
it

Sy
nd

ro
m

e
Ex

tra
ct

io
n

C
irc

ui
t

Measure
Ancillas

Error
Decoder

Apply correction to data qubits

Syndrome

Syndrome Generation
and Measurement

Error

Q0 Q1 QN…

AFS0 AFS1 AFSN

High Bandwidth Interface

…

…

AFS0 AFSL

… …

Syndrome Decompression

…

Syndrome Compression

(a)

Dedicated Decoders

(b)

Conjoined-Decoder Architecture (CDA)

(c)

Figure 1. (a) The framework for quantum error correction and the process of error decoding (b) Existing designs use dedicated decoders and do not consider
bandwidth constraints (c) Proposed optimizations of Conjoined-Decoder and Syndrome Compression to reduce the storage and bandwidth overheads.

from the decoding circuits do not introduce additional noise
channels for the qubits. In this paper, we focus on the
hardware design of decoders for quantum error correction.

The design of decoders for QEC has been an active
area of research for the last two decades. However, these
studies [4–7, 10, 12–17, 19, 20, 23, 29, 32–36, 38–40, 42,
44, 45, 47–49, 56–58, 61, 62, 65, 66, 70, 73, 82, 83, 97, 102,
104, 110–112, 114–116, 119, 120, 124, 125] have mainly
focused on the accuracy constraint, whereas the latency
constraint is typically studied only at an algorithmic level,
by mainly relying on software implementations, and it is
unclear if existing decoders can satisfy this constraint with-
out degrading the accuracy [43]. More recently, Holmes et
al. [59] proposed a hardware decoder using superconducting
technology that provides high accuracy and low latency.
Unfortunately, the proposed decoder design assumes perfect
ancilla measurements. However, measurement operations are
erroneous and may generate incorrect syndromes even if
there are no errors in the data qubits. Failure to account
for imperfect ancilla measurements and relying on erroneous
syndromes causes miscorrections and severely degrades the
accuracy of a decoder. Ideally, we want an error decoder
that can tolerate errors in the data qubits as well as in the
measurement of ancilla qubits (to mitigate measurement er-
rors, the decoder must process multiple rounds of syndrome
measurements [36], presenting even greater challenges to
meet the latency constraint). Finally, all existing decoders
study the decoder for a single logical qubit and implicitly
assume dedicated decoders for each logical qubit, as shown
in Figure 1(b). However, this architecture is not scalable as
the hardware complexity of the decoders grows linearly with
the number of logical qubits. Alternately, sharing decoders
between multiple logical qubits reduces the hardware cost
but can also impact the accuracy because any resource
conflicts may deprive a logical qubit timely access to de-
coding circuits, increasing the probability of an error going
undetected. Ideally, we want to co-design these decoders
such that we can reduce the hardware while simultaneously
maintaining the accuracy and latency.

To that end, this paper proposes the AFS (Accurate, Fast,
and Scalable) Decoder, that is designed to provide high de-
coding accuracy, low latency (average latency of 42ns), and
is optimized to operate with a system containing hundreds
of logical qubits. We assume Surface Code [36, 46, 64, 89]
which is widely considered to be one of the most promising
candidates for QEC. AFS is based on the Union Find De-
coding (UFD) algorithm [32, 34] as the accuracy, simplicity,
and low time-complexity of the UFD makes it an ideal
candidate for our design. We describe the implementation
of the AFS microarchitecture, where the design comprises
of three pipeline stages, based on the three key steps of the
decoding algorithm: Graph Generator (Gr-Gen), Depth First
Search (DFS), and Correction Engine (CORR).1 Further-
more, we ensure that AFS is tolerant of measurement errors,
by repeating the measurement operations d times (where d
is the code distance and is the length of the shortest error
chain that cannot be corrected). To analyze the effectiveness
of the AFS decoder, we assume a phenomenological noise
model which accounts for erroneous ancilla measurements in
addition to errors on data qubits [36]. We observe that AFS
provides orders of magnitude higher accuracy compared to
recent SFQ-based decoders [59, 113] (e.g. a logical error rate
of error rate of 6× 10−10 for physical error rate of 10−3 at
d=11). Furthermore, the average decoding latency of AFS
is 42 nanoseconds and the 99.9 percentile decoding latency
is 150 nanoseconds, both of which are below the syndrome
generation cycle time of 400 ns [51, 59]. AFS requires a
storage of 8.95 KB (for d=11) to 133 KB (for d=25).

Allocating individual AFS decoders to each qubit may
require hardware resources and bandwidth in proportion to
the number of qubits in large systems. We avoid this rapid
increase in hardware cost by observing that not all parts of
the decoder are used equally. For infrequently used com-
ponents of the decoder, we can share the component across

1Our hardware implementation makes minor modification to the UFD
algorithm, as our objective is to reduce the cost of hardware required for
implementing the decoder and not establishing the theoretical bounds on
the asymptotic complexity of the algorithm.

multiple logical qubits and reduce the overall cost. With this
insight, we propose Conjoined-Decoder Architecture (CDA),
which reduces the storage overhead by 3.5x. CDA reduces
the total storage required to implement error decoding for
a reasonably large fault-tolerant system with 1000 logical
qubits from 9.96 MB to 2.8 MB. As CDA shares decoding
resources, a decoding failure may also result from the lack
of access to decoding circuits, which we refer to as a timeout
failure in this paper. Our analysis shows that for a period
of 350 ns, CDA causes timeout failures with probability
2 × 10−11, which is much smaller than the logical error
rate 6× 10−10, thus causing negligible impact on accuracy.

Existing decoders assume availability of extremely large
bandwidth, typically several hundreds of Gbps, for syndrome
transmission. Syndrome data must be sent from millions of
physical qubits to the decoders as quickly as possible so
that the decoding completes within an error correction cycle.
Since decoding is a time-sensitive problem, transmitting
syndrome data at lower bandwidth reduces the time available
for decoding and may result in errors going undetected. To
address this challenge, we exploit the sparsity in syndromes
(most syndrome bits tend to be zeros) and propose Syn-
drome Compression, which reduces the required bandwidth
(typically between 200-2000 Gbps) by 30x, on average. An
overview of the overall design is shown in Figure 1(c).

Overall, this paper makes the following contributions:
1) We propose AFS, a hardware-based error decoder for

QEC, which provides high accuracy and low latency
(average latency of 42 nanoseconds), while being
tolerant to measurement errors.

2) We propose CDA, which avoids the rapid linear in-
crease in decoding hardware cost by co-designing
the decoder microarchitecture across multiple qubits
(storage reduction of 3.5x).

3) We propose Syndrome Compression, which exploits
the sparsity in syndrome values to reduce the band-
width required to transmit the syndromes from qubits
to the decoders by 30x.

II. BACKGROUND AND MOTIVATION

A. Basics of qubits and types of errors

A qubit may be described by a vector |Ψ⟩ = α |0⟩+β |1⟩,
representing a superposition of its basis states |0⟩ and |1⟩
with α, β ∈ C such that | α |2 + | β |2= 1. Qubits
accumulate tiny rotations through their interactions with
environmental noise. These unwarranted rotations can be
projected onto three types of errors X, Y, and Z, called
Pauli errors. The bit-flip (X) error swaps the probability
amplitudes of the basis states |0⟩ and |1⟩ and maps the qubit
|ψ⟩ into β |0⟩+ α |1⟩. The phase-flip (Z) error introduces a
relative phase between the two basis states, changing the
qubit |ψ⟩ to α |0⟩ − β |1⟩. The Y error corresponds to a
simultaneous bit-flip and phase-flip error.

B. QEC and Surface Code

Quantum Error Correction (QEC) protects quantum states
by encoding k logical qubits into a block of n data qubits
(n > k). Additional ancilla qubits are used to obtain
information about errors on the data qubits. QEC is a two-
step process. First, a measurement circuit is executed on a
block of qubits to produce a syndrome. In the second step, a
decoder is used to identify the location and type of errors on
data qubits based on the syndrome information so that errors
can then be corrected. If the error rate of the physical qubits
is lower than a threshold, QEC produces k logical qubits
with lower error rate than the physical qubits at the expense
of an increased number of physical qubits per logical qubit.

Surface code [36, 47, 64, 89] encodes a logical qubit into
a square grid of (2d − 1) ∗ (2d − 1) alternating data and
ancilla qubits, where d is the code distance that determines
the length of the shortest uncorrectable error chain. Larger
distance results in greater error tolerance but also increases
the number of physical qubits consumed. The data qubits
store the quantum information, whereas the ancilla qubits
entangle with the neighboring data qubits and when mea-
sured, reveals information about errors on data qubits. For
example, Figure 2(a) shows a distance-3 surface code lattice.
An X-error on data qubit D0 flips the neighboring Z-type
ancilla qubits, whereas a Z-error on D1 flips the adjacent
X-type ancillas, as shown in Figure 2(b). When a data qubit
encounters a Y-error, such as D2, it flips both the X-type
and Z-type ancilla qubits, as shown in Figure 2(c).

D0

D1

D2

Data qubits X-type ancilla qubits Z-type ancilla qubits

(a) (b) (c)

Figure 2. (a) Distance-3 surface code lattice (b) Bit-flip (X) error on D0

and phase-flip (Z) error on D1 flips adjacent Z-type and X-type ancilla
qubits respectively (c) Both bit-flip and phase-flip (Y) error on D2 flips
both neighboring X-type and Z-type ancilla qubits

C. Error Decoding: Challenges

A decoder uses the output of ancilla measurements, the
syndrome, to determine a set of corrections that must be
applied to the data qubits. X-type and Z-type errors are
corrected independently (then Y-errors are automatically cor-
rected). A decoder must satisfy three constraints: accuracy,
latency, and scalability for adoption in large FTQCs. To
satisfy the accuracy constraint a decoder must correctly
identify the errors with high probability. A decoder satisfies
the latency constraint if it can be executed within one
round of syndrome extraction (during which a syndrome bit

is extracted from each ancilla qubit), that is about 400ns
for superconducting qubits [51, 59]. Failure to achieve the
latency constraint causes errors to accumulate and may
lead to a backlog problem [109]. For scalability, decoders
must be implemented with minimal hardware to operate
in constrained environments [8]. Prior software decoders
are optimized for accuracy and are often too slow to meet
the latency constraint [43]. Moreover, the latency constraint
is always at tension with the accuracy constraint. A more
accurate decoder is generally slower.

D. Impact of Measurement Errors

A recently proposed hardware-based error decoder [59]
meets the latency constraint by leveraging micro-
architectural optimizations and superconducting devices but
assume perfect ancilla measurements. In reality, quantum
measurement operations are error-prone and can signif-
icantly deteriorate the performance of the QEC code.
Syndrome bits extracted by measuring the ancilla qubits
might flip due to measurement errors, leading to incorrect
syndrome data and failure to tolerate these errors reduces
the logical error rate. Therefore, even small scale QEC
experiments account for measurement errors [2]. For ex-
ample, Figure 3 shows the logical error rate of surface
code as a function of the physical error rate p for different
code distances assuming (a) perfect measurements and (b)
erroneous measurements, where each syndrome bit is also
flipped independently with probability p. We observe that
the logical error rate increases with the code distance in the
presence of measurement errors even though it is expected
to decrease exponentially fast with increasing code distance
d.

10 3 10 2 10 1

Physical Error Rate (p)

10 4

10 3

10 2

10 1

100

Lo
gi

ca
l E

rro
r R

at
e

(a) Perfect Measurements

d = 3
d = 7
d = 11

10 3 10 2 10 1

Physical Error Rate (p)

10 4

10 3

10 2

10 1

100 (b) Noisy Measurements

d = 3
d = 7
d = 11

Figure 3. Logical error rate for different surface code distances (d) and
physical error rates (p) assuming (a) perfect measurements and (b) noisy
measurements estimated by using a Monte-Carlo simulation implementing
the Minimum Weight Perfect Matching decoder [36].

Measurement errors can be corrected by performing mul-
tiple rounds of syndrome extraction [36]. We assume d
consecutive rounds of noisy syndrome measurements are
performed [36], and the entire sequence is referred to as
a logical cycle. To tolerate measurement errors, the decoder
must process the syndrome from all these syndrome extrac-
tion rounds together to identify the error which occurred.

Consequently, the decoding process becomes even more
computationally intense and time consuming. Therefore, we
need a decoder design that is accurate (can tolerate erroneous
ancilla measurements in addition to errors on data qubits)
and simultaneously meets the latency constraint.

E. Impact of Scaling to Large FTQCs

Decoders must be accurate, fast, and scalable for imple-
mentation in FTQCs required to solve industry-size applica-
tions. Current decoders mainly focus on achieving higher
accuracy and performance for a single logical qubit and
implicitly assume each logical qubit in an FTQC will
be assigned its dedicated decoders to maximize the error
correction capability.

However, the hardware complexity of this architecture
grows linearly with the system size. Alternately, the hard-
ware cost of the decoding architecture can be significantly
reduced by sharing decoders between multiple logical qubits.
For example, in the extreme case, we may have only
one decoder in the entire FTQC to decode all the errors
on all the qubits. This design utilizes the least possible
hardware, but such arbitrary resource sharing may deprive
a logical qubit timely access to the decoding hardware if
the decoder is processing a syndrome for another logical
qubit. Consequently, such starvation caused by resource
conflicts may result in a logical error. Therefore, there exists
a trade-off between the error correction capabilities and
hardware cost savings that can be achieved in a decoder
architecture which shares decoders between logical qubits.
Ideally, we want a hardware-efficient decoder architecture
without compromising the accuracy.

Moreover, prior studies assume the availability of very
high bandwidth, typically hundreds of Gbps, for syndrome
transmission. For implementation in large FTQCs, we must
not only have a fast and accurate decoder, but also solutions
that can scale the decoder to a large number of qubits while
minimizing the hardware and bandwidth requirements.

F. Goal

The goal of our paper is to develop decoders that satisfy
all three design constraints: accuracy, latency, and scalability.
We develop a hardware-based Accurate, Fast, and Scalable
decoder, called AFS. We also develop Conjoined-Decoder
Architecture (CDA) and Syndrome Compression (SC) to re-
duce the hardware and bandwidth requirements. We describe
the evaluation methodology before discussing the solutions.

III. EVALUATION METHODOLOGY

In this section, we discuss the simulation infrastructure
used to evaluate the accuracy of the proposed decoder
design. We defer the methodology for estimating the latency
and storage overheads of the decoder design to the later
sections of the paper.

A. Monte Carlo Simulation Infrastructure
Figure 4 shows an overview of our Monte-Carlo simulator,

that uses random sampling for each configuration of physical
error rate, code distance, and noise model for 10 million
random trials and uses bootstrap techniques [126] for higher
accuracy. We configure surface code with distances ranging
from 3 to 25 and consider a default error rate of 10−3 (and
below) because QEC cannot lower the logical error rate sub-
stantially unless the physical error rate is below the threshold
(about 1% for surface codes). Also, higher physical error
rates require larger code distance and hence, an increased
number of physical qubits. Thus, it is challenging to run
practical applications [90] on devices with error rates of
10−2 and hence, is not considered in this paper. For systems
with 100 to 1000 logical qubits, error rates around 10−3, far
below threshold, are needed to run most applications.

Lattice
Generator

Error
Injection

Decoder Micro-
architecture

Compression

Syndrome

Compressed
Syndrome

Compression Algorithm

Noise ModelCode Distance

Statistics

Figure 4. Overview of Monte Carlo simulation framework

The simulator generates a syndrome for a surface code
lattice of given distance by injecting errors based on the
noise model. The simulator uses the syndrome and models
the proposed decoder micro-architecture, decodes the syn-
drome, estimates the performance, and utilization of each
component in the design. The statistics from the simulator
are used to draw insights and optimize the micro-architecture
for systems with large number of qubits. The syndromes
generated also help with determining the effectiveness of
the compression algorithms described in Section VI.

B. Noise model
We use the phenomenological noise model [36] that

accounts for data qubit errors and measurement errors. Given
that X-type and Z-type errors are corrected independently,
we focus on X-type errors. In the phenomenological noise
model with parameter p, each round of syndrome measure-
ment is preceded by a round of noise during which each data
qubit is affected independently by a X error with probability
p. Moreover, each syndrome bit is flipped independently
with probability p to model measurement errors. This is the
standard model used to study decoders and QEC for last two
decades and has been proven to be effective even on recent
QEC experiments [2]. Correlated errors or errors due to
crosstalk leads to longer chains of errors on the surface code
lattice and can be corrected by adjusting the code distance
(increasing the lattice size) [84]. As our design is scalable
across different code distances, it can handle such errors.

IV. AFS DECODER

In this paper, we propose the Accurate Fast and Scalable
(AFS) decoder, which is based on the Union-Find decoding
(UFD) algorithm [32, 34] for its accuracy, simplicity, and
low time-complexity. We briefly describe the UFD algorithm
before discussing the micro-architecture of the AFS decoder.

X

X
X

(a) (b)

(c) (d)

A

Figure 5. Edges and nodes on the graph represent data and ancilla qubits
respectively (standard representation in QEC). (a) Syndrome extracted by
the syndrome measurement circuit. Each node has a syndrome bit and red
nodes indicate non-trivial or non-zero syndrome bits. (b) Cluster Growth:
Clusters are grown by half-edge around the non-zero syndrome nodes
until each cluster contains an even number of non-zero syndrome bits. (c)
Spanning Forest Generation: A spanning tree is generated for each cluster.
(d) Peeling: An error corresponding to the measured syndrome is produced
for each cluster by reversing the spanning tree.

A. Background on Union-Find Decoding

UFD is a graph-based algorithm that processes a syn-
drome in almost-linear time. In the absence of measurement
errors, decoding may be treated as a matching problem on
a square grid (2-dimensional space). Figure 5 illustrates the
decoding steps for distance-7 surface code. Our AFS decoder
comprises of three pipeline stages that performs these steps.

1) Cluster Growth: clusters are grown around the non-
zero syndrome bits, as shown in Figure 5(b), until
all clusters cover an even number of non-zero syn-
drome bits. The Graph-Generator (Gr-Gen) stage of
the pipeline performs this step.

2) Spanning Forest Generation: a spanning tree cover-
ing each cluster is created. The data qubits encoun-
tered along the traversal (for example, qubit A in

V E E V E E V
E E E
E E E
V E E V E E V
E E E
E E E
V E E V E E V

Control Logic

Root
Table

Size
Table

Spanning Tree
Memory (STM)

Runtime
Stack

Parity/Traversal
Registers

Zero Data
Register (ZDR)

Pending
Edge Stack

Edge Stack (S1)

Edge Stack (S0)

Select
Logic

Syndrome
Hold Registers

Apply
Correction

State
Machine

Read/Write
Interface

Read/Write Interface

Graph Generator (Gr-Gen) Depth First Search (DFS) Engine Correction (CORR) Engine

Figure 6. Micro-architecture of the AFS decoder, divided into three pipeline stages.

Figure 5(c)) may require a correction that has to be
determined. The Depth First Search (DFS) Engine
traverses the spanning trees and stores the list of
visited edges which are used by the next pipeline stage
of the design.

3) Peeling: the error within a cluster is estimated by
reverse traversing the spanning tree and consulting the
syndrome, as shown in Figure 5(d). The Correction
(CORR) Engine in our design uses the list of the
visited edges created by the DFS Engine to estimate
the best correction for each cluster.

B. Tolerating Measurement Errors
Measurement errors flip syndrome bits and may mislead a

decoder if not detected. For example, the non-zero syndrome
bit S0 in Figure 7(a) could be a result of measurement error
and if the decoder uses this syndrome, it mistreats it as an
error on the data qubit D0 and degrades the performance
of the QEC code by introducing a false correction. Our
experiments (in Section II-D) show that failure to tolerate
measurement errors can degrade the performance of QEC
codes by orders of magnitude. To tolerate measurement
errors, decoders analyze d rounds of syndrome measure-
ments [36] simultaneously, resulting in a matching problem
in a 3-dimensional space, as shown in Figure 7(b). Each
edge on the 3-dimensional graph denotes a potential error:
horizontal and vertical edges correspond to errors on data
qubits and ancilla qubits respectively.

Edge denotes
data qubit

Non-zero
syndrome

(a) (b)

S0

D0

Figure 7. (a) Measurement error flips syndrome bit S0 and if not detected,
it misleads the decoder to treat it as an error on data qubit D0 (b) To tolerate
measurement errors, decoders process d syndrome rounds. A horizontal red
edge represents a data qubit error, and a vertical red edge represents the
flip of a measurement outcome.

C. AFS Decoder Micro-architecture

Figure 6 shows the micro-architecture of our AFS de-
coder, and we describe the functionality and optimizations
next:

Graph Generator (Gr-Gen): The Gr-Gen accepts the syn-
drome and generates a spanning forest by growing clusters
around non-zero syndrome bits. It consists of a Spanning
Tree Memory (STM), Zero Data Register (ZDR), tables to
store the root and sizes of clusters, parity registers, tree
traversal registers, and a runtime stack, as shown in Figure 6.
The STM stores a bit per node and 2 bits per edge (initialized
to 0s).2 The node bits are set for the non-zero syndrome
bits and the edge bits flip to 1 when the corresponding edge
is added to the spanning forest during cluster growth. To
quickly grow odd clusters, a 1-bit parity information per
cluster is stored in the parity registers. The Root and Size
tables store the root and size of each cluster respectively to
aid the Union() and Find() operations and merge clusters
after the growth phase. The tree traversal registers stores the
vertices visited during the Find() operation. These registers
accelerate the Find() operation by quickly updating the table
entries and compressing the depth of the tree continuously
through path compression. When two clusters of different
sizes are merged, the size table entries are used to add the
smaller cluster to the larger one to reduce the overall number
of updates. The ZDR is an optimization that stores a bit per
row and is initialized to all 0s. When there are one or more
non-zero bits in a row, the bit corresponding to the row is
set to 1 in the ZDR. The ZDR is used by the next pipeline
stage to quickly scan through the STM so that zero memory
rows of the STM are not visited.

Depth First Search (DFS) Engine: It processes the data
produced in the STM by the Gr-Gen using a depth first
search algorithm and generates a list of edges by forming
a spanning tree while traversing through each cluster. Note
that a breadth first search works too but we prefer depth
first search since it is generally more memory efficient. The
DFS Engine uses stacks to store the edges visited while
performing the DFS so that reverse traversal for the peeling

2Two bits are needed since clusters grow by half edge width [32].

step of the algorithm can be easily accomplished by popping
off the stack. The ZDR is used to quickly traverse through
the STM. Since the ZDR entries are filled when clusters are
formed by the Gr-Gen, the DFS engine now only visits the
non-zero rows, therefore accelerating the process. The edge
stack stores the list of visited edges, whereas the runtime
stack stores the edges that will be visited later in the on-
going DFS when a node diverges along multiple paths.
Another optimization in this design is the use of an alternate
edge stack (Edge Stack S1 in Figure 6) that enables us to
fully pipeline the design. When the DFS for one of the
clusters is complete, the CORR Engine can start generating
its correction while the DFS Engine proceeds to process the
data of another cluster.

Correction (CORR) Engine: This stage traverses the span-
ning forests in reverse direction and identifies the Pauli
correction to be applied to the data qubits along the path
by using the list of edges generated by the DFS Engine,
stored on the stacks. The CORR Engine needs the syndrome
to generate the correction and retrieving this data from the
STM incurs additional logical complexity and read ports.
Instead, the syndrome is stored on the stack along with the
edge information by the DFS Engine at the overheads of 2
bits to store the direction and syndrome each, corresponding
to the two vertices connected by the edge, per stack entry.
Local changes to the syndrome during peeling are stored in
the on-chip Syndrome Hold Registers (shown in Figure 6)
instead of writing to the STM and reading back. This reduces
the number of read and write ports required by the STM.

D. Accuracy of the AFS Decoder

Encoding qubits with a physical error rate p using a
distance-d surface code, we obtain a logical qubit whose
error rate is given by Equation (1).

Logical error rate = plog(d, p) = 0.15.(40p)
(d+1)

2 (1)

This is referred to as the logical error rate. The heuris-
tic formula is derived from the numerical results of [32]
and provides a good estimate of the logical error rate for
the Union-Find decoder in the regime of low error rate
(p ≪ 10−2). It is valid in the context of the AFS decoder
implementing the UFD algorithm and for the phenomeno-
logical noise model considered in this paper. Figure 8 shows
the logical error rate for different surface code distances and
physical error rates. In this paper, we illustrate our design
with numerical results for distance-11 surface codes which
is a reasonable distance for a first generation of fault-tolerant
quantum computers as it allows us to implement non-trivial
quantum algorithms on logical qubits while keeping the
qubit overhead to a few hundred qubits per logical qubit. For
a physical error rate of p = 10−3, the logical qubits error rate
drops to plog ≈ 6× 10−10 allowing for the implementation
of large depth quantum algorithms.

3 5 7 9 11 13 15 17 19 21
Code Distance (d)

10 32

10 24

10 16

10 8

Lo
gi

ca
l E

rro
r R

at
e

p = 10 3

p = 10 4

p = 10 5

Figure 8. Logical error rate with the AFS decoder for different physical
error rates (p) and code distances (d).

E. Latency of the AFS Decoder

The latency is dominated by read operations to the mem-
ory structures. The AFS decoder requires up to three sequen-
tial memory reads every cycle. This helps us to accurately
model the performance of the design. The write operations
performed are read-modify-write, and the micro-architecture
is designed such that memory write-backs are not on the
critical path. The other key operations are flipping adjacent
memory locations if a non-zero syndrome bit is encountered
(in cluster growth step) and updating the parity bits. Note
that the AFS does not require any floating-point arithmetic
or matrix operations. We assume a latency of 1 nanosecond
(4 cycles latency and a 4 GHz clock frequency) for 32-bit
memory accesses from 1 KB on-chip memory [77]. The
number of memory accesses in the Gr-Gen for a syndrome
is proportional to the total number of clusters and diameter
of each cluster and the time spent in this stage (τGG) is given
by Equation (2), where Ci is the ith cluster and m is the
total number of clusters in the syndrome.

τGG =

m∑
i=1

diam(Ci)∑
j=1

j2 (2)

The number of memory operations in the DFS Engine
and CORR Engine is proportional to the size of a cluster
(or the number of vertices |V (Ci)| in the ith cluster Ci).
Equation (3) denotes the time spent in the DFS Engine (τDFS)
and CORR Engine (τCE) for a syndrome with m clusters.

τDFS = τCE =

m∑
i=1

|V (Ci)| (3)

Note that there is no single number that can quantify the
latency of any decoder, as the latency is dependent on
the syndrome (easier syndromes take less decoding time).
Using the above model, for the AFS decoder, we obtain an
average latency of 42 ns for a single logical qubit encoded
using distance 11 surface codes. Based on the likelihood of
complex syndromes, we observe that the 99.9th percentile
latency of decoding is less than 150 ns. Note that these
values are significantly lower than the timing budget of 400
ns typically provisioned for decoding operations [51, 59].

For the latency analysis, we assume a dedicated decoder
design where there are no resource conflicts across decoding
operations from different logical qubits. In Section V, we
optimize the decoder design to be more hardware efficient,
which can cause resource conflicts and increase the latency.
We defer the detailed evaluation of latency to Section V-E.

F. Storage Overhead for the AFS Decoder

It is preferred that decoders operate close to the quantum
substrate in a cryogenic regime. Therefore, our main design
constraint is limited hardware resources, particularly mem-
ory available in the cold environment. Memory constitutes
for the major part in the proposed design and the AFS micro-
architecture requires 4.5 KBytes of memory for physical
error rate 10−3 and surface code distance 11. Note that
two decoders are needed per logical qubit to decode X and
Z errors independently. Table I shows the memory required
by AFS decoder for a logical qubit in distances 11 and 25.

Table I
MEMORY REQUIRED FOR A LOGICAL QUBIT ENCODED USING DISTANCE

d SURFACE CODE AND PHYSICAL ERROR RATE 10−3

Design Component d = 11 d = 25

STM (Gr-Gen) (KB) 2.07 25.6
Root Table (Gr-Gen) (KB) 3.25 51.3
Size Table (Gr-Gen) (KB) 3.54 54.9
Stacks (DFS Engine) (KB) 0.08 1.41

Total (KB) 8.95 133

V. CONJOINED-DECODER ARCHITECTURE

Existing decoders only focus on improving the accuracy
and latency of a single logical qubit, ignoring the scalability
constraint. However, an FTQC for practical applications
require hundreds of logical qubits and each of them must
constantly undergo QEC. For example, a quantum chemistry
application to study nitrogen fixation requires 100 to 1000s
of logical qubits [90]. Failure to detect an error on any
one of the qubits may produce an incorrect output for the
program. Prior studies implicitly assume a simple system-
level decoder architecture where each logical qubit accesses
its dedicated decoders. While this design maximizes the
error correction capability, its hardware complexity grows
linearly with the number of qubits, as shown in Figure 9,
and hence become resource intensive for large FTQCs.

Sharing decoders between logical qubits improves the
scalability but may result in an error going undetected due to
lack of timely access to the decoding hardware units. Thus,
designing decoder architectures that reduce the hardware
cost through resource-sharing is non-trivial. Ideally, the
hardware complexity must be minimized without impacting
the accuracy and latency, and our proposed Conjoined-
Decoder Architecture (CDA) achieves this goal.

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Number of Logical Qubits

1 MB

100 MB

1 GB

M
em

or
y

Re
qu

ire
d

d = 11 d = 25

Figure 9. Memory required for the total number of decoders with the
number of logical qubits (each qubit requires two decoders, X and Z).

A. Optimized CDA Micro-architecture

The key insight in CDA is that all units of the AFS
decoder are not equally utilized, and we can reduce the
hardware complexity by sharing infrequently used units
across logical qubits. Figure 10 shows the micro-architecture
of a decoder block, fundamental unit of CDA, that uses a
reduced number of pipeline units of each type. We use non-
uniform number of pipeline stages because we observe that
certain stages are under-utilized than others when we study
the utilization of each stage of our AFS decoder. In a decoder
block, groups of Gr-Gen share a DFS Engine and groups
of DFS Engines share a CORR Engine. The Select logic
prioritizes the first-ready component and uses round robin
arbitration (for fairness) to generate select signals for the
multiplexers. For example, if four Gr-Gen units share a DFS
Engine, and the second Gr-Gen finishes cluster generation
at the earliest, it gets access to the DFS Engine.

Gr-Gen
(GG1)

…

From GGN

…

Gr-Gen
(GG0)

DFS
Engine
(DFS0)

Gr-Gen
(GGN-2)

…
From GG0

DFS
Engine

(DFS⍺N-1)

Gr-Gen
(GGN-1)

Gr-Gen
(GGN)

From GG0
… DFS

Engine
(DFS⍺N)

DFS
Engine
(DFS1)From GGN

Gr-Gen
(GG2) …

DFS⍺N

…

DFS0
…

CORR
Engine

(CORR0)

CORR
Engine

(CORRβ)

… …

Select
Logic

To All
MuxesN

 lo
gi

ca
l q

ub
its

 sh
ar

e
a

de
co

de
r b

lo
ck

⍺N DFS Engines,
⍺<1

βN CORR Engines,
β< ⍺<1

A
pply C

orrection

Figure 10. Decoder Block shared by N logical qubits using non-uniform
number of Gr-Gen, DFS Engine, and CORR Engine units and resource
savings depend on parameters α and β.

CDA reduces hardware complexity because decoder
blocks require fewer resources than individual decoders.
Figure 11 shows the CDA of an FTQC with L logical qubits,
where N logical qubits share a decoder block. Hardware
savings depend on parameters α and β and our goal is to
design hardware efficient CDA by optimizing these parame-
ters, subject to meeting the accuracy and latency constraints.

… …
…

Apply Correction

Decoder Block Decoder BlockControl
Logic

N logical qubits share
a decoder block

L/N decoder
blocks

L logical qubits
in FTQC

N logical qubits share
a decoder block

Figure 11. A decoder block in the CDA generates the correction that must
be applied for each of its N logical qubits every error correction cycle.

B. Modeling of Error Correction Capability

Error correction of a logical qubit is successful when d
rounds of syndrome measurements are decoded within a
single round of measurement, which limits the maximum
latency that can be tolerated. When a decoder fails to decode
all the syndromes within a cycle, errors go undetected.
Sources of system failure: There are two sources of system
failure in CDA: (a) logical error or (b) timeout failure. No
decoder can correct all possible errors. The surface code and
Union-Find decoder are designed such that the probability of
a logical error is small and decays exponentially with code
distance. CDA has an extra source of failure which occurs
when an error cannot be detected because a logical qubit is
denied timely access to the decoders. We call this a timeout
failure, and it arises due to conflicts during resource sharing
and depends on the architecture.
Accuracy Constraint: The system failure rate does not get
impacted if the probability of a timeout failure (ptof) is lower
than the probability of a logical error (plog). The design
goal is to satisfy this constraint, given by Equation (4), by
using minimal decoder blocks to ensure the accuracy of the
system is not compromised. The ptof is obtained from the
performance model embedded in our simulator.

ptof ≪ plog (4)

C. Optimization Results and Performance

An FTQC with L logical qubits that allocates dedicated
decoders to each logical qubit requires 2L AFS decoders to
correct both X and Z syndromes. Alternately, in CDA, a Gr-
Gen unit grows clusters for both X and Z syndromes and
two Gr-Gen units share a DFS Engine and CORR Engine.
The optimal number of units for sharing are determined from
the fraction of the execution time spent in each stage. Most
of the time is spent in the Gr-Gen since spanning forest
generation and peeling cannot proceed until clusters are fully
grown [32]. The DFS Engine takes lesser time by using
two stacks and not waiting for the CORR Engine. Since
the design is fully pipelined, the CORR Engine performs
the peeling step when a cluster traversal is complete while
another cluster is being traversed through by the DFS
Engine. Also, the Zero Data Register ensures that the DFS
Engine only visits non-zero STM rows, unlike the Gr-Gen.

CDA for an FTQC with L logical qubits requires L
Gr-Gen units, L/2 DFS Engines, and L/2 CORR Engines.
Thus, the total number of Gr-Gen units, DFS Engines, and
CORR Engines are reduced by 2x, 4x, and 4x respectively,
effectively reducing the total number of decoders by more
than 2x. Consequently, the total memory required is reduced
by 50% compared to the baseline. The root and size tables
can be shared between two Gr-Gen units. This prevents the
Gr-Gen units from simultaneously growing clusters, but the
two STMs can still be used in parallel. When one of the
STMs is being traversed by a DFS engine, the other can
be used by a Gr-Gen unit to grow clusters. This further
reduces the memory capacity to 70% at the cost of slight
slowdown. The number of qubits sharing a decoder is fixed
throughout the architecture for this study to minimize the
communication overheads between the logical qubits and
the decoding logic. In the current design we minimize
this overhead by allowing only limited sharing so that the
overhead is few multiplexors and their select logic.

D. Accuracy of CDA

CDA mitigates any adverse impact of resource sharing by
ensuring that the probability of the decoder timeout failure is
less than the logical error rate. Figure 12 shows the estimated
execution time required for different syndromes and their
probability of occurrence. We use a timeout threshold of
350ns, which is less than the decoding latency target of
400ns [51, 59]. The shaded region in Figure 12 shows
events that lead to a timeout failure and we observe that the
probability of a timeout failure ptof is equal to 2 x 10−11,
which is significantly lower than the logical error rate
(≈ 6 x 10−10). Therefore, the overall failure rate with CDA
remains approximately the same as the logical error rate of
the dedicated AFS decoder design i.e. ≈ 6 x 10−10.

E. Latency of CDA

Figure 12 shows the distribution of estimated execution
time for distance 11 and error rate 10−3. The average,
median, and 99.9th percentile latencies are 95ns, 85ns, and
190ns respectively. Events that require more than 350ns
result in timeout errors and occur with a probability of
2 × 10−11. Generally, software decoders are too slow [43]
and there is increasing interest in the QEC community to de-
velop faster decoders in hardware. Although CDA increases
decoding latency compared to a traditional architecture with
dedicated decoders, it still meets the target latency. Dedi-
cated decoders are faster but needs more hardware, which is
limited in cryogenic environment. The software implemen-
tation of Union-Find decoder incurs an average latency of
11 microseconds for distance 11 and error rate 10−3 [31]
and would not meet our latency target (≈ 400ns). Thus, it is
not the algorithm itself but our hardware optimization that
enables AFS to meet our latency target (our design is 115x
faster than the software implementation).

0 50 100 150 200 250 300 350 400
Estimated Execution Time (t in ns)

10 2

10 6

10 10

10 14

Pr
ob

ab
ilit

y
(P

)

Median= 85 ns 99.9% = 190 ns P(t>350)
 < 10 10

Figure 12. Distribution of execution time for distance 11 and error rate
10−3. Shaded area indicates events that cause timeout failures which occurs
with probability 2 x 10−11 which is less than logical error rate 6 x 10−10.

F. Comparison with Prior SFQ Decoders

We compare AFS with recent SFQ decoders [59, 113].

(1) Accuracy: The logical error rate of QECOOL for
distance 11 and physical error rate 10−3 is below 10−6 [113]
compared to 6×10−10 of AFS, making AFS about 4 orders
of magnitude more accurate compared to QECOOL. The
accuracy differences arise mainly from the way each of these
decoders handle measurement errors. To accurately correct
measurement errors, a decoder must process d syndrome
rounds at once, where d is the distance, resulting in a 3-
dimensional decoding graph. The AFS decoder is capable
of handling 3-dimensional graphs and therefore, can correct
these errors. The NISQ+ decoder [59] on the other hand is
only designed for 2-dimensional planar graphs. Its inability
to handle measurement errors results in poor accuracy. More
recently, Ueno et al. [113] proposed, QECOOL, that extends
NISQ+ to tolerate measurement errors. But QECOOL uses
a divide-and-conquer approach and does not process the
entire 3-dimensional graph at once. Instead, it uses only
three syndrome rounds at once and is thus not capable of
correcting larger vertical chains of errors that span beyond
3 rounds in the decoding graph. This sub-optimal matching
results in poor accuracy of the QECOOL decoder and its
inability to lower the logical error rate beyond distance 7.

(2) Threshold: QECOOL results in slightly lower threshold
(1%) compared to AFS (about 2.6%) [113]. Note that higher
thresholds and lower logical error rates are desirable.

(3) Latency: All three decoders meet the target latency
of 400ns. NISQ+ and QECOOL designs benefit from the
computational advantages of SFQ technology. On the other
hand, the AFS decoder is fully pipelined and breaks down
the decoding graph into multiple smaller clusters which are
decoded in parallel. The AFS decoder is a memory domi-
nated design with memory read every cycle, followed by few
logic gates to perform bit-flips, and write. As the operations
in AFS have low logical complexity, the technology for
implementing logic (SFQ or CMOS) has negligible effect
on the overall latency.

(4) Scalability: NISQ+ and QECOOL decoders may be
challenging to scale if the device densities for supercon-
ducting logic families do not improve in the next few
years. On the contrary, AFS avoids any technology-specific
assumptions, therefore even if superconducting technology
does not catch up, AFS can still be implemented using
CMOS technology.

To summarize, all of the three decoders meet the latency
constraint, but the AFS decoder offers higher accuracy and
greater scalability and therefore, satisfies the three design
constraints of an ideal decoder (described in Section II-C).

G. Storage Overhead for CDA

Table II shows the memory required for each component
of the AFS decoder for an FTQC with 1000 logical qubits
encoded in distance 11. We observe that an FTQC using AFS
decoders with CDA requires 3.5x lesser memory compared
to a system with dedicated decoders. This reduces the re-
quired memory for this FTQC from about 10MB to 2.8MB.
Alternately, for a given memory budget, CDA can support 3x
more logical qubits compared to a dedicated decoder design.

Table II
MEMORY FOR AN FTQC WITH 1000 LOGICAL QUBITS.

Design Component
AFS without AFS with
CDA (MB) CDA (MB)

STM (Gr-Gen) 1.97 0.99 (2X)
Root Table (Gr-Gen) 3.17 0.79 (4X)
Size Table (Gr-Gen) 3.46 0.87 (4X)
Stacks (DFS Engine) 1.35 0.34 (4X)

Total 9.96 2.81 (3.5X)

H. Device Technology Considerations

Fault-tolerant quantum computers for most practical quan-
tum applications require hundreds to thousands of qubits.
Currently, both superconducting [50, 59, 105] and CMOS
devices [8, 87] are being investigated as potential choices
for implementing control processor and decoders for such
large-scale FTQCs. In our paper, rather than focusing on
technology specific choices, we use a simple model to derive
latency based on memory accesses (which dominates the
latency of AFS). Therefore, our results are applicable to both
device technologies and our decoder latency would reduce
if a faster memory technology were to arrive. Moreover,
both SFQ and CMOS device technologies operating at cryo-
genic temperatures can support limited memory capacities
due to device fabrication and power dissipation challenges
respectively. Our system-level optimizations would therefore
remain useful irrespective of the device technology used for
the actual implementation in the future.

VI. REDUCING BANDWIDTH VIA SYNDROME
COMPRESSION

The decoders must process the syndromes and provide an
estimation of error by the end of the error correction cycle,
failure to do which leads to a backlog. As error decoding is a
time-sensitive problem, the syndrome data must be supplied
to the decoders quickly for immediate decoding.

A. Challenges in Syndrome Transmission
Syndrome transmission requires few hundreds/thousands

of gigabytes per second in large FTQCs. As prior decoders
are studied at the granularity of a single qubit, they assume
the availability of such large bandwidth. To understand the
bandwidth requirements for decoding, consider an FTQC
with L logical qubits encoded using distance d surface
code. This system requires 2d(d − 1)L bits to be sent at
the end of every syndrome measurement round. Any delay
in transmission reduces the effective time remaining for
decoding. Assuming a syndrome measurement round of 400
ns [51], even if we were to dedicate the entire 400 ns to
transmitting syndromes, we would need a bandwidth of 550
Gbps for a system with 1000 logical qubits encoded in
distance 11 surface code.3 Here, we consider a first-order
model and report the aggregate bandwidth for simplicity. In
reality, each transmission link has limited bandwidth and
imposes further challenges.

Figure 13 shows the bandwidth required to transmit syn-
dromes as the time duration for transmission is varied from
100ns to 400ns [51] to 1 microsecond [47]. The bandwidth
requirement for distance 11 increases from 220 Gbps at 1
microsecond window, to 550 Gbps for a 400ns window,
to 2200 Gbps for a 100ns window. Provisioning for such
high bandwidth at cryogenic environment poses a significant
challenge owing to the constraint on the number of wires due
to thermal leakage. While we discuss the bandwidth issue
in the context of AFS, this problem holds true even for any
other QEC code, qubit technology, and decoding algorithm.

3 5 7 9 11 13 15 17 19 21
Code distance (d)

101

102

103

104

Ba
nd

wi
dt

h
(in

 G
bp

s)

t = 1 s
t = 0.4 s
t = 0.1 s

Figure 13. Bandwidth required to transmit syndrome data from qubits to
the decoders for a given code distance (d) and an FTQC with 1000 logical
qubits for different time duration (t) spent on the data transmission.

3The bandwidth requirement for syndromes is different from the in-
struction bandwidth problem studied by Tannu et al. [105], which can be
mitigated by microcode. We discuss this in related work.

B. Insight: Sparsity in Syndrome Values

Syndrome contains information about failed parity checks
and, in the common case, we expect them to be zero.
Exploiting sparsity can allow us to reduce the bandwidth re-
quirements by using compression. To understand the sparsity
in syndrome values, we develop an analytical model. The
3-dimensional decoding graph for X-type errors comprises
of O(3d3) possible error locations (including both X errors
and measurement errors). Assuming a physical error rate
of p, the expected number of non-zero syndrome bits is
at most 6d3p because each error is detected by at most
two non-zero syndrome bits. Thus, syndrome is typically
sparse. For example, for distance-11 surface code and error
rate p = 10−3, the syndrome is a binary vector of length
≈ 1, 000 and its average Hamming weight is ≤ 8. The
same analysis is true for Z-type errors too. We propose
Syndrome Compression to exploit this sparsity and reduce
the bandwidth requirements.

C. Proposal: Syndrome Compression

Syndrome Compression combines both classical compres-
sion schemes and our proposed domain specific scheme.
Figure 14 provides an overview of Syndrome Compres-
sion (SC). The design contains three compression schemes,
namely dynamic-zero compression, sparse representation,
and geometry-based compression. SC uses the scheme that
provides the highest compression ratio for a given syndrome.
Compression Ratio is defined as the ratio of the size of the
actual syndrome to the size of the compressed syndrome.
The three compression schemes used are described next.

1) Dynamic Zero Compression (DZC): We adopt a DZC
technique [118] in which the syndrome is grouped into K
blocks of W bits each. A K-bit wide Zero Indicator Bit
(ZIB) vector consists of 1-bit per block. If all the bits of
the ith block are 0, the corresponding ZIB (ZIB[i]) is set to
1. The compressed data consists of the non-zero blocks and
the ZIB vector, as shown in Figure 14.

2) Sparse Representation: This scheme stores the indices
of only the non-zero elements of sparse matrices. A Sparse
Representation Bit (SRB) is used to indicate if all the
syndrome bits are 0s. If there are one or more non-zero bits
in the syndrome, the SRB is unset and the indices of the
non-zero bits are sent with the SRB, as shown in Figure 14.

3) Geometry-based compression (Geo-Comp): This is a
domain-specific adaptation of DZC that accounts for the
surface code lattice geometry and compresses X and Z
syndromes together. It is based on the insight that non-zero
syndrome bits generally appear in pairs of neighboring bits
and Y errors flip both X-type and Z-type ancilla qubits in the
same neighborhood. The compression ratio can be increased
by using blocks that respect the lattice structure. With a
block decomposition, two neighboring bits fall in the same
block (except those on the block boundaries) as shown in
Figure 14 and thus, reduces the number of non-zero blocks.

0 0 0 0 1 0

Compression Width (W)

Zero Indicator
Bit (ZIB) 1 0 0 1 01 0

Non-zero Data

Non-zero
Data Index

0 0 0 0 1 0
012345

Bit Indices

1 0 0 1Sy
nd

ro
m

e Select Based
on

Compression
Ratio

Compressed
Syndrome

Compression
Blocks

DZC

Sparse

Geo-
Comp

Sparse Representation
Bit (SRB)

Figure 14. Syndrome Compression (SC) using hybrid algorithm that im-
plements dynamic zero compression, sparse representation, and geometry-
based compression and selects the one with the highest compression ratio.

D. Effectiveness of Syndrome Compression

Figure 15 shows the average compression ratio using
Syndrome Compression. As the best compression scheme
depends on the noise model, physical error rates, and code
distance, future FTQCs need hybrid policies, similar to our
implementation. We observe that the overall reduction in
bandwidth varies between 5x to 380x depending upon the
distance and physical error rate. Typically, syndromes for
lower error rates have higher sparsity and therefore, sparse
representation typically outperforms DZC and Geo-Comp.
For the default system considered in this paper with 1000
logical qubits using distance 11 and 10−3 physical error
rate, the bandwidth, which ranges between 200-2000 Gbps,
is reduced by 30x.

3 5 7 9 11 13 15 17 19 21
Code Distance (d)

10

100

Co
m

pr
es

sio
n

Ra
tio p=10 3

p=10 4

p=10 5

Figure 15. Compression Ratio with Syndrome Compression. A lower
physical error-rate increases sparsity and improves the benefit from com-
pression overall.

Syndrome compression has negligible impact on the de-
coding latency because we use low-latency schemes whose
circuit depth scales O(log2d) with the lattice size (d). Also,
we assume all syndromes are extracted in parallel [117] and
therefore, SC is parallel. We assume local compression as
real systems use dedicated transmission links with only a
limited amount of bandwidth.

VII. RELATED WORK

Quantum computers require full-stack solutions and in-
terdisciplinary research [18, 72, 96]. This has led to de-
velopments in programming languages [22, 54, 93, 103,
122], compilers [21, 63, 95], micro-architecture [37, 50,
60, 105], control circuits [9, 69, 75, 76, 88, 91], and
quantum devices. Although near-term quantum systems are
promising for some domain-specific problems [41, 74] with
support from software error-mitigation [26–28, 52, 53, 67,
68, 78–81, 85, 86, 98, 99, 106–108], FTQCs can solve a
broader class of applications. Hence, designing FTQCs is
important and recent QEC studies [2, 92, 94] is a step
towards this direction. In this section, we describe the works
in decoding and system-level studies for FTQCs.

A. Related Work on Decoding Algorithms
Error decoding has been an active area of research, with

several decoding algorithms proposed in the literature.

Lookup Table (LUT) Decoder [110]: It uses a lookup table
(LUT) to store corrections for every possible syndrome. The
LUT is indexed by the syndrome bits and the corresponding
entry stores the correction. These decoders are particularly
attractive for near-term QEC studies [24] and have been used
for demonstrating real-time decoding of color codes [94].

Minimum Weight Perfect Matching (MWPM) [36]: This
decoder uses a graph pairing algorithm and is considered to
be one of the most effective in terms of accuracy. However,
its time complexity ranges from O(n3) to O(n7) and im-
plementing is in less than 800 ns is an open problem [59].
Fowler proposed a parallel implementation of this decoder
that reduces the average time complexity to O(1), although
the worst case complexity remains significant [45].

Machine Learning (ML) Decoders: They train neural
networks with the underlying error probability distribution.
During decoding, the syndrome data is an input to the neural
network that infers the correction [4, 6, 7, 15–17, 19, 29,
65, 70, 73, 82, 104, 111, 114, 116, 119]. They require
substantial computational and memory resources to store
and process large amounts of training data (in the order of
GBs) depending on the code distance. However, many of the
design principles described in our paper can be applied to
ML-Decoders to improve their performance and scalability.

B. Related Work on Hardware Decoders
Recently, hardware decoders are proposed to improve

decoding latency. We discuss some of these studies next:

Superconducting Decoders: SFQ-based decoders [59, 113]
represent significant milestones in the field of fast decoders.
However, they trade-off accuracy for lower decoding latency
and are reliant on technology-specific assumptions.

Hierarchical Decoder: Delfosse et al. propose a hierarchical
decoder [31] that uses low-cost decoders for the average-case
errors and sophisticated decoders for worst-case errors.

C. Bandwidth Challenges for FTQCs

Prior studies [50, 105] have identified bandwidth bottle-
neck for supplying instructions from the control processor to
the qubits. This bottleneck is alleviated by using micro-code
to supply instructions. However, the bandwidth problem we
identify differs from prior work, in that we focus on the
bottleneck in transmitting syndromes from the qubits to the
decoders, and microcode would be ineffective at solving this.
Syndrome Compression is inspired from cache and memory
compression, however, those designs focus on compressing
data values (which may or may not be sparse), whereas we
focus on syndromes, which tend to be quite sparse.

D. Applicability beyond Surface Codes

We focus on surface code because it is considered as the
most promising quantum error correction code. However,
our design can be applied to color codes [11] by projecting
them onto surface codes [30]. Moreover, our proposal of co-
designing decoders at the system-level and compression to
reduce bandwidth requirements is applicable to any decoder
and QEC code used for implementation.

VIII. CONCLUSION

Decoders play a vital role in Fault-Tolerant Quantum
Computers and must satisfy three key design aspects: accu-
racy, latency, and scalability. Most existing decoders focus
on achieving higher accuracy, rely on software implementa-
tions that are too slow, and neglect the scalability aspect.
They do not account for the system-level challenges in
scaling the storage and bandwidth required to perform error
correction on hundreds of logical qubits in practical FTQCs.

In this paper, we present AFS, an Accurate, Fast, and
Scalable decoder that is designed to meet all the three design
constraints of a decoder. For physical error rate of 10−3,
AFS offers a logical error rate of 6 × 10−10 for logical
qubits encoded in distance-11 surface codes and achieves an
average decoding latency of 42ns. We propose a Conjoined-
Decoder Architecture (CDA) that reduces the complexity
of decoding hardware by sharing resources across different
multiple logical qubits, effectively reducing the memory
capacity by 3.5x. Lastly, we propose Syndrome Compression
that reduces the effective bandwidth required to transmit
syndrome data from the quantum substrate to the decoders
by 30x on average.

ACKNOWLEDGEMENT

An earlier version of this paper was uploaded on
arXiv [25] in January 2020. We thank the reviewers of
HPCA-2020, ISCA-2020, ISCA-2021, MICRO-2021, and
HPCA-2022 for their comments and feedback. We also
thank Dave Wecker, Dave Probert, Michael Beverland, and
Helmut Katzgraber for the technical discussions. Poulami
Das was supported by the Microsoft PhD fellowship.

REFERENCES

[1] D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computa-
tion with constant error rate,” arXiv preprint:9906129, 1999.

[2] G. Q. AI, “Exponential suppression of bit or phase errors with
cyclic error correction,” Nature, 2021.

[3] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy
threshold for concatenated distance-3 codes,” arXiv preprint
quant-ph/0504218, 2005.

[4] P. Andreasson, J. Johansson, S. Liljestrand, and M. Granath,
“Quantum error correction for the toric code using deep rein-
forcement learning,” Quantum, vol. 3, p. 183, 2019.

[5] H. Anwar, B. J. Brown, E. T. Campbell, and D. E. Browne, “Fast
decoders for qudit topological codes,” New J. Phys., vol. 16, no. 6,
p. 063 038, 2014.

[6] P. Baireuther, M. Caio, B. Criger, C. W. Beenakker, and T. E.
O’Brien, “Neural network decoder for topological color codes
with circuit level noise,” New J. Phys., vol. 21, 2019.

[7] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W. Beenakker,
“Machine-learning-assisted correction of correlated qubit errors
in a topological code,” Quantum, 2018.

[8] J. C. Bardin, E. Jeffrey, E. Lucero, T. Huang, O. Naaman,
R. Barends, T. White, M. Giustina, D. Sank, et al., “29.1 a
28nm bulk-cmos 4-to-8ghz¡ 2mw cryogenic pulse modulator for
scalable quantum computing,” in ISSCC, IEEE, 2019.

[9] J. C. Bardin, E. Jeffrey, E. Lucero, T. Huang, O. Naaman, R.
Barends, T. White, M. Giustina, D. Sank, P. Roushan, et al., “29.1
a 28nm bulk-cmos 4-to-8ghz‘ 2mw cryogenic pulse modulator for
scalable quantum computing,” in ISSCC, IEEE, 2019.

[10] S. D. Barrett and T. M. Stace, “Fault tolerant quantum computa-
tion with very high threshold for loss errors,” PRL, 2010.

[11] H. Bombin and M. A. Martin-Delgado, “Topological quantum
distillation,” PRL, vol. 97, 2006.

[12] S. Bravyi and J. Haah, “Quantum self-correction in the 3d cubic
code model,” PRL, vol. 111, 2013.

[13] S. Bravyi, M. Suchara, and A. Vargo, “Efficient algorithms for
maximum likelihood decoding in the surface code,” Phys. Rev. A,
vol. 90, 2014.

[14] N. P. Breuckmann, K. Duivenvoorden, D. Michels, and B. M.
Terhal, “Local decoders for the 2d and 4d toric code,” arXiv
preprint arXiv:1609.00510, 2016.

[15] N. P. Breuckmann and X. Ni, “Scalable neural network decoders
for higher dimensional quantum codes,” Quantum, vol. 2, 2018.

[16] C. Chamberland and P. Ronagh, “Deep neural decoders for near
term fault-tolerant experiments,” Quantum Science and Technol-
ogy, vol. 3, 2018.

[17] C. Chinni, A. Kulkarni, and D. M. Pai, “Neural decoder for
topological codes using pseudo-inverse of parity check matrix,”
arXiv:1901.07535, 2019.

[18] F. T. Chong, D. Franklin, and M. Martonosi, “Programming
languages and compiler design for realistic quantum hardware,”
Nature, vol. 549, 2017.

[19] L. D. Colomer, M. Skotiniotis, and R. Muñoz-Tapia, “Reinforce-
ment learning for optimal error correction of toric codes,” arXiv
preprint:1911.02308, 2019.

[20] B. Criger and I. Ashraf, “Multi-path summation for decoding 2d
topological codes,” Quantum, 2018.

[21] A. Cross, “The ibm q experience and qiskit open-source quantum
computing software,” https://qiskit.org/, 2018.

[22] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta,
“Open quantum assembly language,” arXiv:1707.03429, 2017.

[23] A. S. Darmawan and D. Poulin, “Linear-time general decoding
algorithm for the surface code,” Phys. Rev. E, vol. 97, no. 5,
p. 051 302, 2018.

[24] P. Das, A. Locharla, and C. Jones, “Lilliput: A lightweight low-
latency lookup-table based decoder for near-term quantum error
correction,” arXiv:2108.06569, 2021.

[25] P. Das, C. A. Pattison, S. Manne, D. Carmean, K. Svore,
M. Qureshi, and N. Delfosse, “A scalable decoder micro-
architecture for fault-tolerant quantum computing,” arXiv preprint
arXiv:2001.06598, 2020.

https://qiskit.org/

[26] P. Das, S. Tannu, S. Dangwal, and M. Qureshi, “Adapt: Mitigating
idling errors in qubits via adaptive dynamical decoupling,” in
MICRO-54, 2021.

[27] P. Das, S. Tannu, and M. Qureshi, “Jigsaw: Boosting fidelity of
nisq programs via measurement subsetting,” in MICRO-54, 2021.

[28] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-
programming quantum computers,” in MICRO, ACM, 2019.

[29] A. Davaasuren, Y. Suzuki, K. Fujii, and M. Koashi, “Gen-
eral framework for constructing fast and near-optimal machine-
learning-based decoder of the topological stabilizer codes,”
arXiv:1801.04377, 2018.

[30] N. Delfosse, “Decoding color codes by projection onto surface
codes,” Phys. Rev. A, vol. 89, 2014.

[31] N. Delfosse, “Hierarchical decoding to reduce hardware require-
ments for quantum computing,” arXiv:2001.11427, 2020.

[32] N. Delfosse and N. H. Nickerson, “Almost-linear time
decoding algorithm for topological codes,” arXiv preprint
arXiv:1709.06218, 2017.

[33] N. Delfosse and J.-P. Tillich, “A decoding algorithm for css codes
using the x/z correlations,” in Intl. Symposium on Information
Theory, IEEE, 2014.

[34] N. Delfosse and G. Zémor, “Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel,”
arXiv preprint arXiv:1703.01517, 2017.

[35] E. Dennis, “Purifying quantum states: Quantum and classical
algorithms,” arXiv preprint quant-ph/0503169, 2005.

[36] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological
quantum memory,” Journal of Mathematical Physics, vol. 43,
no. 9, pp. 4452–4505, 2002.

[37] Y. Ding, A. Holmes, A. Javadi-Abhari, D. Franklin, M. Martonosi,
and F. Chong, “Magic-state functional units: Mapping and
scheduling multi-level distillation circuits for fault-tolerant quan-
tum architectures,” in MICRO, IEEE, 2018, pp. 828–840.

[38] G. Duclos-Cianci and D. Poulin, “Fast decoders for topological
quantum codes,” PRL, vol. 104, 2010.

[39] G. Duclos-Cianci and D. Poulin, “Fault-tolerant renormal-
ization group decoder for abelian topological codes,” arXiv
preprint:1304.6100, 2013.

[40] G. Duclos-Cianci and D. Poulin, “Kitaev’s z d-code threshold
estimates,” Phys. Rev. A, vol. 87, 2013.

[41] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[42] A. J. Ferris and D. Poulin, “Tensor networks and quantum error
correction,” PRL, vol. 113, 2014.

[43] A. Fowler, “Towards sufficiently fast quantum error correction,”
Conference QEC 2017, 2017.

[44] A. G. Fowler, “Optimal complexity correction of correlated errors
in the surface code,” arXiv preprint arXiv:1310.0863, 2013.

[45] A. G. Fowler, “Minimum weight perfect matching of fault-
tolerant topological quantum error correction in average O(1)
parallel time,” Quantum Information and Computation, 2015.

[46] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
“Surface codes: Towards practical large-scale quantum computa-
tion,” Phys. Rev. A, vol. 86, 2012.

[47] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards
practical classical processing for the surface code,” PRL, vol. 108,
no. 18, 2012.

[48] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards
practical classical processing for the surface code: Timing analy-
sis,” Phys. Rev. A, 2012.

[49] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani,
“Topological code autotune,” Physical Review X, vol. 2, no. 4,
p. 041 003, 2012.

[50] X. Fu, M. Rol, C. Bultink, J. Van Someren, N. Khammassi, I.
Ashraf, R. Vermeulen, J. De Sterke, W. Vlothuizen, R. Schouten,
et al., “An experimental microarchitecture for a superconducting
quantum processor,” in MICRO, 2017.

[51] J. Ghosh, A. G. Fowler, and M. R. Geller, “Surface code with
decoherence: An analysis of three superconducting architectures,”
Phys. Rev. A, 2012.

[52] P. Gokhale et al., “Partial compilation of variational algorithms for
noisy intermediate-scale quantum machines,” in MICRO, ACM,
2019, pp. 266–278.

[53] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong,
“Optimized Quantum Compilation for Near-Term Algorithms
with OpenPulse,” arXiv:2004.11205, 2020.

[54] Google, Cirq: An open source framework for programming quan-
tum computers, https://github.com/quantumlib/Cirq.

[55] D. Gottesman, “An introduction to quantum error correction
and fault-tolerant quantum computation,” in Quantum information
science and its contributions to mathematics, Proc. of Symposia
in Applied Mathematics, vol. 68, 2010, pp. 13–58.

[56] J. W. Harrington, “Analysis of quantum error-correcting codes:
Symplectic lattice codes and toric codes,” Ph.D. dissertation,
Caltech, 2004.

[57] B. Heim, K. M. Svore, and M. B. Hastings, “Optimal circuit-level
decoding for surface codes,” arXiv:1609.06373, 2016.

[58] M. Herold, M. J. Kastoryano, E. T. Campbell, and J. Eisert, “Fault
tolerant dynamical decoders for topological quantum memories,”
arXiv preprint arXiv:1511.05579, 2015.

[59] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and
F. T. Chong, “Nisq+: Boosting quantum computing power by
approximating quantum error correction,” in ISCA, 2020.

[60] F. Hua, Y. Chen, Y. Jin, C. Zhang, A. Hayes, Y. Zhang, and
E. Z. Zhang, “Autobraid: A framework for enabling efficient
surface code communication in quantum computing,” in MICRO-
54, 2021.

[61] A. Hutter, D. Loss, and J. R. Wootton, “Improved hdrg decoders
for qudit and non-abelian quantum error correction,” New J. Phys.,
vol. 17, 2015.

[62] A. Hutter, J. R. Wootton, and D. Loss, “Efficient markov chain
monte carlo algorithm for the surface code,” Phys. Rev. A, 2014.

[63] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T.
Chong, and M. Martonosi, “Scaffcc: A framework for compilation
and analysis of quantum computing programs,” in Computing
Frontiers, 2014.

[64] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,”
Annals of Physics, vol. 303, 2003.

[65] S. Krastanov and L. Jiang, “Deep neural network probabilistic
decoder for stabilizer codes,” Scientific reports, vol. 7, 2017.

[66] A. Kubica and J. Preskill, “Cellular-automaton decoders with
provable thresholds for topological codes,” PRL, vol. 123, no. 2,
p. 020 501, 2019.

[67] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in ASPLOS, 2019, pp. 1001–1014.

[68] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On
the co-design of quantum software and hardware,” in Nanoscale
Computing and Communication Conference, 2021, pp. 1–7.

[69] K. Li, R. McDermott, and M. G. Vavilov, “Hardware-efficient
qubit control with single-flux-quantum pulse sequences,” Phys.
Rev. Applied, vol. 12, no. 1, p. 014 044, 2019.

[70] Y.-H. Liu and D. Poulin, “Neural belief-propagation decoders for
quantum error-correcting codes,” PRL, vol. 122, 2019.

[71] S. Lloyd, “Universal quantum simulators,” Science, 1996.
[72] M. Martonosi and M. Roetteler, “Next Steps in Quantum Com-

puting: Computer Science’s Role,” arXiv:1903.10541, 2019.
[73] N. Maskara, A. Kubica, and T. Jochym-O’Connor, “Advantages

of versatile neural-network decoding for topological codes,” Phys.
Rev. A, vol. 99, 2019.

[74] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
“The theory of variational hybrid quantum-classical algorithms,”
New Journal of Physics, vol. 18, no. 2, p. 023 023, 2016.

[75] R. McDermott and M. Vavilov, “Accurate qubit control with single
flux quantum pulses,” Phys. Rev. Applied, vol. 2, 2014.

[76] R. McDermott, M. Vavilov, B. Plourde, F. Wilhelm, P. Lieber-
mann, O. Mukhanov, and T. Ohki, “Quantum–classical interface
based on single flux quantum digital logic,” Quantum science and
technology, vol. 3, no. 2, p. 024 004, 2018.

[77] D. Min, I. Byun, G.-H. Lee, S. Na, and J. Kim, “Cryocache:
A fast, large, and cost-effective cache architecture for cryogenic
computing,” in ASPLOS, 2020, pp. 449–464.

https://github.com/quantumlib/Cirq

[78] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, “Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers,” in ASPLOS, 2019.

[79] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H.
Nguyen, and C. H. Alderete, “Architecting Noisy Intermediate-
Scale Quantum Computers: A Real-System Study,” IEEE Micro,
vol. 40, 2020.

[80] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H.
Nguyen, and C. H. Alderete, “Full-stack, real-system quantum
computer studies: Architectural comparisons and design insights,”
in ISCA, IEEE, 2019, pp. 527–540.

[81] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari,
“Software mitigation of crosstalk on noisy intermediate-scale
quantum computers,” in ASPLOS, 2020, pp. 1001–1016.

[82] X. Ni, “Neural network decoders for large-distance 2d toric
codes,” arXiv:1809.06640, 2018.

[83] N. H. Nickerson and B. J. Brown, “Analysing correlated noise on
the surface code using adaptive decoding algorithms,” Quantum,
vol. 3, p. 131, 2019.

[84] E. Novais and E. R. Mucciolo, “Surface code threshold in the
presence of correlated errors,” PRL, vol. 110, no. 1, 2013.

[85] T. Patel and D. Tiwari, “Veritas: Accurately estimating the correct
output on noisy intermediate-scale quantum computers,” in SC20,
IEEE, 2020.

[86] T. Patel and D. Tiwari, “Qraft: Reverse your quantum circuit and
know the correct program output,” in ASPLOS, 2021.

[87] S. Pauka, K. Das, J. Hornibrook, G. Gardner, M. Manfra, M.
Cassidy, and D. Reilly, “Characterizing quantum devices at scale
with custom cryo-cmos,” Phys. Rev. Applied, vol. 13, no. 5,
p. 054 072, 2020.

[88] S. Pauka, K. Das, R. Kalra, A. Moini, Y. Yang, M. Trainer,
A. Bousquet, C. Cantaloube, N. Dick, G. Gardner, et al., “A cryo-
genic interface for controlling many qubits,” arXiv:1912.01299,
2019.

[89] R. Raussendorf and J. Harrington, “Fault-tolerant quantum com-
putation with high threshold in two dimensions,” PRL, vol. 98,
no. 19, p. 190 504, 2007.

[90] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer,
“Elucidating reaction mechanisms on quantum computers,” Proc.
of the National Academy of Sciences, vol. 114, 2017.

[91] D. Reilly, “Challenges in scaling-up the control interface of a
quantum computer,” in IEDM, IEEE, 2019, pp. 31–7.

[92] A. Remm, C. K. Andersen, S. Lazar, S. Krinner, N. Lacroix,
C. Hellings, A. Di Paolo, F. Swiadek, G. Norris, J. Hermann, et
al., “Quantum error correction using a distance three surface code
with superconducting qubits.,” American Physical Society, 2021.

[93] Rigetti, “Pyquil documentation,” pp. 64–65, 2019, http://pyquil.
readthedocs.io/en/latest.

[94] C. Ryan-Anderson, J. Bohnet, K. Lee, D. Gresh, A. Hankin,
J. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. Brown,
et al., “Realization of real-time fault-tolerant quantum error
correction,” arXiv preprint arXiv:2107.07505, 2021.

[95] “Scaffold: Quantum programming language,” Princeton Univ.
Dept of Computer Science, Tech. Rep., 2012.

[96] N. A. of Sciences Engineering and Medicine, Quantum Comput-
ing: Progress and Prospects, E. Grumbling and M. Horowitz, Eds.
The National Academies Press, 2019, ISBN: 978-0-309-47969-1.

[97] M. Sheth, S. Z. Jafarzadeh, and V. Gheorghiu, “Neural ensem-
ble decoding for topological quantum error-correcting codes,”
arXiv:1905.02345, 2019.

[98] Y. Shi et al., “Resource-Efficient Quantum Computing by Break-
ing Abstractions,” Proc. of IEEE, 2020.

[99] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoff-
mann, and F. T. Chong, “Optimized compilation of aggregated
instructions for realistic quantum computers,” in ASPLOS, 2019.

[100] P. W. Shor, “Fault-tolerant quantum computation,” in Conf. on
Foundations of Computer Science, 1996.

[101] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computers,” SIAM review,
vol. 41, 1999.

[102] T. M. Stace and S. D. Barrett, “Error correction and degeneracy
in surface codes suffering loss,” Phys. Rev. A, vol. 81, 2010.

[103] K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade,
B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roet-
teler, “Q#: Enabling scalable quantum computing and develop-
ment with a high-level domain-specific language,” arXiv preprint
arXiv:1803.00652, 2018.

[104] R. Sweke, M. S. Kesselring, E. P. van Nieuwenburg, and J. Eis-
ert, “Reinforcement learning decoders for fault-tolerant quantum
computation,” arXiv preprint:1810.07207, 2018.

[105] S. S. Tannu, Z. A. Myers, P. J. Nair, D. M. Carmean, and
M. K. Qureshi, “Taming the instruction bandwidth of quantum
computers via hardware-managed error correction,” in MICRO,
IEEE, 2017.

[106] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings:
Improving reliability of quantum computers by orchestrating
dissimilar mistakes,” in MICRO, ACM, 2019.

[107] S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors
in quantum computers by exploiting state-dependent bias,” in
MICRO, ACM, 2019.

[108] S. S. Tannu and M. K. Qureshi, “Not all qubits are created
equal: A case for variability-aware policies for nisq-era quantum
computers,” in ASPLOS, 2019.

[109] B. M. Terhal, “Quantum error correction for quantum memories,”
RMP, vol. 87, 2015.

[110] Y. Tomita and K. M. Svore, “Low-distance surface codes under
realistic quantum noise,” Phys. Rev. A, vol. 90, no. 6, 2014.

[111] G. Torlai and R. G. Melko, “Neural decoder for topological
codes,” PRL, vol. 119, 2017.

[112] D. K. Tuckett, C. T. Chubb, S. Bravyi, S. D. Bartlett, and
S. T. Flammia, “Tailoring surface codes for highly biased noise,”
arXiv:1812.08186, 2018.

[113] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “Qe-
cool: On-line quantum error correction with a superconducting
decoder for surface code,” arXiv preprint:2103.14209, 2021.

[114] S. Varsamopoulos, K. Bertels, and C. G. Almudever, “De-
signing neural network based decoders for surface codes,”
arXiv:1811.12456, 2018.

[115] S. Varsamopoulos, K. Bertels, and C. G. Almudever, “Decoding
surface code with a distributed neural network based decoder,”
arXiv preprint arXiv:1901.10847, 2019.

[116] S. Varsamopoulos, B. Criger, and K. Bertels, “Decoding small
surface codes with feedforward neural networks,” Quantum Sci-
ence and Technology, vol. 3, no. 1, p. 015 004, 2017.

[117] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable
quantum circuit and control for a superconducting surface code,”
Phys. Rev. Applied, vol. 8, 2017.

[118] L. Villa, M. Zhang, and K. Asanovic, “Dynamic zero compression
for cache energy reduction,” in MICRO, 2000.

[119] T. Wagner, H. Kampermann, and D. Bruß, “Symmetries for a
high level neural decoder on the toric code,” arXiv:1910.01662,
2019.

[120] F. H. Watson, H. Anwar, and D. E. Browne, “Fast fault-tolerant
decoder for qubit and qudit surface codes,” Phys. Rev. A, 2015.

[121] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, “Solving strongly correlated electron models on
a quantum computer,” Phys. Rev. A, vol. 92, 2015.

[122] D. Wecker and K. M. Svore, “Liqui|⟩: A software design archi-
tecture and domain-specific language for quantum computing,”
arXiv preprint arXiv:1402.4467, 2014.

[123] W. K. Wootters and W. H. Zurek, “A single quantum cannot be
cloned,” Nature, vol. 299, 1982.

[124] J. Wootton, “A simple decoder for topological codes,” Entropy,
vol. 17, no. 4, pp. 1946–1957, 2015.

[125] J. R. Wootton and D. Loss, “High threshold error correction for
the surface code,” PRL, vol. 109, 2012.

[126] P. Young, “Everything you wanted to know about data anal-
ysis and fitting but were afraid to ask,” arXiv preprint
arXiv:1210.3781, 2012.

http://pyquil.readthedocs.io/en/latest
http://pyquil.readthedocs.io/en/latest

	Introduction
	Background and Motivation
	Basics of qubits and types of errors
	QEC and Surface Code
	Error Decoding: Challenges
	Impact of Measurement Errors
	Impact of Scaling to Large FTQCs
	Goal

	Evaluation Methodology
	Monte Carlo Simulation Infrastructure
	Noise model

	AFS Decoder
	Background on Union-Find Decoding
	Tolerating Measurement Errors
	AFS Decoder Micro-architecture
	Accuracy of the AFS Decoder
	Latency of the AFS Decoder
	Storage Overhead for the AFS Decoder

	Conjoined-Decoder Architecture
	Optimized CDA Micro-architecture
	Modeling of Error Correction Capability
	Optimization Results and Performance
	Accuracy of CDA
	Latency of CDA
	Comparison with Prior SFQ Decoders
	Storage Overhead for CDA
	Device Technology Considerations

	Reducing Bandwidth via Syndrome Compression
	Challenges in Syndrome Transmission
	Insight: Sparsity in Syndrome Values
	Proposal: Syndrome Compression
	Dynamic Zero Compression (DZC)
	Sparse Representation
	Geometry-based compression (Geo-Comp)

	Effectiveness of Syndrome Compression

	Related Work
	Related Work on Decoding Algorithms
	Related Work on Hardware Decoders
	Bandwidth Challenges for FTQCs
	Applicability beyond Surface Codes

	Conclusion

