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Abstract—Quantum programs are written in high-level lan-
guages, whereas quantum hardware can only execute low-level
native gates. To run programs on quantum systems, each high-
level instruction must be decomposed into native gates. This
process is called gate nativization and is performed by the
compiler. Recent quantum computers support a richer native
gate set to reduce crosstalk by tackling frequency crowding and
enable compilers to generate quantum executables with fewer
native gates. On these systems, any two-qubit CNOT instruction
can be decomposed using more than a single two-qubit native
gate. For example, a CNOT can be decomposed using either XY,
CPHASE, or CZ native gates on Rigetti machines. Unfortunately,
two-qubit native gates have high-error rates and exhibit temporal
and spatial variations, which limits the success-rate of quantum
programs. Therefore, identifying the native gate that maximizes
the success-rate of each CNOT operation in a program is crucial.

Our experiments on Rigetti machines show that noise-adaptive
gate nativization to select the native gate with the highest fidelity
for each CNOT operation is often sub-optimal at the application
level. This is because the performance of such nativization heavily
depends on the correctness of the device calibration data which
only provides the average gate fidelities and may not accurately
capture the error trends specific to the qubit state space of a
program. Moreover, the calibration data may go stale due to
device drifts going undetected. To overcome these limitations,
we propose Application-specific Native Gate Selection (ANGEL).
ANGEL designs a CopyCat that imitates a given program but
has a known solution. Then, ANGEL employs the CopyCat to
test different combinations of native gates and learn the optimal
combination, which is then used to nativize the given program. To
avoid an exponential search, ANGEL uses a divide-and-conquer-
based localized search, the complexity of which scales linear with
the number of device links used by the program. Our evaluations
on Rigetti Aspen-11 show that ANGEL improves the success-rate
of programs by 1.40x on average and by up-to 2x.

Index Terms—Quantum, Gate nativization, NISQ Compilation

I. INTRODUCTION

The demonstration of quantum supremacy on certain ar-
tificial tasks represents a significant milestone in quantum
computing [5, 64, 127]. Today, quantum computers are getting
to the regime where they promise to power real-world ap-
plications soon [47]. Unfortunately, qubit devices are noisy,
and their high error-rates limit the probability of successful
execution (or success-rate) of most quantum programs. For
example, the average error-rate of a two-qubit operation ranges
between 1-12.5% on existing quantum systems [1, 2, 43]. Al-
though near-term quantum computers are rapidly growing in

size [44, 46], they would still lack the resources required to
run applications in a fully fault-tolerant manner. Instead, these
Noisy Intermediate Scale Quantum (NISQ) [90] computers run
programs in the presence of noise. Consequently, software
error-mitigation policies will play a crucial in leveraging NISQ
systems to accelerate practical applications [48, 78].

Quantum programs are often written in high-level languages
for the ease of programmability, whereas quantum hardware
only supports a limited number of native or basis gates. To run
a quantum program, the compiler translates each instruction of
a program into an equivalent gate sequence comprising of only
native gates supported by the target device. For example, a
two-qubit CNOT operation is decomposed into a combination
of RX , RZ , and XY native gates on Rigetti Aspen devices, as
shown in Figure 1(a). This process is called gate nativization.

A richer native gate set offers greater flexibility to the
compiler to express any operation in a quantum circuit and
thus, reduces the total number of native gates in the quan-
tum executable to be run on the quantum hardware [56].
Multiple two-qubit native gates also add an extra dimension
of controllability that alleviates the problem of frequency
crowding [55] and crosstalk errors in highly connected qubit
architectures [12, 89, 94]. As a result, many recent systems
support more than a single two-qubit native gate [14, 35, 45,
50, 71, 79, 89, 95]. For example, Rigetti devices support three
different two-qubit native gates, namely XY, CZ, and CPHASE.

Optimal nativization is crucial for NISQ applications, but
non-trivial on NISQ systems that support multiple two-qubit
native gates because now a compiler can choose to nativize a
CNOT in various ways. As CNOT operations enable quantum
computers to leverage the property of entanglement and create
highly correlated states, they are fundamental to quantum
algorithms [9]. Unfortunately, CNOT operations cannot be
implemented perfectly on real quantum hardware, as the
decomposed two-qubit native gates at the device-level are the
most error-prone gates on existing systems. Moreover, native
gates exhibit temporal and spatial variation in their error-rates.
Consequently, sub-optimal native gate selection reduces the
success-rate of quantum programs. To minimize the impact of
two-qubit gate errors on quantum programs, compilers must
identify the optimal native gate combination for the CNOTs.

Prior works mitigates the impact of hardware errors by using
(1) circuit decompositions with minimal gates [58, 100, 132]
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Fig. 1. (a) Gate nativization translates program instructions into native gates. (b) Rigetti devices allow three different two-qubit native gates (XY, CZ, and
CPHASE). For the micro-benchmark shown here, we run three native circuits derived by decomposing the CNOT operation into XY, CZ, CPHASE native
gates respectively. (c) When executed on Rigetti Aspen M-1, the CZ native circuit offers higher success-rate than the noise-adaptive circuit using the XY gate.

and (2) noise-adaptive optimizations that use the device error-
model to steer more computations onto qubit devices and
physical links with the lowest error-rates [72]. We can nat-
urally extend noise-adaptive optimizations to nativize CNOTs
on systems with multiple two-qubit native gates and select the
native gate with the highest fidelity. However, our experiments
on real devices show that noise-adaptive gate nativization is
often sub-optimal at application-level, and the highest success-
rate is obtained for a different combination of native gates.

This is because noise-adaptive compilers use the error-
rates from device calibrations to maximize the success-rate
of programs. This limits their performance to the accuracy
of the calibration data which is imperfect in two ways.
Firstly, the fidelity reported is obtained via randomized bench-
marking [26, 54, 65] and only represents the average gate
performance over all possible input quantum states. So, it
may not accurately capture the error-trends of each native
gate specific to the qubit state space of a given program.
Secondly, the frequency of calibration varies depending on
the native gate [4]. Also, device providers often use localized
calibrations during which they may only calibrate some of
the devices [53]. Thus, calibration data may not reflect the
accurate error characteristics as device drifts are frequent
in quantum systems [51, 115]. We explain the limitations of
noise-adaptive nativization using a micro-benchmark, shown
in Figure 1(b), that rotates the first qubit along the X-axis by
π and uses it to control the second qubit. The correct output of
this circuit is 11. We prepare three circuits by nativizing the
CNOT using XY, CZ, and CPHASE gates respectively and run
them on Rigetti Aspen-11. Figure 1(c) shows that the noise-
adaptive circuit using XY gate has a success-rate of 73%,
whereas the circuit using CZ gate has a higher success-rate of
84%. Thus, there exists a gap between noise-adaptive native
gate selection and the native gate that maximizes success-rate
at application-level. This paper focuses on closing this gap.

In this paper, we propose Application-specific Native Gate
Selection (ANGEL) – a software framework for efficient na-
tivization of quantum programs. As the error-rates of two-qubit
native gates are an order of magnitude higher than single-qubit
gates, ANGEL focuses on nativization of CNOT operations.
ANGEL maintains a list of all CNOT operations in a program,
the (1) device links they will execute on, and (2) the native

gate used to translate each of them. We refer to this as a native
gate sequence. The goal of ANGEL is to learn the optimal
sequence. The sequence that maximizes success-rate depends
on the program and device characteristics. So, we cannot rely
on generalized micro-benchmark circuits, as in Figure 1(b), to
characterize the device and assist ANGEL in identifying the
optimal sequence specific to a program. Moreover, capturing
changes in device errors require frequent characterizations, in-
creasing the overheads. Also, the characterization complexity
scales exponential with the system size and is impractical.

ANGEL overcomes these limitations by learning the op-
timal native gate sequence independently for each program.
However, this is non-trivial. Hypothetically, if the program
output was known, ANGEL could evaluate the effectiveness
of different native gate sequences using a trial-and-error ap-
proach and select the one that maximizes the success-rate.
Unfortunately, the program output is unknown. To tackle this
challenge, ANGEL leverages the insight that the optimal native
gate sequence depends on the program and creates a CopyCat
circuit that imitates the program structure but uses Clifford
gates to replace the non-Clifford operations. The Clifford
group comprises of X, Z, H, S, and CNOT gates and can be
efficiently simulated on a conventional computer, unlike non-
Clifford gates [54]. As CNOT is a Clifford gate, the CopyCat
entirely imitates its usage from the input program. ANGEL
(1) simulates the CopyCat on a conventional machine to
obtain its noise-free output, (2) uses it to learn the native gate
sequence that maximizes its success-rate on the NISQ device,
and (3) uses this sequence to nativize the given program.

Although the CopyCat enables ANGEL to learn the optimal
native sequence, the complexity of the trial-and-error method
scales exponential with the number of CNOT operations in
a program. To overcome this drawback, first, ANGEL uses a
localized algorithm that initiates the search using the noise-
adaptive native gate sequence as a reference point. This
narrows down the search space. Second, ANGEL attempts
to find a better candidate than the reference by altering the
native gate for all operations on each link used by the program,
one link at a time. Third, ANGEL continuously updates the
reference each time an alternate native gate that increases the
success-rate of the CopyCat is found for a link. The complexity
of this search scales linear with the number of links used.
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Fig. 2. (a) Compiler nativizes high-level instructions. (b) Rigetti machines support three 2-qubit native gates– XY, CZ, and CPHASE that differ in their pulses.
(c) A CNOT gate can be nativized using any of them. Although the XY and CPHASE pulses are shorter, a CNOT using them requires two such pulses.

Our evaluations on Rigetti Aspen-11 show that ANGEL
improves fidelity by 1.40x on average and by up-to 2x.

To that end, this paper makes the following contributions:
1) We show that naively adopting a noise-adaptive strategy
for gate nativization is sub-optimal at the application-level.
2) We propose Application-specific Native Gate Selection
(ANGEL), a software framework to learn the optimal native
gate for decomposing each two-qubit operation in a program.
3) ANGEL employs CopyCats and a localized search algo-
rithm to identify the optimal native gate sequence with high
accuracy in a scalable manner for practical adoption.

II. BACKGROUND

A. Quantum Operations at Programming vs. Hardware Level

Quantum programs are usually written in high-level lan-
guages to allow seamless software development [17, 24, 96].
High-level languages also offer strong abstractions between
the target operations in an algorithm and the underlying hard-
ware on which the programs will be executed. On the other
hand, the native or basis gates of a quantum computer refers to
the set of low-level instructions closer to the hardware that can
be directly executed on the device. Native gates are specific
to each device. For example, the native gate set on IBMQ
systems differ from that on Rigetti or Google machines. To
run a quantum program, a compiler translates each high-level
instruction of a program into an equivalent set of operations
using the device-specific native gate set. For example, any
quantum program must be translated by the compiler to a
combination of gates from the set [X, RZ, CX, ID, SX] for
execution on IBMQ systems [43], as shown in Figure 2(a).

B. Multiple Native Gates for Better Expressivity

Superconducting qubits, used in most existing quantum
systems [2, 4, 43], are controlled by microwave pulses at the
lowest level. Each native gate denotes a sequence of complex-
valued analog pulses that can control the qubits to achieve the
desired functionality. To entangle two qubits, the two-qubit
native gate pulse tunes the frequencies of the interacting qubits
to a desired operating point. These interaction frequencies can

only be chosen from a limited range. As system sizes scale,
the frequency space becomes crowded [55]. This increases the
number of sources of unwanted couplings between qubits and
lowers the device performance due to crosstalk [12, 89, 94].
Moreover, having only a single two-qubit native gate forces
the compiler to express every program instruction using it. The
limited expressivity often increases the total number of native
gates in the quantum executable [56]. To alleviate the problem
of frequency crowding and limited application expressivity,
recent quantum systems support a richer native gate set with
multiple two-qubit native gates. For example, Rigetti devices
support three different two-qubit native gates, namely XY, CZ,
and CPHASE. These native gates differ from each other in
their pulse-level implementations, as shown in Figure 2(b).

Generally, most quantum computers can provide multiple
native two-qubit gates. For example, while only the CR or
ECR native gate is exposed to the software on current IBMQ
systems, these machines are also capable of performing the
RIP gate [45]. Similarly, trapped ion machines can perform
multi-qubit Mølmer–Sørensen gates [121] as well as the
CNOT gate. As gate fidelities improve and quantum systems
scale, exposing multiple two-qubit native gates to the compiler
provides opportunities for enhanced software optimizations. In
practice, the only publicly accessible devices today with this
capability are from Rigetti. In this work, we use Rigetti Aspen
systems to demonstrate how the choice of multiple two-qubit
gates can be leveraged to improve compilation results.

C. NISQ Compilation

NISQ compilation has three steps, shown in Figure 2(a):
(1) qubit mapping that allocates a physical qubit to each pro-
gram qubit, (2) scheduling and routing, and (3) gate nativiza-
tion. During scheduling and routing, the compiler schedules
operations if their dependencies are resolved and they can be
directly executed. If a CNOT between non-adjacent physical
qubits is found, the compiler adds SWAPs to route them next
to each other. A SWAP generally comprises of three CNOTs
that exchanges the state of two qubits and enables qubit
relocation, although in specific cases, fewer CNOTs may be
used [62]. During gate nativization, the scheduled and routed
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operations are decomposed into native gates. For systems with
multiple two-qubit native gates, a CNOT can be decomposed
using either of them. For example, Figure 2(c) shows possible
decompositions of a CNOT on Rigetti Aspen systems.

D. Problem and Motivation

Minimizing the impact of errors in CNOT operations is
crucial to improve the success-rate of programs. Prior works
have mainly focused on minimizing the total number of
CNOT operations by reducing SWAPs [58, 132] and cancelling
gates [67]. Advanced compilers leverage noise-adaptive op-
timizations to select SWAPs with the highest probabilities
of success by using the gate fidelities from device calibra-
tions [72]. However, these works do not consider the impact
of gate nativization on application success-rate, especially on
recent devices that offer multiple two-qubit native gates.

1) Impact of Gate Nativization at Application-Level: To
study the impact of gate nativization on program success-rate,
we execute a 5-qubit GHZ benchmark [34] on Rigetti Aspen-
11. Ideally, the circuit produces ‘00000’ and ‘11111’ with 50%
probabilities each. It uses four CNOTs and each of them can be
decomposed into either of XY, CZ, or CPHASE gates. Thus,
the total number of unique native gate combinations possible
for this circuit is 34 = 81. We run these 81 circuits on Aspen-
11 and compute the success-rate (sum of the probabilities
of the correct outcomes). Figure 3 shows the success-rate of
the 81 circuits. We observe that the gate combination that
maximizes success-rate at runtime ([XY, CZ, CZ, CZ]) differs
from the combination obtained from noise-adaptive native gate
selection ([XY, XY, CZ, XY])1. Noise-adaptive gate nativization
uses the gate fidelities from device calibrations to select the
native gate with the highest fidelity for each CNOT. The
maximum success-rate for this GHZ benchmark is 3x the
success-rate obtained using noise-adaptive gate nativization.
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Fig. 3. Impact of gate nativization on the success-rate of a 5-qubit GHZ
benchmark executed on the Rigetti Aspen-11 device.

Problem

Noise-adaptive gate nativization for CNOT operations is
sub-optimal at application-level.

1The original noise-adaptive compiler [72] only focuses on qubit mapping
and routing. This is orthogonal to the implementation here, where we naturally
adopt a similar strategy for nativizing CNOT operations.

2) Why is Noise-Adaptive Gate Nativization Sub-optimal?:
Noise-adaptive optimizations are limited by the accuracy of the
calibration data. Calibration is the process during which the
optimal control parameters for the on-chip quantum compo-
nents are determined. Accurate calibration is essential for high
fidelity quantum operations in quantum computers. Calibration
uses randomized and interleaved randomized benchmarking
to estimate the average gate fidelities by running circuits
that implement long sequences of random gates chosen from
the Clifford group [26, 54, 65]. However, this means that the
fidelity data from calibration only represents an average and
may not accurately assess the error-trends of a particular
native gate in a specific program. Moreover, although device
providers periodically benchmark their systems, the frequency
depends upon the native gate. For example, CPHASE gates
are benchmarked less frequently than others on Aspen-11 [4].
Device providers may also use frequent but localized calibra-
tions of a small number of devices at-a-time [53]. As devices
drift frequently, even the most recent calibration data may not
capture the device error characteristics accurately. Relying on
obsolete gate fidelity data may lead to sub-optimal native gate
selection and thus, impact the success-rate of applications.

In this paper, our goal is to design a compilation pol-
icy for efficient gate nativization. To that end, we propose
Application-specific Native Gate Selection (ANGEL).

III. CHARACTERIZATION USING RIGETTI ASPEN M-1
A. Fidelity Varies Depending on Quantum States

To understand the effectiveness of calibration data, we
prepare the two micro-benchmark circuits shown in Figure 4.
In the first circuit, we rotate qubit q0 by an angle θ about the
X-axis and entangle it with qubit q1. The second circuit is
similar to the first one, except that it rotates qubit q0 about
the Y-axis. We create multiple such micro-benchmarks by
controlling θ to prepare qubit q0 in different states. For our
studies, we choose θ = [0, π3 ,

π
2 ,

2π
3 , π]. For each circuit, we

decompose the CNOT into XY, CZ, and CPHASE gates.

RX (θ) Measureq0

q1 + Measure

RY (θ) Measureq0

q1 + Measure

(a) Microbenchmark A (b) Microbenchmark B

Fig. 4. Micro-benchmark circuits used for characterization

Simple characterization: Figure 5 shows the success-rate of
these circuits when executed on a randomly chosen device link
(110-117). As the circuits output a distribution, we compute
success-rate using the total variation distance [120] between
the noisy distribution obtained on the real device and that
obtained on a simulator without noise. We observe that the
native gate which maximizes the success-rate (1) depend
on the state of the qubits, (2) device characteristics, and
(3) may differ from the selection based on calibration data.
For example, CZ gate is the noise-adaptive selection for this
link, but XY and CPHASE gates outperforms in many cases.
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Fig. 5. Success-Rate of micro-benchmarks on a random link of Aspen M-1

Extensive characterization: Next, we run each circuit on
every connected pair of physical qubits (or links) on Aspen M-
1. Thus, in total we run 5 (θ values)×L× 3 (native gates) =
15N circuits, where L is the number of links. Although there
are 103 physical links on Aspen M-1, the number of circuits
executed (1460) is slightly lower than 15L = 1545 because
(1) few links do not support all three two-qubit native gates
and (2) one of the links was disabled during our experiments.
Figure 6 shows the success-rates of the circuits on Aspen M-
1. Similar to previous experiments, we observe that with the
exception of a few device links where a single native gate
always outperforms the others (for example, CPHASE always
outperforms on link number 44 between qubits 131 and 132),
the native gate that maximizes the success-rate of the circuits
show a strong dependence on the state of the qubits.
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Fig. 6. Distribution of Success-Rate of micro-benchmark B across all links
of Rigetti Aspen M-1.We observe similar trends using micro-benchmark A.

Observation 1

The native gate that maximizes success-rate of quantum
circuits depends on the state of the qubits and error charac-
teristics of the physical device, making it hard to generalize.

Characterization across calibrations cycles: We repeat these
experiments across calibration cycles and observe that the
trends in the success-rate of the circuits change between
calibration cycles. For example, Figure 7 shows the success-
rate of the micro-benchmark A on the physical link 100-
107 across two calibration cycles. Hence, compilers cannot
rely on such fine-grained generic characterization circuits to
build their native gate selection policy as the characterization
results turn obsolete quickly. Moreover, accurately capturing
the error-trends require characterization circuits with opera-
tions on multiple qubits. This requires frequent and extensive
characterization that scales exponential with the system-size.
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Fig. 7. Success-Rate of micro-benchmark B on a randomly selected link
(100-107) of Rigetti Aspen M-1 across two consecutive calibration cycles.

Observation 2

The trends in the success-rate of quantum circuits exhibit
complex patterns across calibration cycles, making reliance
on generalized micro-benchmarks impractical.

B. Calibration Data May Be Stale
We evaluate the historical calibration data for the Rigetti

Aspen M-1 device and observe:
1) Device error-rates exhibit spatial and temporal variations,
similar to other quantum computing systems [72]. For exam-
ple, Figure 8 shows this variation in error-rates for a randomly
chosen link (0-1) from the device.
2) However, we also observe that there is no temporal vari-
ation across several calibration cycles (shown by the plateaus
in Figure 8). This is because some native gates are cali-
brated less frequently than others [4]. Moreover, some device
providers may also locally calibrate only a subset of qubits
each time [53]. Consequently, device drifts may go undetected.
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Fig. 8. Spatial and temporal variation of error-rates of three different two-
qubit native gates on a randomly selected Rigetti Aspen M-1 link.
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C. Need for Application-Specific Gate Nativization

Our studies show that the optimal combination of native
gates which maximizes the success-rate depends on the pro-
gram. For example, Figure 9 shows the optimal native gates
for two 4-qubit benchmarks, namely GHZ n4 and VQE n4.
Both these programs have three CNOT gates and thus, 27
possible native gate combinations. Even when we run them on
the same physical qubits within the same calibration window,
the native gate combinations that maximize the success-rate
of the benchmarks are not identical owing to program-specific
behavior. Also, the trends in success-rate for the different
native gate combinations vary across the two benchmarks.

0 5 10 15 20 25
Native Gate Sequences

0.0
0.1
0.2
0.3
0.4
0.5

Su
cc

es
s-

Ra
te

[CPHASE,CPHASE,CPHASE]

[CPHASE,CPHASE,XY]GHZ_n4
VQE_n4

Fig. 9. Comparison of performance of native gate sequences.

Takeaway

Solely relying on calibration data or device characteriza-
tion using generalized micro-benchmarks to perform gate
nativization is typically inefficient. The success-rate can be
improved by using application-specific gate nativization.

IV. ANGEL

Increasing the probability of successful execution of NISQ
programs require compilers to perform efficient nativization of
two-qubit CNOT operations. We propose Application-specific
Native Gate Selection (ANGEL), a software framework that
identifies the combination of native gates for decomposing
each CNOT operation in a program. We term any such
combination as a native gate sequence. Next, we discuss an
overview of ANGEL, the challenges in identifying the optimal
native gate sequence, our insights, and design implementation.

A. Design Overview

Figure 10 shows an overview of ANGEL. To compile a
program, its qubits are mapped, the instructions are scheduled,
and SWAPs are added. ANGEL takes the scheduled and routed
program and creates a CopyCat. Next, ANGEL uses a trial-
and-error-method to learn the optimal native gate sequence for
the CopyCat. Once identified, the same optimal native gate
sequence is used to nativize the input program and generate
its compiled circuit that can be executed on the NISQ device.
Impact on Compile Time: Qubit allocation and routing is the
slowest step in compilation [91]. ANGEL only replaces the
native gates in the scheduled and routed program to generate

Allocate 
Qubits

Schedule 
& Route

Create 
CopyCat

Learn 
from 

CopyCat
Apply to 

Input CircuitProgram

Device Model

Compiled 
Circuit

ANGEL

Fig. 10. Design overview of ANGEL.

different CopyCats as shown in Figure 10 and therefore, it
does not increase the compilation time significantly.

B. Challenges in Optimal Native Gate Selection

The key challenges in identifying the optimal native gate
sequence for a program are described next.
Cannot Rely on Device Characterization: Our experiments
in Section III show that naively using calibration data for gate
nativization is inefficient and may lead to sub-optimal success-
rate during program execution. Also, compilers cannot use
generalized micro-benchmarks, similar to the ones discussed
in Section III, to overcome this drawback because:
1) The optimal sequence depends on the characteristics of the
devices and application. Generic micro-benchmarks may not
adequately capture the trends specific to the input circuit.
2) Generalized characterization will require more sophisti-
cated micro-benchmarks to capture the complex error-trends
when operations involve multiple qubits (similar to real pro-
grams) and more extensive studies, increasing the overheads.
3) To account for changing trends across calibration cycles,
the micro-benchmarks must be frequently re-run, increasing
the characterization overheads further in large systems.

All these factors combined make reliance on extensive de-
vice characterization for efficient gate nativization impractical.
Do Not Know the Output of the Given Program: The
goal of ANGEL is to identify the native gate sequence that
maximizes the success-rate of the input program. If the output
of the program is known, ANGEL can test the efficacy
of various sequences and select the one that maximizes its
success-rate. Unfortunately, the program output is unknown
and therefore, ANGEL cannot directly adopt this strategy.
Exponentially Large Search Space: Hypothetically, even if
we assume that the correct output of the input program is
available to ANGEL, identifying the optimal native gate se-
quence by using a naive trial-and-error method is impractical,
as the search space scales exponentially. For example, each
CNOT operation can be translated using three different two-
qubit native gates on Rigetti Aspen devices and therefore, the
total search space comprises of 3N native gate sequences,
where N is the total number of CNOT gates in the program.

C. Insight 1: Create CopyCats using Clifford Gates

The hardness of simulating most practical quantum circuits
efficiently on conventional machines stems from the usage
of non-Clifford gates. On the other hand, the output of
circuits comprising of only Clifford operations can be easily
determined by simulating them on classical systems [54]. We
leverage this insight to design a CopyCat, which is a circuit
that imitates the input program but uses only Clifford gates.
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Fig. 11. Design Implementation of ANGEL: (1) It creates a CopyCat, (2) initializes a reference, and (3) generates replacement candidate sequences. It uses
these sequences to nativize the CopyCat and executes them on the device. (4) If the success rate of the replacement native circuit is greater than the reference
circuit, the reference sequence is updated to the reference sequence. ANGEL terminates the search once it has attempted to replace the native gates for each
device link used by the program. (5) Finally, ANGEL uses the most up-to date reference sequence (optimal) to nativize the input circuit.

As the CopyCat imitates the input circuit structure and
CNOT is a Clifford gate, the impact of different gate sequences
on its success-rate is similar to input circuit. Thus, ANGEL
uses the CopyCat to identify the optimal sequence by (1) ap-
plying different sequences and executing it on the device and
(2) selecting the one that maximizes its success-rate. ANGEL
nativizes the input program using the optimal sequence.

Although designing a CopyCat provides ANGEL a mech-
anism to identify the optimal native gate sequence, the expo-
nentially complex search remains a major bottleneck.

D. Insight 2: Evaluate a Restricted Local Search Space

To reduce the search complexity, ANGEL only evaluates a
limited number of native gate sequences that corresponds to a
local region in the search space.

Starting with a Good Reference Sequence: ANGEL starts
the search by selecting native gates with the highest fidelity
from calibration data. Note that although the optimal sequence
will likely use a different combination of native gates than
this reference, the latter sequence still enables ANGEL to
initiate the search from a good reference point and the best-
known candidate prior to the search. ANGEL searches for the
optimal sequence by using a trial-and-error method to replace
the native gates in the reference sequence, thereby restricting
the search space explored by ANGEL.

Learn Locally and Adapt Frequently: ANGEL uses two
key features to further reduce the search complexity: mass
replacement and continuous update. Instead of learning for
each CNOT individually, ANGEL searches for a single native
gate replacement for all CNOT operations on a particular link
that maximizes the success-rate of the CopyCat (more on this
discussed in the next subsection). We refer to this as mass
replacement. Moreover, if a replacement is found that offers
higher success-rate for the CopyCat, the reference sequence
is updated before proceeding further. This property is called
continuous update. It enables ANGEL to account for the errors
from the replacement native gate candidate in future searches.

E. Design Implementation

ANGEL is integrated in the gate nativization phase of
compilation when the high-level operations of the scheduled
and routed circuit are decomposed using native gates. Next,
we discuss the key features of the implementation of ANGEL.

1) Step-1 → Designing CopyCat: ANGEL generates a
CopyCat of the input program, as shown in Figure 11. To
create a CopyCat, ANGEL replaces the Non-Clifford gates
of the input circuit using gates from the Clifford group that
comprises of [X , Y , Z, H , S, CNOT ] gates. The goal of
the CopyCat is to imitate or copy the input program while
ensuring that that it can be efficiently simulated.

Clifford replacements Must Be Carefully Selected: To
ensure that the CopyCat can effectively imitate the input
program, the Clifford replacements must be accurately chosen.
Failure to do so results in a poor CopyCat that cannot capture
the success-rate trends of the input circuit accurately. For
example, we take the Figure 12(a) circuit and prepare three
CopyCats- each using X , Z, and S to replace the U3 gate.
The U3 gate is a generic single-qubit rotation gate whose
angles are chosen randomly. We nativize each CopyCat using
all possible native gate sequences. As there are 4 CNOTs, there
are 34 = 81 possibilities. We run the circuits on Rigetti Aspen-
11 and compute their success-rates, shown in Figure 12(b). We
observe that replacing non-Clifford operations with Clifford
gates enable us to learn the fidelity trends of the input circuit,
only if is replaced accurately. For example, the Z and S
CopyCats have high correlation with the input circuit, with
Spearman’s Correlation Coefficients (SCCs) 0.87 and 0.89
respectively, whereas the X CopyCat shows poor correlation
and its SCC is only 0.13. Note that SCC is a statistical measure
to compute the strength of association or relationship between
two variables [123]. A higher SCC denotes greater correlation
or a stronger relationship between the data.

To obtain the Clifford equivalent of a non-Clifford opera-
tion, ANGEL computes the operator norm between the uni-
taries. The operator norm [122] computes the distance between
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Fig. 12. (a) A non-Clifford that prepares qubit q0 in an arbitrary state using
the generic single-qubit rotation U3 gate and performs a sequence of CNOTs.
(b) The success-rate of the Non-Clifford circuits and its three CopyCats.

two unitaries U and V , as described by Equation 1. The closest
Clifford equivalent is the one whose unitary is at the minimum
distance from the target non-Clifford operation to be replaced.
To increase the sensitivity of the CopyCat, ANGEL does not
utilize the H as it creates an equal superposition state.

∥U − V ∥∞ := max
|ψ⟩̸=0

∥(U − V )|ψ⟩∥2
∥|ψ⟩∥2

(1)

Using only Clifford gates can make identifying the optimal
sequence difficult. This is because the CopyCat in that case
produces an output distribution with high entropy, making it
insensitive to changes in native gate selection. We observe this
behavior in our experiments and similar trends are reported
in prior studies [20]. To create a CopyCat that can imitate
the input program more accurately, we use a limited number
of non-Clifford gates in the initial layer of the circuit and
replace all other non-Clifford gates with Clifford equivalents.
We limit the number of non-Cliffords to less than 20 to keep
the simulation complexity tractable, based on prior studies [19,
20]. Figure 13 shows an example circuit and its CopyCats.
The usage of a limited number of non-Clifford gates in the
CopyCat is inspired from a recent work on enabling effective
dynamical decoupling to reduce idling errors [20].
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Fig. 13. (a) A circuit, its (b) Clifford-only CopyCat, and (c) CopyCat.

2) Step-2 → Initialize Reference Sequence: At any point
in the search for the optimal native gate sequence, ANGEL
maintains a reference sequence, which represents the native
gate combination that offers the highest success-rate for the
CopyCat at that point of time. The reference sequence is
initialized at the beginning and is continuously updated as
the search progresses. At the end of the search, the reference
sequence denotes the optimal sequence learned by ANGEL.

ANGEL requires a strong candidate sequence to initiate the
search and this step is very crucial as future candidates in

the search are derived from it. Failure to select a high quality
reference during initialization restricts ANGEL from quickly
identifying the region with the optimal sequence in the search
space and may require a large number of CopyCats, increasing
the overhead of ANGEL. Therefore, to initialize the reference
to a strong candidate, ANGEL selects the native gate for each
CNOT as the one with the maximum fidelity for the link
it will be run on. This is inspired from prior noise-adaptive
compilers [72] and this noise-adaptive native gate sequence is
the best-known sequence prior to the search done by ANGEL.

For example, Figure 14 (a) shows a circuit mapped to (b) a
NISQ device. The figure also shows the (1) CNOT gates
that will be executed and (2) the highest fidelity native gate
(obtained from calibration) for each link. ANGEL starts with
Reference = [ A → {0-1: XY}, B → {1-2: CZ}, C → {2-
3: CPHASE}, D → {0-1: CZ}]. The CopyCat is nativized
using this sequence and executed. The success-rate of this
CopyCat is used to evaluate future replacement candidates.
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B D
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XY

(b)(a)
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Fig. 14. (a) A circuit mapped to (b) a quantum device. The labels adjacent
to each link shows the program CNOTs mapped to them and the native gate
with the highest fidelity for that particular link.

3) Step-3 → Generate Replacement Sequence Candidates:
Next, ANGEL generates replacement sequence candidates by
scanning through the operations that occur on each link of
the circuit. For a selected link, it generates a replacement
sequence by altering the native gates for all the operations
on that link. ANGEL makes this trade-off here to reduce
the complexity of the search. In the example above, ANGEL
creates two replacement candidates by replacing XY gate for
CNOT A on link 0-1 with CZ and CPHASE gates. Thus,
the replacements are Replacement-A = [ A → {0-1: CZ},
B → {1-2: CZ}, C → {2-3: CPHASE}, D → {0-1: CZ}]
and Replacement-B = [ A → {0-1: CPHASE}, B → {1-2:
CZ}, C → {2-3: CPHASE}, D → {0-1: CZ}]. To reduce the
overheads, ANGEL performs mass replacement during which
the native gates are altered for any operation on the target
link. For instance, while generating replacement candidates
for link 1-2, the native gates for both CNOTs B and D
are altered. By default, ANGEL uses the program order to
generate replacement candidates and keeps the design simple.

4) Step-4 → Continuous Update of Reference Sequence:
ANGEL (a) creates two CopyCats using the replacement
candidates, and (b) runs them on the NISQ device. If a replace-
ment CopyCat offers greater fidelity than the reference Copy-
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Cat, the reference is updated to the corresponding replacement
sequence. For example, if Replacement-A CopyCat has
higher fidelity, the reference is updated to Replacement-A.
We call this feature Continuous Update. It allows us to quickly
adapt the search space of ANGEL and evaluate the impact of
errors from each replacement on future replacements.

ANGEL repeats Steps (3) and (4) for each link at-a-time,
until the algorithm has attempted replacements for each device
link used by the program. We illustrate this using the example
in Figure 15. We observe that ANGEL uses 8 CopyCats and
identifies Replacement-E = [ A → {0-1: CZ}, B → {1-
2: CZ}, C → {2-3: XY}, D → {0-1: CZ}] as the optimal
sequence. Note the simultaneous or mass replacement of native
gates for CNOTs B and D in Figure 15.
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Fig. 15. ANGEL steps. Note continuous update of the reference and mass
replacement for link 1-2 (figure is for the purpose of illustration only).

5) Step-5 → Transfer Learning from CopyCats to Program:
Finally, ANGEL uses the optimal native gate sequence (the
most up-to-date reference sequence) to nativize the input
program and execute it on the NISQ hardware. For example,
Figure 16 shows how ANGEL starts with a noise-adaptive
sequence and eventually migrates to a more accurate one
for the circuit shown in Figure 14(a). Note that most of the
time in compilation is spent on qubit routing [91] and gate
nativization only replaces each high-level operation with the
corresponding native gate implementation. As CopyCats only
evaluates different native gate sequences, it does so on the
same scheduled and routed program and therefore, CopyCats
do not increase the compilation overheads significantly.

(a) (b)

Mq0

q1 M

q2 M

q3 M

U2

U3

A

B

C

D

U1

XY

CPHASE

U3

CZ CZ

Mq0

q1 M

q2 M

q3 M

U2

U3

A

B

C

D

U1

CZ

XY

U3

CZ CZ

Fig. 16. Compiled circuit using (a) noise-adaptive native gate selection and
(b) ANGEL’s native gate selection (final schedule of the input program).

V. METHODOLOGY

A. Quantum Hardware

For Characterization: We use 38-qubit Rigetti Aspen-11
and 80-qubit Rigetti Aspen-M-1 for our characterization
studies in Section III. We access them via Amazon Braket [4].

For Evaluating ANGEL: We use 38-qubit Rigetti Aspen-11
for our final evaluations in Section VI. Unfortunately, the
Aspen-M-1 device was inaccessible due to maintenance
operations when we ran our final evaluation experiments
(presented in Section VI).

The Rigetti Aspen devices are the only publicly available
quantum computers that support multiple two-qubit native
gates. Figure 17 shows an overview of Aspen-11. The qubits
and edges are color-coded based on their readout error-rates
and CPHASE error-rates respectively.
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Fig. 17. (a) Device topology, fidelity of (b) two-qubit native gates, and (c)
measurement/readout operations on Rigetti Aspen-11.

Note that although IBMQ systems are publicly available and
used for several compiler-level studies, they only expose one
two-qubit native gate, the CX gate, to the compiler. So, we
cannot perform experiments on these machines.

B. Baseline and Competing Native Gate Selection Policies

We compare the performance using the following policies:
1) Baseline (Noise-Adaptive): For the baseline, we adopt a
noise-adaptive native gate selection strategy.

9



tele_n2
0.66

lin_sol_n3
0.32

toff_n3
0.11

GHZ_n4
0.19

VQE_n4
0.24

BV_n4
0.16

QEC_n4
0.29

QAOA_n5
0.18

Gmean

Benchmark

0.5

1.0

1.5

2.0

2.5
Re

la
tiv

e 
Su

cc
es

s-
Ra

te ANGEL Runtime Best

Fig. 18. Program Success-Rate (SR) relative to noise-adaptive native gate selection. The label below each benchmark specifies the SR of the baseline.

2) ANGEL: We execute the program using the optimal native
gate sequence predicted by ANGEL. This corresponds to the
best sequence using ANGEL’s localized search algorithm.

3) Runtime Best: We run the program using all possible se-
quences and select the one that maximizes fidelity at runtime.
There is a total of 3N possibilities for a program with N
CNOTs. This enables us to evaluate the effectiveness of the
CopyCats and assess the overall performance of ANGEL.

C. Benchmarks

Table I shows an overview of the benchmarks used in our
evaluations. These benchmarks are derived from several prior
works on software error-mitigation for NISQ devices [57,
58, 72, 102, 109, 114, 124, 130, 132]. The measured quantum
volume of Rigetti Aspen-11 device ranges between 2 to 4 [87]
which means that square circuits of up to size 4 can be
run reliably. Therefore, we select the size of the benchmarks
around this range for our evaluations in Section VI.

TABLE I
SUMMARY OF BENCHMARKS USED

Description Name Qubits CNOTs
Teleportation tele n2) [57] 2 2
Linear Solver lin sol n3 [57] 3 3
Toffoli Gate (toff n3) [57] 3 9

Greenberger-Horne GHZ n4 4 3
-Zeilinger [34]

Variational Quantum VQE n4 [88] 4 3
Eigensolver [69]

Bernstein Vazirani BV n4 [11] 4 6
Quantum Error Correction QEC n4 [16] 4 5

Quantum Approximate QAOA n5 [20] 5 4
Optimization Algorithm [27]

D. Figure-of-Merit

We measure the Success-Rate (SR) of a program by us-
ing the Total Variation Distance [120] between the noise-
free output distribution obtained on a simulator (P ) and the
noisy distribution obtained on the real device (Q), as shown
in Equation (2). This metric is derived from various prior

works [6, 20, 22, 83, 97]. Success-Rate is a bounded metric
and ranges between 0 and 1, where 1 represents completely
identical distributions. Therefore, a higher Success-Rate is
desirable while executing NISQ programs.

Success-Rate (SR)(P,Q) = 1−
k∑
i=1

|| Pi −Qi || (2)

VI. FINAL EVALUATIONS

A. Impact On Success-Rate of Applications

Figure 18 shows the Success-Rate (SR) of the benchmarks
relative to a noise-adaptive native gate selection for different
nativization policies. ANGEL improves the SR by 1.40x on
average and by up-to 2x compared to the baseline. Figure 18
also shows the relative SR for the native gate sequence
that maximizes the SR at runtime. We observe that ANGEL
successfully closes the gap between noise-adaptive native gate
sequence and the one that outperforms at runtime.

B. Understanding the Scalability of ANGEL

Rigetti devices allow three two-qubit native gates. So, the
number of CopyCats required for an exhaustive search is 3N ,
where N is the number of CNOTs in a program (post SWAP
insertion). ANGEL’s localized search algorithm reduces this
complexity. ANGEL creates two replacement candidates for
each device link. Instead of an exhaustive search, ANGEL
learns the optimal native gate for one link at a time. Thus,
ANGEL requires 1 reference CopyCat and 2L replacement
CopyCats, where L is the number of links used by the
program. For example, the toff_n3 benchmark requires 9
CNOTs on 2 links (post SWAP insertion) on Aspen-11. An
exhaustive search requires 19.7K CopyCats, whereas AN-
GEL requires only 5 CopyCats in total. Note that toff_n3
benchmark data presented in Figure 18 uses the same native
gate to decompose the SWAP (as the CNOTs are anyway
on the same link). We do this to reduce the runtime of our
experiment by limiting the search space from 19.7K circuits
to 729 circuits. Table II compares the number of CopyCats
required for ANGEL with respect to an exhaustive search for
the circuits used in our evaluations.

10



TABLE II
NUMBER OF COPYCATS REQUIRED

Benchmark Exhaustive Search ANGEL
tele n2 4 4

lin sol n3 81 5
toff n3 19.7K 5

GHZ n4 27 7
VQE n4 27 7
BV n4 729 7

QEC n4 243 9
QAOA n5 81 9

C. Understanding CopyCats at Application-level
Figure 19 shows Success-Rate of the linearsolver_n3

benchmark and its CopyCats for different native gate se-
quences. The benchmark consists of 4 CNOTs and therefore,
there are 81 possible sequences. We observe that the CopyCat
can effectively imitate the actual program and its Success-Rate
follows similar trends as that of the input program. The strong
correlation enables CopyCats to accurately learn the optimal
native gate sequence for the input program.
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Fig. 19. Comparison of Success-Rate of a program and its CopyCat.

D. Impact of Reference Selection
Figure 20 shows that the improvement in SR is higher for

the default ANGEL design using noise-adaptive sequence as a
reference as compared to a search using a random reference.
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Fig. 20. Performance of ANGEL using a random vs. noise-adaptive reference.

E. Limitations of ANGEL
ANGEL has the following two limitations:

1) It cannot always fully close the gap between noise-adaptive
and the runtime best sequence. This is due to (a) imperfections
in the CopyCats and (b) the limited search space of ANGEL.

2) ANGEL, or any compiler, cannot alleviate strong device
drifts. Device drifts may impact the learning step of ANGEL,
causing it to perform poorly. For example, Figure 21 shows
the Success-Rate (SR) of the GHZ n4 benchmark when it is
repeatedly executed within the same calibration window two
times a day. We observe that device drifts cause variation in
SR even for the same native gate sequence (noise-adaptive
in this case). Also, they cause the native gate sequence that
maximizes SR at runtime for each execution to vary. In the
first example, ANGEL consistently outperforms the baseline,
whereas in rare cases (as in second example), the efficacy of
ANGEL reduces to almost the baseline.
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Fig. 21. Success-Rate of a GHZ n4 benchmark from repeated executions
within the same calibration window.

We investigate the performance of the runtime-best
sequences and observe that sequences [CPHASE, XY,
CPHASE], [CZ, XY, CPHASE], [XY, XY, CPHASE] offers
the maximum SR for 12, 5, and 3 out of the 20 iterations
respectively in the first example (Figure 21(a)). Moreover,
the sequence [CPHASE, XY, CPHASE] outperforms for sev-
eral consecutive iterations, as shown in Figure 22. On the
other hand, sequences [CPHASE, XY, CPHASE], [CZ, XY,
CPHASE], [XY, XY, CPHASE] offers the maximum SR
for 7, 7, and 6 out of the 20 iterations respectively in the
second example (Figure 21(b)). This means that the sequence
[CPHASE, XY, CPHASE] is significantly more stable during
the first execution compared to the second execution which
enables ANGEL to learn it more effectively. Note that the
noise-adaptive sequence here is [CPHASE, XY, XY].

Device drifts are still not completely understood and hard
to eliminate fully at the device level [51, 115]. Many prior
works have demonstrated these fluctuations on Rigetti de-
vices [31, 37, 98]. The Rigetti Aspen devices are some of
the earliest machines that support multiple two-qubit native
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gates and therefore, comparatively more error-prone than other
devices (such as the ones from IBM). As these systems mature,
we expect the impact of device drifts to reduce in the future.
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Fig. 22. Distribution of the runtime-best sequence for two executions of a
GHZ n4 benchmark discussed in Figure 21. Here, the gate combinations 0, 1,
and 2 corresponds to the sequences [XY, XY, CPHASE], [CZ, XY, CPHASE],
and [CPHASE, XY, CPHASE] respectively.

VII. RELATED WORK

Designing a quantum computer requires full-stack solutions
and interdisciplinary research [13, 66]. This has led to develop-
ments in managing quantum hardware in the cloud [21, 23, 70,
91, 93, 107], programming languages [10, 15, 18, 32, 33, 52, 68,
86, 104, 105, 108, 118], compilers [29, 36, 41, 58, 72, 113, 132],
tool-chains to aid software development [38–40], micro-
architecture [8, 25, 28, 49, 112], and quantum devices. As this
paper focuses on the design of a compiler that improves the
success-rate of NISQ application, we discuss related works on
software error-mitigation and compare as appropriate.
Circuit Decomposition, Qubit Mapping and Routing Sev-
eral recent compiler optimizations perform (1) application-
specific error-mitigation [3, 59, 92, 126], (2) noise-aware cir-
cuit design [101, 116, 117], (3) circuit partitioning [110],
(4) enhanced circuit synthesis and gate cancellations [67, 84,
85, 89, 99, 119, 128, 129], and (5) efficient qubit mapping and
routing [7, 60, 62, 63, 76, 77, 80, 103, 125]. These approaches
reduce gate counts, steer more computations to devices with
lowest error-rates, and enable robust scheduling [72–75, 114].
ANGEL is orthogonal to such policies and uses the scheduled
and routed program to perform efficient gate nativization.
Pulse Optimizations focus on optimal pulse control [30] and
instruction aggregation to reduce program durations [100].
Software Post-processing schemes alter the noisy outputs by
detecting errors [61, 131] or mitigating the impact of specific
errors [22, 42]. While some of these function standalone [106,
111], others need additional data [22, 42, 81, 82].

A. Comparison with ADAPT

ADAPT is a software framework for efficient usage of
dynamical decoupling (DD) sequences to reduce idling er-
rors [20]. We specifically compare ANGEL with this work
because the usage of CopyCats is inspired from ADAPT.
ADAPT learns to enable or disable DD for each idle qubit
in a program and sits outside the compiler tool-chain as idle
time periods can only be determined after a circuit is nativized.

On the contrary, ANGEL is integrated in the gate nativization
step of compilation and reduces two-qubit errors. The search
algorithm for the two are also different. ADAPT uses a simple
enable/disable DD mechanism for small blocks of qubits. On
the other hand, ANGEL starts its search from a good reference
point and relies on continuous updates and mass replacements.

B. Comparison with Clifford Data Regression
Clifford data regression (CDR) [19] trains a model using

many Clifford circuits with known outcomes that learns from
the correlation between the expected outcome of the circuit
and the noisy outcome from the real hardware. Then, it post-
processes the output distributions of any program based on
the predictions from the model. Unfortunately, CDR requires
very large training datasets crafted from generic Clifford
circuits, frequent re-training to adapt to the changing error
characteristics of the devices, and post-processing overheads.
ANGEL avoids these shortcomings and only relies on a fine-
grained Clifford circuit that best mimics the characteristics of
a given program to learn the optimal native gate sequence.
Note that broadly, CDR and ANGEL target fundamentally
different problems- while CDR post-process the noisy output
distributions using software, ANGEL focuses on improving
the gate nativization step specifically. Thus, we expect ANGEL
can further improve the effectiveness of CDR by building
better native gate implementations of the training Clifford
circuits as well as by performing more accurate nativization
of the input program. We reserve this for future work.

VIII. CONCLUSION

Gate nativization in quantum compilation translates high-
level program instructions into low-level native gates. Our
experiments show that noise-adaptive gate nativization is often
sub-optimal at application-level for quantum systems that
support multiple two-qubit native gates. This paper proposes
Application-specific Native Gate Selection (ANGEL), a soft-
ware framework for efficient gate nativization. As the optimal
native gate sequence depends on device and application char-
acteristics, ANGEL creates a CopyCat that imitates a given
program but can be simulated effectively on a conventional
computer. Next, ANGEL uses this CopyCat to learn the
optimal native gate sequence that maximizes its success-rate
on the NISQ hardware. Finally, ANGEL uses this sequence to
nativize the given program. To reduce the search complexity,
ANGEL starts the search from a good reference point and uses
a localized algorithm. Our experiments on Rigetti Aspen-11
shows that ANGEL improves the success-rate of applications
by 1.40x on average and by up-to 2x compared to the baseline.
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