
To Update or Not To Update?: Bandwidth-Efficient
Intelligent Replacement Policies for DRAM Caches

Vinson Young and Moinuddin K. Qureshi
Georgia Institute of Technology
{vyoung,moin}@gatech.edu

Abstract—This paper investigates intelligent replacement poli-
cies for improving the hit-rate of gigascale DRAM caches. Cache
replacement policies are commonly used to improve the hit-
rate of on-chip caches. The most effective replacement policies
often require the cache to track and update per-line reuse
state to inform their decision. A fundamental challenge on
DRAM caches, however, is that stateful policies would require
significant bandwidth to maintain per-line DRAM cache state.
As such, DRAM cache replacement policies have primarily been
stateless policies, such as always-install or probabilistic bypass.
Unfortunately, we find that stateless policies are often too coarse-
grain and become ineffective at the size and associativity of
DRAM caches. Ideally, we want a replacement policy that can
obtain the hit-rate benefits of stateful replacement policies, but
keep the bandwidth-efficiency of stateless policies.

We perform our study on a DRAM cache design similar to
the one in Knights Landing, and find that tracking per-line reuse
state can enable an effective replacement policy that can mitigate
the common thrashing patterns seen in gigascale caches. We
propose a stateful replacement/bypass policy called RRIP Age-
On-Bypass (RRIP-AOB), that tracks reuse state for high-reuse
lines, protects such lines by bypassing other lines, and Ages the
state On cache Bypass. Unfortunately, such a stateful technique
requires significant bandwidth to update state. To this end, we
propose Efficient Tracking of Reuse (ETR). ETR makes state
tracking efficient by accurately tracking the state of only one
line from a region, and using the state of that line to guide the
replacement decisions for other lines in that region. ETR reduces
the bandwidth for tracking replacement state by 70%, and makes
stateful policies practical for DRAM caches. Our evaluations
with a 2GB DRAM cache, show that our RRIP-AOB and ETR
techniques provide 18% speedup while needing <1KB SRAM.

I. INTRODUCTION

DRAM caches are important for enabling effective het-
erogeneous memory systems that can transparently provide
the bandwidth of high bandwidth memories [1], and the
capacity of high capacity memories [2], [3]. Designs for
DRAM cache organize the tag-store such that the tags can
be kept in DRAM (to reduce storage overheads) and yet
the tags can also be obtained with low latency and low
bandwidth overheads [4], [5]. For example, Intel’s Knights
Landing product organizes its DRAM cache as a direct-mapped
cache with tags stored alongside each data-line, so that one
access can retrieve both tag and data. This direct-mapped
design is effective for enabling low latency and bandwidth-
efficient tag access [5]; however, such a direct-mapped design
can have significant conflict misses. One could consider
increasing associativity to improve hit-rate, but, increasing
associativity also substantially increases bandwidth usage and
degrades performance for many workloads. Fortunately, cache
bypassing [6], [7], [8] offers a way to both improve hit-rate
and decrease bandwidth consumption, while still maintaining
a direct-mapped organization. We investigate the extent to

which an intelligent bypass policy can reduce conflict misses
for DRAM caches. We perform our evaluations on a direct-
mapped DRAM cache similar to the one in KNL [4], [5].

We would like to use the most effective replacement
policies to improve DRAM cache hit-rate. However, intelligent
replacement policies [8], [9], [10], [11] often require the cache
to track per-line state that needs to be updated on cache events.
On a DRAM cache, managing this per-line state is difficult
as tracking even 2 bits of state per line would require multi-
megabyte storage. As such, DRAM cache designs would need
to keep this state in the DRAM array, and spend offchip
bandwidth to update state. Prior replacement policies proposed
for DRAM caches have avoided this per-line state with stateless
policies [4], [5], [6]. The DRAM cache in KNL [4], [5],
for example, employs an Always-Install policy. Along the
same lines, Chou et. al [6] propose a policy that bypasses the
cache with 90% probability (we call this policy 90%-Bypass).
However, such stateless policies often fail to capture the reuse
patterns commonly seen in large caches. We show how such
policies are often inadequate with an example.

Let us consider replacement policies for a common access
pattern where the workload has repeated accesses to high-reuse
data (labeled A) interspersed with accesses to low-reuse data
that is not re-referenced while it is in the cache (labeled B), as
shown in Figure 1(a). For the baseline Always-Install policy,
accesses to A will install A and enable subsequent accesses to
A to hit; however, accesses to low-reuse B will evict A and
cause the subsequent access to A to miss. In this case, always-
installing lines allows low-reuse B to evict high-reuse A, and
this results in degraded hit-rate and wasted install bandwidth.
For a 90%-Bypass policy, references to A will install some A
lines and marginally improve hit-rate, and references to B will
install a few lines and marginally degrade hit-rate. In this case,
90%-Bypass offers some working-set protection; however, it is
indiscriminate in deciding which lines to protect and may not
enable high hit-rate. Figure 1(b) shows that such a probabilistic
bypass policy has poor speedup potential of 3%. Ideally, we
desire a bypass policy that can remember and protect individual
lines that have high reuse (i.e., A), and bypass other lines (i.e.,
B). Figure 1(b) shows that if we are able to formulate such a
reuse-based bypass policy while avoiding the bandwidth cost
for state update, we could enable up to 20% speedup.

Our approach to improving DRAM cache performance is
to (1) design a reuse-based bypass policy to improve DRAM
cache hit-rate, and to (2) reduce the bandwidth cost of state
update to further improve performance.

In this paper, we use Re-Reference Interval Prediction
(RRIP) [9] as a representative example of a replacement policy
that is designed to exploit reuse [8], [9], [10], [12], [13]. RRIP

(b) Speedup Potential(a) Replacement Policies

0%

5%

10%

15%

20%

25%

S
p
e
e
d
u

p
 o

v
e
r

S
p
e
e
d
u

p
 o

v
e
r

High-Reuse

Always-Install

Probabilistic Reuse-based
Bypass Bypass

Low-Reuse

90%-Bypass

Desired

Fig. 1. (a) Always-Install, 90%-Bypass, and Desired replacement policies under mixed high-reuse low-reuse access pattern. (b) Potential for speedup:
Probabilistic Bypass [6], and Ideal Reuse-based Bypass with no state update cost.

requires that each line is equipped with metadata bits (two-bit
counter called RRPV) to track reuse. RRPV is set to 0 on a hit,
and the victim line is identified as a line that has an RRPV of
3. And, if no lines have an RRPV of 3, all counters in the set
are incremented and victim-selection is repeated. While RRIP
is effective for set-associative caches, it becomes ill-defined
for direct-mapped caches, as such a cache would have only
one counter in the set. Following the algorithm for selecting a
victim will always cause the resident line to get evicted, even if
the line had an RRPV of 0. Similarly, bypassing the incoming
line if the resident line has an RRPV=0 will mean that such
lines will never get evicted from the cache.

To enable reuse-based replacement policies for direct-
mapped DRAM caches, we propose a bypass version of RRIP,
which we call RRIP-AOB. The key mechanism in RRIP-AOB,
is to Age the counters On cache Bypass. For example, if a
good victim cannot be found (no RRPV are 3), we bypass the
incoming line and age the reuse counter (increment RRPV).
After several bypass+age events, a resident line that is no longer
useful will have its RRPV reach 3 and become a candidate
for eviction. This enables the cache to protect lines that have
had reuse via bypassing, but also provides a path to eventually
victimize cold lines. Our insight makes RRIP (and other reuse-
based policies) applicable to DRAM caches.

Another practical obstacle in implementing reuse-based
policies for DRAM caches is the high state update cost of
maintaining replacement state in DRAM. A straight-forward
way of implementing RRIP-AOB in DRAM cache is to extend
the tag-entry of the line to incorporate the bits for tracking the
replacement state of the line. However, it incurs bandwidth over-
head for performing update of the replacement state: resetting
the RRPV counter on a hit (promotion), and incrementing the
RRPV counter on a bypassing miss (demotion). Note that these
accesses for updating the replacement state are not present in
the baseline and for designs that do bypassing without tracking
per-line state. If we can completely remove with state update
cost with Ideal RRIP-AOB, we can achieve up to 20% speedup.
To reduce the state update cost of maintaining per-line counters
in DRAM, we propose Efficient Tracking of Reuse (ETR).

ETR reduces the bandwidth consumed in performing updates
of the replacement state by doing the updates for only a subset
of the lines and using their replacement state to infer the
replacement state of the other lines. ETR is based on two key
properties that we observe in DRAM caches: Coresidency and

Eviction-Locality. Coresidency indicates that at any given time
if a line is present, then several other line belonging to that 4KB
region are also present in the cache. Eviction-Locality indicates
that when a line gets evicted from the cache, the replacement-
state of the other coresident lines belonging to that region
tend to have similar replacement-state as the line being evicted.
We show strong levels of coresidency and eviction-locality
with RRIP-AOB. ETR exploits the properties of coresidency
and eviction-locality to reduce the updates for tracking the
replacement state. Rather than updating the replacement-state
for all lines in the cache, ETR simply updates the replacement-
state for one of the coresident lines of the region, and uses the
state of this line to guide the replacement decisions of other
coresident lines of the region. ETR reduces the bandwidth
overhead of state updates by 70% and enables RRIP-AOB to
achieve 18% speedup, nearing Ideal RRIP-AOB performance.
These benefits are obtained with a storage overhead of less
than 1KB SRAM.

Note: A cache implementing ETR still fundamentally
employs line-based replacement – it simply oppor-
tunistically exploits spatial locality when it exists to
reduce state update costs. We compare with alternative
page-based [14] designs in Section VII-C, and grouped-
metadata [15] approaches in Section VII-B.

Overall our paper makes the following contributions:
Contribution-1: To our knowledge, this is the first paper
to investigate intelligent replacement / bypass policies for
direct-mapped DRAM caches. We propose a bypass version of
RRIP (RRIP-AOB) suitable for caches with limited associativity.
However, we find an effective replacement policy for DRAM
caches must optimize not only hit-rate but also state update
cost. We introduce two properties, coresidency and eviction-
locality, that can be exploited to reduce state update cost for
implementing intelligent replacement.

Contribution-2: We propose Efficient Tracking of Reuse (ETR),
a design that performs updates for only a subset of lines and
uses their state to guide the replacement decisions of other
lines. ETR reduces bandwidth overhead of updates by 70%,
improves speedup to 18%, and requires only 512-bytes.

Contribution-3: We show that RRIP-AOB and ETR are
general techniques also applicable to set-associative imple-
mentations of DRAM caches.

2

DRAM ARRAY

DATA (64B)

ECC-bits (8B)

 DRAM ROW

Row Buffer = 32 x (72 byte TAD)

Address Data Burst (4 x 18B)

DATA (128b)DATA (128b)
DATA (128b)

SECDED ECC (9b)

UnusedECC-bits(7b)

Single Burst (18B)
4 x

 B
urs

ts

28 bits per line for Tag/Metadata

Fig. 2. Organization of the DRAM cache in KNL. DRAM cache is organized at a linesize of 64 bytes, is direct-mapped, and tags are kept with the data-line.
On an access, the DRAM cache transfers 72 bytes using four bursts on an 18-byte bus (16-bytes for data + 2-bytes for ECC). We need only 9-bits for SECDED
on 16-bytes of data, which leaves 7 unused ECC bits in each burst that can be used to store metadata (KNL uses these 28 unused ECC bits to store tags).

II. BACKGROUND AND MOTIVATION

We present the organization of our DRAM cache and discuss
the storage and bandwidth constraints that make it challenging
to apply intelligent replacement policies.

A. Organization of a DRAM Cache (KNL)

As the tag storage required for gigascale DRAM caches is
large, DRAM cache designs often store tags in DRAM and
intelligently organize their structure to enable efficient tag-
access. The baseline we use for this study is the direct-mapped,
tags-in-ECC organization used in Intel’s Knights Landing (KNL)
design [4], [5]. Figure 2 shows the organization of the DRAM
cache in KNL. The DRAM cache places each tag information
in the unused bits in the ECC space and streams out the data
and tag (contained in ECC) on each access. The tag information
is used to determine cache hit or miss. On a tag match, the data
is available to service the request immediately, without any
additional latency. Thus, co-locating the tag and data allows the
DRAM cache access to be serviced in just one DRAM request,
which makes the cache hit operation both low-latency and
bandwidth-efficient [5]. Our goal is to increase the hit-rate of
such DRAM caches. In fact, the DRAM cache only uses about
8-10 bits from the unused 28 ECC bits, so we have 18-20 bits
per line available for managing the DRAM cache intelligently.
We leverage these bits to build intelligent replacement policies.

B. Replacement / Bypass Policies for 1-Way

Typically, cache replacement policies are discussed in the
context of a set associative cache, as the set contains multiple
lines and there is a choice of the line to evict. For a direct-
mapped cache, the set contains only one line, so if we want to
install, there is exactly one place the line can go, and we do
not have a choice in selecting the victim. However, we could
choose to bypass the line, so the binary choice for a direct-
mapped cache becomes, whether to evict the resident line or
to bypass the incoming line. We can improve the hit-rate by
making this binary decision intelligently. We explain different
replacement strategies for a direct-mapped cache.

Probabilistic Replacement: The simplest policy is to bypass
the incoming line with a certain probability. For example,
Bandwidth-Aware Bypass (BAB) [6], [8] bypasses the incoming
line with 90% probability to reduce install bandwidth, as long
as hit-rate remains unaffected. Figure 5 shows that such global
bypassing policies are coarse-grain and miss out on bypassing
opportunities that exploit per-line information.

Recency-Based Replacement: LRU [16] installs incoming
lines with the highest priority, based on the heuristic that
recently-used lines are more likely to be re-used. On a direct-
mapped cache, LRU degenerates into an Always-Install design,
as the incoming line is the most recent. Enhancements of LRU,
such as DIP [17], degenerate to probabilistic bypass.

Reuse-Based Replacement: Replacement policies that exploit
reuse (also called re-reference or frequency) are resilient to
thrashing and scans [9], [18], [19]. Such policies can protect
the direct-mapped DRAM cache from thrashing when multiple
pages are mapped to the same set of the DRAM cache. We
discuss Re-Reference Interval Prediction (RRIP) [9] policy.

Hit

Hit

Hit

Install

1000 01 11

Hit

Evict

All_Counters < 3

Fig. 3. Re-Reference Interval Prediction (RRIP).

Re-Reference Interval Predictor [9] is a thrash-and-scan-
resistant replacement policy often used in last-level caches. As
shown in Figure 3, each line is equipped with a 2-bit counter
to track the Re-Reference Interval Prediction Value (RRPV).
On a hit to the line, the RRPV is Promoted to 0. On a miss,
the victim is found by searching from way 0 and finding the
first line in the set with RRPV of 3. If no such line is found,
the RRPV of all lines in the set is Demoted (i.e., incremented)
and the search is repeated. Lines are installed in RRPV=2 to
protect the lines that were re-used.

Challenge in Using RRIP for Direct-Mapped Cache: Just
like other replacement policies based on reuse-information,
RRIP operates by comparing the counter values of multiple
candidates in the set. It becomes ill-defined for a direct-mapped
cache, where there is only one counter, which means the
resident line will always get evicted regardless of the past
behavior. Thus, for a direct-mapped cache RRIP degenerates
into always-install (or always-bypass if the incoming line is
bypassed unless the RRPV of the resident line equals 3). We
propose extensions that make reuse-based policies viable for
direct-mapped and two-way caches, and implementations that
reduce the cost of tracking the RRPV state for gigascale DRAM
caches. We discuss our solution after methodology.

3

III. METHODOLOGY

A. Framework and Configuration

We use USIMM [20], an x86 simulator with detailed memory
system model. We extend USIMM to include a DRAM cache.
Table I shows the configuration used in our study. We model
a configuration similar to a Intel Knights Landing (KNL) Sub-
NUMA Cluster (one-eighth size). We assume a four-level cache
hierarchy (L1, L2, L3 being on-chip SRAM caches and L4
being off-chip DRAM cache). All caches use 64B line size. We
model a virtual memory system to perform virtual to physical
address translations. The L4 is a 2GB DRAM cache [5], [21],
which is direct-mapped and places tags with data in the unused
ECC bits. The parameters of our DRAM cache is based on
HBM technology [1]. The main memory is based on non-
volatile memory (PCM and 3D-XPoint [3], [22], [23], [24],
[25], [26], [27]): the read latency is 4X that of DRAM [2], and
write bandwidth is worse than read bandwidth. We perform
evaluations with DRAM-based memory in Section VI-C.

TABLE I
SYSTEM CONFIG (KNL 1⁄8 SUB-NUMA CLUSTER)

Processors 8 cores; 3.0GHz, 2-wide OoO
Last-Level Cache 8MB, 16-way

DRAM Cache
Capacity 2GB
Bus Frequency 500MHz (DDR 1GHz)
Configuration 4 channel, 128-bit bus
Aggregate Bandwidth 64 GB/s
tCAS-tRCD-tRP-tRAS 13-13-13-30 ns

Main Memory (PCM)
Capacity 64GB
Bus Frequency 1000MHz (DDR 2GHz)
Configuration 1 channel, 64-bit bus
Aggregate Bandwidth 16 GB/s
tCAS-tRCD-tRP 13-128-8 ns
tRAS-tWR 143-160 ns

B. Workloads

We use a representative slice of 2-billion instructions selected
by PinPoints [28], from benchmarks suites that include SPEC
2006 [29], GAP [30], and HPC. For SPEC, we pick a sample
of high intensity workloads that have at least two miss
per thousand instructions (MPKI). The evaluations execute
benchmarks in rate mode, where all eight cores execute the
same benchmark. In addition to rate-mode workloads, we also
evaluate 4 mixed workloads, which are created by randomly
choosing 8 of the 15 SPEC workloads that have at least two
MPKI. Table II shows L3 miss rates, and memory footprints
for the 8-core rate-mode workloads in our study.

We perform timing simulation until each benchmark in
a workload executes at least 2 billion instructions. We use
weighted speedup to measure aggregate performance of the
workload normalized to the baseline and report geometric mean
for the average speedup across all the 21 workloads (11 SPEC,
4 SPEC-mix, 5 GAP, 1 HPC).

TABLE II
WORKLOAD CHARACTERISTICS

Suite Workload L3 MPKI Footprint

SPEC

soplex 35.3 1.8 GB
leslie 22.1 623 MB
libq 30.1 256 MB
gcc 108.5 1.5 GB

omnet 29.1 1.2 GB
wrf 10.4 1.1 GB
zeus 7.0 1.6 GB

xalanc 7.4 1.5 GB
mcf 101.1 13 GB
milc 31.2 4.5 GB

sphinx 15.0 146 MB

GAP

cc twitter 116.8 9.3 GB
bc twitter 101.2 13.5 GB
pr twitter 126.6 15.3 GB
pr web 24.8 15.1 GB
cc web 11.4 9.3 GB

HPC nekbone 13.71 44 MB

IV. RRIP: AGE-ON-BYPASS

If we want to use RRIP on direct-mapped DRAM caches,
we have to solve two issues: how do we formulate RRIP as a
bypassing policy suitable for caches with limited associativity,
and how can we mitigate the state update cost of maintaining
per-line reuse state in DRAM.

A. RRIP as a Bypassing Policy

We design a version of RRIP for limited-associativity caches,
called RRIP: Age-On-Bypass (RRIP-AOB). The key insight in
RRIP-AOB is to use the episode of cache bypassing to age /
update the RRPV information associated with the line. Figure 4
shows the overview of our design. RRIP-AOB needs to similarly
track lines that have reuse, so RRIP-AOB Promotes state (sets
RRPV to 0) on hit. RRIP-AOB can protect these reused lines
by bypassing when reuse has been seen (bypass when RRPV
is 0, 1, or 2). However, reused lines can now stay stuck in high
priority state. We now need a mechanism to age older lines
so that new lines can eventually be installed. We choose to
implement aging by Demoting (increment RRPV) state when
an incoming line is bypassed. This allows lines to naturally
age to RRPV of 3, and be evicted in favor of an incoming line.
Similar to RRIP, RRIP-AOB uses 2 bits per line to track RRPV.
A practical design must address where to store the RRPV bits
and address the bandwidth needed to track the per-line RRPV.

Hit

Hit

Hit

Bypass BypassBypass

Install

1000 01 11

Hit

Evict

Promotion Demotion

Fig. 4. Overview of RRIP: Age-On-Bypass (RRIP-AOB). The transition from
one state to another is accomplished with replacement-state update operation.
Such updates may consume significant bandwidth.

4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
hi
nx

m
ilc

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

pr
 tw

i

bc
 tw

i

cc
 tw

i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

1.93
2.27

S
p
e
e
d
u
p

Bypass-90% Bandwidth-Aware Bypass RRIP-AOB Ideal RRIP-AOB

Fig. 5. Speedup from different replacement policies over the baseline always-install direct-mapped DRAM cache. (a) Bypass-90% causes 15% degradation, (b)
Bandwidth-Aware Bypass provides 3% speedup, (c)RRIP-AOB that maintains state in DRAM provides 13% speedup, and (d) Ideal RRIP-AOB with no state
update cost provides 20% speedup

B. Storing RRPV in DRAM
A straight-forward way of incorporating RRIP into a DRAM

cache is to extend the tag-entry of the line to incorporate
RRPV bits. We refer to this design as simply RRIP-AOB.
However, such a design incurs bandwidth overhead to update
the replacement state. Note that these accesses for updating
the replacement state are not present in the baseline and for
designs that do bypassing without tracking per-line state.

Alternatively, we can avoid the bandwidth of replacement
updates by storing the replacement state in a dedicated SRAM
array. Unfortunately, for our 2GB DRAM cache, maintaining
2 bits of RRPV per line would need 8MB of SRAM, which is
impractically large. We call this design Ideal RRIP-AOB.

1

2

4

8

16

32

64

sp
hi
nx

m
ilc

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

pr
 tw

i

bc
 tw

i

cc
 tw

i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

Ave
ra

ge

L
4
 R

D
M

P
K

I

Always-Install RRIP-AOB

Fig. 6. MPKI of baseline DRAM cache and RRIP-AOB. RRIP-AOB reduces
misses by 10%.

C. Benefits from Reuse-Based Replacement
Intelligent replacement policies improve performance by

reducing cache misses. Figure 6 shows the Misses Per Thousand
Instructions (MPKI) for our baseline DRAM cache and with
RRIP-AOB. RRIP-AOB reduces 10% of the misses on average.
However, the speedup from RRIP-AOB also depends on
bandwidth used in replacement-state updates.

Figure 5 shows the speedup from different bypassing policies
implemented on our 2GB DRAM cache. Performance numbers
are normalized to the always-install policy. Indiscriminately
bypassing 90% of the lines (Bypass-90%) causes a degrada-
tion of 15%. The adaptiveness of Bandwidth-Aware-Bypass
(BAB) [6], [8] avoids slowdowns; however, the average speedup
is only 3%. With RRIP-AOB, the performance benefits is 13%,
whereas with Ideal RRIP-AOB the speedup could be 20%.
Thus, there is significant room for performance improvement
with reuse-based replacement policies. Unfortunately, obtaining
this benefit in a practical manner is challenging as maintaining
accurate per-line state in DRAM requires significant bandwidth
for state updates.

D. Dissecting BW of Replacement-Updates

To highlight the bandwidth differences between Always-
Install and RRIP-AOB, we show the bandwidth needed to
implement replacement policy for Always-Install and RRIP-
AOB. Always-Install simply has install bandwidth, whereas
RRIP-AOB additionally needs bandwidth to promote and
demote state. Figure 7 shows the replacement bandwidth
of RRIP-AOB, normalized to the replacement bandwidth of
Always-Install. Of particular note, RRIP-AOB has the potential
to save 76% of the install bandwidth (due to bypass), which
can improve performance. However, it has overall increased
bandwidth consumption due to promotion and demotion. If we
want to obtain most of the benefits of RRIP, we must develop
methods to reduce this bandwidth overhead.

 0%

 50%

 100%

 150%

 200%

 250%

sp
hi
nx

m
ilc

ne
kb

on
e

cc
_w

eb

pr
_w

eb m
cf

xa
la
nc

pr
_t

w
i

bc
_t

w
i

cc
_t

w
i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

Am
ea

n

R
e

p
la

c
e

m
e

n
t

B
W

 w
.r

.t
.

A
lw

a
y
s
−

In
s
ta

ll

Demote
Promote
Install

Fig. 7. Replacement bandwidth (Install, Promote, Demote) of RRIP-AOB,
normalized to replacement bandwidth (Install) of Always-Install. RRIP-AOB
reduces install bandwidth but incurs state update bandwidth.

E. Potential for Improvement

RRIP-AOB with state in DRAM is a practical design as it
does not require any SRAM overheads, and can be implemented
without any changes to the DRAM cache (the extra bits for
RRPV are taken from the unused ECC bits). However, it has
two-thirds the speedup compared to the potential benefit of
Ideal RRIP-AOB with no state update costs. Ideally, we would
like to get speedup similar to Ideal RRIP-AOB, while needing
low SRAM cost similar to RRIP-AOB. The goal of the next
section is to develop such a solution.

RRIP-AOB simply suffers from high DRAM state update
cost. If we can find effective ways to mitigate this bandwidth
overhead, we can get most of the benefits at little cost. We
develop an insight that if we can do replacement updates in
an efficient manner for only a subset of the lines, then we can
reduce the bandwidth for replacement updates and still retain
most of the benefits.

5

V. EFFICIENT TRACKING OF REUSE

Demoting state on every cache bypass incurs significant
bandwidth overheads–even if we choose to bypass the line, we
still have to spend bandwidth to demote the replacement-state.
We can avoid state update costs if we have an effective way
to infer an RRPV state. Our design reduces the bandwidth
consumed in performing updates of the replacement state by
doing the updates for only a subset of the lines and using their
replacement state to infer the replacement state of the other
lines. Our solution is based on two key properties, Coresidency
and Eviction-Locality, which we describe next.

A. Insight: Coresidency and Eviction-Locality

Coresidency indicates that at any given time if a line is
present, then several other lines belonging to that region are
also present in the cache. Coresidency indicates that there is
some spatial locality in the reference stream, even if such spatial
locality is not perfect. A 4KB region contains 64 lines each
of 64 bytes. Therefore, the maximum number of coresident
lines for a region would be 63. Figure 8 shows the level of
coresidency for our workloads. In general, the workloads have
between 16 to 45 coresident lines. We note that although this is
lower than perfect spatial locality, there are still a large number
of lines coresident (even 4 coresident lines can amortize 75%
state update cost). This shows there is potential for using one
line to infer replacement state of many coresident lines.

 8

 16

 24

 32

 40

 48

 56

 64

m
ilc

cc
_w

eb

pr
_w

eb m
cf

pr
_t

w
i

bc
_t

w
i

cc
_t

w
i

ze
us

m
p

w
rf

gc
c

lib
q

le
sl
ie

so
pl
ex

Am
ea

n

#
 L

in
e

s
 C

o
re

s
id

e
n

t
o

n
 E

v
ic

ti
o

n

 0

Fig. 8. Coresidency in DRAM caches. Average number of coresident lines in a
4KB region on first line evicted from a region (workloads with L4 MPKI>1).

Eviction-Locality indicates that when a line gets evicted from
the cache, then the replacement-state of the other coresident
lines belonging to that region tend to have similar replacement-
state as the line being evicted. Figure 9 shows the distribution
of the RRPV of coresident lines, on an eviction from L4 (on
the first line evicted from a region).

0%

 20%

 40%

 60%

 80%

 100%

m
ilc

cc
_w

eb

pr
_w

eb m
cf

pr
_t

w
i

bc
_t

w
i

cc
_t

w
i

ze
us

m
p

w
rf

gc
c

lib
q

le
sl
ie

so
pl
ex

Am
ea

n

C
o

re
s
id

e
n

t
R

R
P

V
 o

n
 F

ir
s
t�

E
v
ic

t
(%

)

RRPV=1RRPV=2RRPV=3 RRPV=0

17 46 40 30 23 18 21 31 44 27 29 45 27 30

Fig. 9. Distribution of RRPV of coresident lines on first line evicted from a
4KB region, for workloads with L4 MPKI>1. Average number of coresident
lines shown above workloads. Eviction of one line indicates other lines in a
region are likely to be evicted soon (RRPV≥2).

Combined insight: On eviction, we typically observe 30 or
more lines are coresident. In addition, we find the coresident
lines often have similar RRPV state (77% have RRPV≥2).
Together, this means that if we maintain accurate RRPV for
just one of the coresident lines, then we can infer RRPV
state for the rest of the coresident lines in the region with
reasonable accuracy. Our solution exploits this insight.

B. Insight: Update Only the Representative
We propose Efficient Tracking of Reuse (ETR) to reduce

bandwidth overheads of doing replacement updates in DRAM.
We implement ETR on RRIP-AOB as an example. ETR
exploits coresidency and eviction-locality. Instead of updating
replacement state for all the lines in a region, ETR updates the
state of only one Representative-Line among all the coresident
lines. The state of the Representative-Line is then used to guide
the replacement policy of the coresident lines. The design of
ETR consists of three parts: (1) Selecting a Representative-
Line in the region (2) Keeping accurate RRPV for only the
Representative-Line, and (3) Using the representative’s RRPV
to infer coresident lines’ RRPV to make bypass decisions.

Access:	Page	A,	Page	B,	Page	B

A,	R=2Set	0 B,	R=2A,	R=3

A,	R=2Set	1 B,	R=2A,	R=3

A,	R=2Set	2 B,	R=2A,	R=3

A,	R=2Set	3 B,	R=2A,	R=3

Install	A	
(4)

Bypass	B	
(5)

Install	B	
(5)

A,	R=2Set	0 B,	R=2A,	R=3

A,	R=2Set	1 B,	R=2A,	R=2

A,	R=2Set	2 B,	R=2A,	R=2

A,	R=2Set	3 B,	R=2A,	R=2

Install	A	
(4)

Bypass	B	
(2)

Install	B	
(5)

(a)	RRIP-AOB (b)	ETR	on	RRIP-AOB

First	conflicting	set Avoid	3	
updatesUpdate	1

BW	cost:BW	cost:

Set	4 Set	4B,	R=2 B,	R=0 B,	R=2 B,	R=0
Follow	
Install

Fig. 10. ETR’s representative-update and bypass-decision following enables
similar RRIP-AOB install, at reduced update bandwidth (dashed box = benefit)

To implement representative-update, we first need to pick
a stable representative line. The first access to a region is
generally consistent [31]. If we maintain state for just the
first conflicting set in a region, we can maintain good reuse
information for the rest of the region without incurring extra
bandwidth costs. Figure 10 shows an example of how ETR’s
RRPV-inference (i.e., representative-update and bypass-decision
following) can be used to obtain similar install-policy and hit-
rate at reduced update cost.

If we first access 4 lines from region A at time 0, we install
region A with RRPV=2. If 5 lines from region B are then
accessed, Figure 10(b) shows that we can save bandwidth and
demote only the state of the first conflicting set (being set 0).
On second access to region B, set 0 with its RRPV of 3 will
inform us that that region A was not used recently. This means
that lines corresponding to region A have low reuse and should
be evicted in favor of installing region B. We can then follow
the region B install-decision for the rest of the lines. Such
a policy will end up installing all of region B and result in
an install policy similar to if we had maintained each state
individually in Figure 10(a). As such, we can keep similar
install policy and save update bandwidth with representative
state update and bypass-decision following.

6

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

sp
hi
nx

m
ilc

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

pr
 tw

i

bc
 tw

i

cc
 tw

i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

m
ix
1

m
ix
2

m
ix
3

m
ix
4

G
m

ea
n

1.93
2.31

2.40

S
p

e
e

d
u

p

RRIP-AOB ETR on RRIP-AOB Ideal RRIP-AOB

Fig. 11. Performance of RRIP-AOB, ETR on RRIP-AOB, and an Ideal RRIP-AOB with no state update costs. Coordinating bypass decisions with ETR
reduces state update needs, and enables RRIP-AOB to obtain 18% speedup.

Structures for ETR: To implement representative state update
and bypass-decision following, ETR maintains a Recent-Bypass
Table (RBT), in Figure 12. RBT tracks recently seen regions
(Region-ID) and the bypass decision made for them (Last-
Bypass-Decision). RBT enables us to find the representative
first-conflicting-set in a region (as the first conflicting set would
have miss in RBT), keep just that set’s RRPV up-to-date,
and remember the first-conflicting-set’s bypass decision to
inform bypass decision for the other lines in the region (as
the follower sets would hit in RBT and see previous decision
made). We use a 128-entry RBT, which requires <512B of
SRAM (performance is relatively insensitive to RBT sizing).

Region	ID

Last	Bypass	
Decision

Recent	Bypass	Table	(RBT)

1.	Hit,	follow	decision

Region	ID

1.	Miss,	make	new	decision

2.	Update	RRIP	state

3.	Update	RBT Page	C 0
A Page	A 1

C Page	B 0

Fig. 12. Design of Recent-Bypass-Table to enforce coordinated-bypass and
coordinated-state-update. Demotions only occur on first miss to a region.

Operation of ETR: On cache miss, we index into RBT with
Region-ID. If there is an RBT miss, we are currently accessing
the representative first-conflicting-set in a region. In this case,
we should make a bypass decision based on its RRPV, spend
bandwidth to demote state if bypass was chosen, and update the
RBT so later accesses can make an informed bypass decision.
Otherwise, if there is an RBT hit, the region has been recently
accessed and already had a bypass decision made, so we should
follow the Last Bypass Decision to keep similar install policy
and save on demotion bandwidth.

C. Impact on Bandwidth

ETR tries to reduce the bandwidth used for replacement
state updates (RRPV promotion and demotion) to improve
performance. To understand effectiveness of ETR, we divide
the bandwidth used for cache replacement into three parts:
installs, promotions, and demotions, and we normalize this
consumption to the baseline design that uses bandwidth only
for installs. Figure 13 shows the replacement bandwidth usage
of base RRIP-AOB and ETR on RRIP-AOB, normalized to
Always-Install. ETR saves 70% of replacement state update
bandwidth. These bandwidth savings result in speedup.

 0%

 50%

 100%

 150%

 200%

 250%

sp
hi
nx

m
ilc

ne
kb

on
e

cc
_w

eb

pr
_w

eb m
cf

xa
la
nc

pr
_t

w
i

bc
_t

w
i

cc
_t

w
i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

Am
ea

n

R
e

p
la

c
e

m
e

n
t

B
W

 w
.r

.t
.

A
lw

a
y
s
−

In
s
ta

ll

Demote
Promote
Install

Fig. 13. Replacement and Install bandwidth consumption of base RRIP-AOB
[left] and ETR on RRIP-AOB [right], normalized to Always-Install. ETR
reduces 70% of the bandwidth consumed in state update.

D. Impact on Performance

Figure 11 shows the performance of RRIP-AOB, ETR on
RRIP-AOB, and Ideal RRIP-AOB with no state update costs.
ETR on RRIP-AOB bridges 70% of the performance gap
between RRIP-AOB and Ideal to achieve 18% speedup, while
needing <1KB SRAM storage. Thus, our AOB and ETR make
reuse-based policies applicable and effective on DRAM caches.

VI. RESULTS AND DISCUSSION

A. Storage Requirements

We analyze the SRAM storage overheads of ETR. ETR
requires only a 128-entry 4B-per-entry Recent-Bypass Table,
which needs 512B. Thus, our proposal can be easily built with
negligible overheads within the memory controller.

For DRAM storage overheads of RRIP-AOB, we use the fact
that the DRAM cache has 28 unused bits in the ECC, which
can be used for tag and metadata (see Figure 2). Baseline uses
8-10 bits for tag, valid, and dirty bit. RRIP requires just 2 bits
for RRPV. Tag-entry becomes 12 bits, which fit in 28 free bits.

B. Impact of Cache Size

Table III shows the speedup of ETR as the size of the
DRAM cache is varied from 1GB to 8GB. ETR on RRIP-
AOB continues to provide significant speedup across different
cache sizes, ranging from 16.4% at 1GB to 13.5% at 8GB. As
expected, when the cache size is increased, larger portions of
the workload fit in, and there is reduced scope for improvement.

TABLE III
ETR SENSITIVITY TO CACHE SIZE

Cache Size Avg. Speedup from ETR
1.0GB 16.4%
2.0GB 18.0%
4.0GB 17.4%
8.0GB 13.5%

7

C. Impact of Memory Type

We use a non-volatile main memory for our studies, but
our benefits are not limited to NVM-backed systems only.
We compare BEAR’s Bandwidth Aware Bypass [6] with
proposed ETR on DRAM-backed main memory in Table IV.
ETR outperforms BEAR by intelligently bypassing lines and
achieving better hit-rate and substantial bandwidth benefits.

TABLE IV
ETR ON DRAM-BACKED MEMORY

Bandwidth Aware Bypass ETR
SPEC RATE +7.4% +17.0%
SPEC MIX +1.7% +16.0%

GAP +4.8% +26.6%
GMEAN26 +5.7% +19.0%

D. Impact on 2-Way Designs

Table V shows the impact on average L4 misses when
using different replacement policies for 1-way and 2-way
caches, normalized to baseline 1-way always-install policy.
Proposed RRIP-AOB achieves the highest miss reduction for
1-way caches, as it enables intelligent reuse-based replacement
for 1-way caches. RRIP-AOB also achieves the highest miss
reduction for 2-way caches, as RRIP-AOB can intelligently
bypass when a cache set is storing multiple useful lines.

TABLE V
RRIP-AOB IMPACT ON MISSES FOR 1-2 WAY L4

Replacement Policy Impact on Avg. L4 Misses
1-way Always-Install -0.0%

1-way Probabilistic Bypass [6] -1.6%
1-way RRIP-AOB -10.4%

2-way Random -14.6%
2-way LRU -15.5%
2-way RRIP -19.7%

2-way RRIP-AOB -26.6%

VII. RELATED WORK

A. Replacement / Bypassing policies

Recency-based replacement policies [16], [32], [33] install
lines at highest priority, which degenerate into always-install
baseline. Probabilistic replacement policies [17], [34], become
probabilistic bypass [8] in Figure 5. Frequency-based replace-
ment [18], [19], [35], [36], [37] or Reuse-based replacement
[7], [8], [9], [38], [39] try to predict and keep most-frequently
used lines in the cache. We design a bypassing version of
RRIP, RRIP-AOB, and implement ETR on our RRIP-AOB as
an example of this class of policies, but our ETR scheme can
be easily used to reduce update-cost of other frequency and
reuse-based replacement algorithms [10], [11], [12], [40], [41].

B. Line-based DRAM Caches

In our study, we use the DRAM cache organization used in
Intel’s Knights-Landing [4] that is direct-mapped and stores
each tag next to its data as our baseline. This organization
is the commercial implementation of many research efforts
that store Tag-With-Data [5], [6], [43], [44], [45] to improve
latency and reduce bandwidth consumption. We compare with
recent enhancements in Figure 5 (90%-Bypass and BAB [6]).
A recent enhancement ACCORD [44] enables associativity via

0.6

0.8

1.0

1.2

1.4

1.6

sp
hi
nx

m
ilc

ne
kb

on
e

cc
 w

eb

pr
 w

eb m
cf

xa
la
nc

pr
 tw

i

bc
 tw

i

cc
 tw

i

ze
us

m
p

w
rf

om
ne

t
gc

c
lib

q

le
sl
ie

so
pl
ex

m
ix
1
m

ix
2
m

ix
3
m

ix
4

G
m

ea
n

2.36

S
p

e
e

d
u

p

Timber (2-way) Unison (4-way) ETR on RRIP-AOB

Fig. 14. Speedup of line-based [42] and page-based [14] set-associative DRAM
caches, rel. to baseline direct-mapped DRAM cache [4], [5]. Proposed ETR
on RRIP-AOB enables direct-mapped DRAM caches to obtain hit-rate benefits
of intelligent replacement, without bandwidth cost of set-associative designs

way prediction. We note that ETR on RRIP-AOB has higher
potential as it can improve both hit-rate and bandwidth (ETR
18% speedup vs. ACCORD 10% speedup). Nonetheless, the
ideas can be combined, via tiered ACCORD way-selection then
RRIP-AOB bypass-decision, for greater effect (20% speedup).

Alternative designs such as Sim et al. [15] store tags via
tag grouping. For such caches, a tag-only line is placed along
with data in the same row buffer [15], [42], [46], [47], [48],
and this tag is accessed separately from data. Timber is an
enhancement that mitigates tag lookup by employing a tag-
cache and exploiting spatial locality [42]. We compare with
Timber in Figure 14. Such approaches enable associativity, but
pay bandwidth to access and update tags when the tag cache has
poor hit-rate (e.g., mcf and pr twi). Our ETR on RRIP-AOB,
on the other hand, enables intelligent replacement without this
separate tag access, and outperforms such approaches.

C. Page-based DRAM Caches
One can also use large granularity caches to reduce tag and

metadata storage costs [14], [49], [50], [51], [52], [53] and
enable set-associative designs. We compare with Unison cache
[14] (hardware-managed, 4-way, sectored cache with LRU,
separate tag lookup) as a representative of page-based designs,
in Figure 14. The associativity and replacement Unison offers
enable it to often outperform the baseline; however, the large
linesize and separate tag lookup can waste cache capacity
and bandwidth to cause slowdown (e.g., pr twi and bc twi).
Meanwhile, ETR on RRIP-AOB enables direct-mapped DRAM
caches to get intelligent replacement without sacrificing cache-
utilization or bandwidth-efficiency, to outperform such designs.

VIII. CONCLUSION

This paper investigates improving hit-rate for direct-mapped
DRAM caches by utilizing reuse-based replacement polices. To
make reuse-based policies applicable to direct-mapped caches,
we propose a bypass version of RRIP called RRIP Age-On-
Bypass (RRIP-AOB), which protects reused lines via bypassing
and evicts stale lines via aging state on bypass. However, RRIP-
AOB needs per-line reuse counters, and maintaining such state
in DRAM costs bandwidth. To tackle state update bandwidth
costs, we propose Efficient Tracking of Reuse (ETR). ETR
maintains accurate reuse state for just a representative line
within a region, and uses that representative’s state to inform
bypass decisions for surrounding lines. Our evaluations with a
2GB DRAM cache, show that ETR on RRIP-AOB provides a
speedup of 18.0% while incurring an SRAM cost of <1KB.

8

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our colleagues from
the Memory Systems Lab for their critique and suggestions.
This work was supported by a grant from the Semiconductor
Research Center (SRC).

REFERENCES

[1] J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[2] JEDEC, DDR4 SPEC (JESD79-4), 2013.
[3] Intel and Micron, “A revolutionary breakthrough in memory technology,”

2015.
[4] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,

S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights landing: Second-
generation intel xeon phi product,” IEEE Micro, vol. 36, pp. 34–46,
Mar 2016.

[5] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” in MICRO ’12, pp. 235–246, Dec 2012.

[6] C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating
bandwidth bloat in gigascale dram caches,” in ISCA ’15, (New York,
NY, USA), pp. 198–210, ACM, 2015.

[7] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Trans. Comput., vol. 57, pp. 433–447, Apr.
2008.

[8] H. Gao and C. Wilkerson, “A dueling segmented lru replacement
algorithm with adaptive bypassing,” in JWAC 2010-1st JILP Worshop on
Computer Architecture Competitions: Cache Replacement Championship,
2010.

[9] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” in ISCA ’10, (New York, NY, USA), pp. 60–71, ACM, 2010.

[10] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in MICRO ’11, (New York, NY, USA), pp. 430–441, ACM.

[11] V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++: Enhancing
signature-based hit predictor for improved cache performance,” in 2nd
Cache Replacement Championship (CRC-2 Workshop in ISCA ’17), 2017.

[12] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in ISCA ’16, pp. 78–89, June 2016.

[13] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in
MICRO ’17, (New York, NY, USA), pp. 436–448, ACM, 2017.

[14] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked dram cache,” in MICRO ’14, pp. 25–37,
IEEE, 2014.

[15] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked
dram caches,” in ISCA ’13, (New York, NY, USA), pp. 416–427, ACM,
2013.

[16] W. A. Wong and J.-L. Baer, “Modified lru policies for improving second-
level cache behavior,” in HPCA ’00, pp. 49–60, IEEE, 2000.

[17] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in ISCA ’07, (New
York, NY, USA), pp. 381–391, ACM, 2007.

[18] J. T. Robinson and M. V. Devarakonda, “Data cache management using
frequency-based replacement,” in SIGMETRICS ’90, (New York, NY,
USA), pp. 134–142, ACM, 1990.

[19] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache: demand-
based associativity via global replacement,” in ISCA ’05, pp. 544–555,
IEEE, 2005.

[20] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, 2012.

[21] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights landing: Second-
generation intel xeon phi product,” IEEE Micro, vol. 36, pp. 34–46,
Mar 2016.

[22] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019.

[23] Intel, “Fact sheet: New intel architectures and technologies target
expanded market opportunities,” 2018. Accessed: 2019-03-20.

[24] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change memory:
From devices to systems,” Synthesis Lectures on Computer Architecture,
vol. 6, no. 4, pp. 1–134, 2011.

[25] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M.-G. Kang, J. Lee,
Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii,
J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong, “A
20nm 1.8v 8gb pram with 40mb/s program bandwidth,” in ISSCC ’12,
pp. 46–48, Feb 2012.

[26] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings
of the IEEE, vol. 98, pp. 2201–2227, Dec 2010.

[27] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in ISCA ’09, (New York, NY,
USA), pp. 2–13, ACM, 2009.

[28] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel itanium programs with
dynamic instrumentation,” in MICRO ’04, pp. 81–92, Dec 2004.

[29] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1–17, Sept. 2006.

[30] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015.

[31] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in ISCA ’06, (Washington, DC, USA),
pp. 252–263, IEEE Computer Society, 2006.

[32] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-
level caches,” in MICRO ’13, pp. 284–296, ACM, 2013.

[33] Y. Smaragdakis, S. Kaplan, and P. Wilson, “Eelru: simple and effective
adaptive page replacement,” in SIGMETRICS ’99, vol. 27, pp. 122–133,
ACM, 1999.

[34] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer, “Adaptive insertion policies for managing shared caches,” in
PACT ’08, (New York, NY, USA), pp. 208–219, ACM, 2008.

[35] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed
cache design,” in ISCA ’00, (New York, NY, USA), pp. 107–116, ACM,
2000.

[36] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” in SIGMOD ’93, (New York, NY,
USA), pp. 297–306, ACM, 1993.

[37] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “Lrfu: A spectrum of policies that subsumes the least recently
used and least frequently used policies,” IEEE Trans. Comput., vol. 50,
pp. 1352–1361, Dec. 2001.

[38] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in MICRO ’12, pp. 389–400, IEEE, 2012.

[39] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement based
on reuse-distance prediction,” in ICCD ’07, pp. 245–250, IEEE, 2007.

[40] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction
for last-level caches,” in MICRO ’43, (Washington, DC, USA), pp. 175–
186, IEEE, 2010.

[41] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in ISCA ’18, June 2018.

[42] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram cache
management,” IEEE CAL, vol. 11, pp. 61–64, July 2012.

[43] C. Chou, A. Jaleel, and M. K. Qureshi, “Candy: Enabling coherent dram
caches for multi-node systems,” in MICRO ’16, pp. 1–13, Oct 2016.

[44] V. Young, C. Chou, A. Jaleel, and M. K. Qureshi, “Accord: Enabling
associativity for gigascale dram caches by coordinating way-install and
way-prediction,” in ISCA ’18, pp. 328–339, June 2018.

[45] V. Young, P. J. Nair, and M. K. Qureshi, “Dice: Compressing dram
caches for bandwidth and capacity,” in ISCA ’17, (New York, NY, USA),
pp. 627–638, ACM, 2017.

[46] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked dram caches,” in MICRO ’11, (New York, NY,
USA), pp. 454–464, ACM, 2011.

[47] C.-C. Huang and V. Nagarajan, “Atcache: reducing dram cache latency
via a small sram tag cache,” in PACT ’14, pp. 51–60, ACM, 2014.

[48] Z. Wang, D. A. Jimnez, T. Zhang, G. H. Loh, and Y. Xie, “Building a low
latency, highly associative dram cache with the buffered way predictor,”
in SBAC-PAD ’16, pp. 109–117, Oct 2016.

9

[49] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers:
Hit ratio, latency, or bandwidth? have it all with footprint cache,” in
ISCA ’13, (New York, NY, USA), pp. 404–415, ACM, 2013.

[50] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless dram cache,” in ISCA ’15, (New York, NY,
USA), pp. 211–222, ACM, 2015.

[51] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, “Efficient
footprint caching for tagless dram caches,” in HPCA ’16, pp. 237–248,
IEEE, 2016.

[52] G. H Loh, N. Jayasena, J. Chung, S. K Reinhardt, M. O’Connor, and
K. McGrath, “Challenges in heterogeneous die-stacked and off-chip
memory systems,” in 3rd Workshop on SoCs, Heterogeneous Architectures
and Workloads (SHAW-3), 02 2012.

[53] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware cooperation,”
in MICRO ’17, (New York, NY, USA), pp. 1–14, ACM, 2017.

10

	Introduction
	Background and Motivation
	Organization of a DRAM Cache (KNL)
	Replacement / Bypass Policies for 1-Way

	Methodology
	Framework and Configuration
	Workloads

	RRIP: Age-On-Bypass
	RRIP as a Bypassing Policy
	Storing RRPV in DRAM
	Benefits from Reuse-Based Replacement
	Dissecting BW of Replacement-Updates
	Potential for Improvement

	Efficient Tracking of Reuse
	Insight: Coresidency and Eviction-Locality
	Insight: Update Only the Representative
	Impact on Bandwidth
	Impact on Performance

	Results and Discussion
	Storage Requirements
	Impact of Cache Size
	Impact of Memory Type
	Impact on 2-Way Designs

	Related Work
	Replacement / Bypassing policies
	Line-based DRAM Caches
	Page-based DRAM Caches

	Conclusion
	References

