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Abstract

Phase Change Memory (PCM) is a promising technology for

building future main memory systems. A prominent characteristic

of PCM is that it has write latency much higher than read latency.

Servicing such slow writes causes significant contention for read

requests. For our baseline PCM system, the slow writes increase

the effective read latency by almost 2X, causing significant perfor-

mance degradation.

This paper alleviates the problem of slow writes by exploiting

the fundamental property of PCM devices that writes are slow only

in one direction (SET operation) and are almost as fast as reads

in the other direction (RESET operation). Therefore, a write op-

eration to a line in which all memory cells have been SET prior to

the write, will incur much lower latency. We propose PreSET, an

architectural technique that leverages this property to pro-actively

SET all the bits in a given memory line well in advance of the an-

ticipated write to that memory line. Our proposed design initiates

a PreSET request for a memory line as soon as that line becomes

dirty in the cache, thereby allowing a large window of time for the

PreSET operation to complete. Our evaluations show that PreSET

is more effective and incurs lower storage overhead than previ-

ously proposed write cancellation techniques. We also describe

static and dynamic throttling schemes to limit the rate of PreSET

operations. Our proposal reduces effective read latency from 982

cycles to 594 cycles and increases system performance by 34%,

while improving the energy-delay-product by 25%.

1 Introduction

Dynamic Random Access Memory (DRAM) has been the ba-

sic building block for designing main memories over the past

four decades. Unfortunately, scaling DRAM to smaller feature

sizes has become difficult. Therefore, memory technologies that

promise better scalability than DRAM have become attractive for

designing future memory systems [7][4][17]. One of the prime

contender among emerging technologies is Phase Change Memory

(PCM). PCM is a scalable technology that has read latency close to

that of DRAM. Unfortunately, PCM is an asymmetric read-write

technology where the write latency is much higher compared to the

read latency (often about 8x). A higher write latency can be usu-

ally be tolerated using buffers and intelligent scheduling if there

is sufficient write bandwidth. However, once a write request is

scheduled for service to a PCM bank, a subsequent read request for

a different line to the same bank waits until the write request gets

completed. Thus, the write requests can significantly increase the

effective latency for read requests. Read accesses, unlike write ac-

cesses, are latency critical and slowing down the read accesses has

significant performance impact. The contention-less read latency

in our baseline system is configured to be 500 cycles (experimental

methodology is described in Section 4). However, because of the

contention from the slow writes, the effective read latency almost

doubles, reaching 982 cycles. Our baseline employs large num-

ber of banks, read priority scheduling, as well as large per-bank

write queues. However, the contention from write requests is still

significant. To reduce this contention, Qureshi et al. [8] proposed

Adaptive Write Cancellation (AWC) policies that can cancel an

on-going write in order to service a pending read request. While

AWC indeed reduces effective read latency (to 694 cycles, 1.4x

of contention-less read latency), it still leaves significant room for

performance improvement. Furthermore, AWC relies heavily on

having a large number of write queues entries which incurs sig-

nificant complexity in the memory controller. We want a scheme

that obtains almost all of the potential performance improvement

without incurring significant hardware overhead or complexity.
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Figure 1. PCM write characteristics.

A key insight that enables our solution is that the write la-

tency in PCM devices is data dependent, as shown in Figure 1. To

RESET the device a high power short duration pulse is required.

The latency for the RESET operation is similar to the read oper-

ation [6]. However, the operation to SET the cell, takes a long

latency pulse to lower the resistance of the cell, which is typically

about 8X longer than the RESET pulse [6]. Given that a memory

line contains hundreds of bits, it is highly likely, when writing, that

both RESET and SET transitions will occur, hence write latency

is determined by the slower of the two operations.
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We could reduce the latency of PCM write operations by 8X

if the memory writes were constrained to only cause RESET op-

erations. We leverage this key insight and propose PreSET, an ar-

chitectural technique that leverages the write asymmetry of PCM

devices to pro-actively SET all the bits in a given memory line well

in advance of the anticipated write to that memory line. When a

writeback request reaches the memory and the PreSET request has

already been serviced for that memory line, writes are completed

with much lower latency as only RESET operations are required.

Since PreSET is only a hint, it is done off the critical path and is a

non-blocking operation. Furthermore, the structures that track sta-

tus of PreSET requests need to store only address information and

not data values, resulting in much simpler and smaller structures.

One of the main questions in architecting a system with PreSET

is to decide when to initiate a PreSET request, as performing a Pre-

SET operation for clean lines can result in potential data loss. We

use the key insight that when the processor writes to a line in the

cache, the corresponding contents of the line in memory becomes

stale and can be discarded. Therefore, a PreSET to a memory line

can be initiated as soon as a write to the cache line is performed.

In fact, the cache line may be written multiple times before it gets

written back to memory, but we need only initiate one PreSET op-

eration for that line, as PreSET is not dependent on the content of

the line. Our evaluations show that the time between the first time

a line is written in the DRAM cache of hybrid memory system and

the time it gets evicted is in the range of hundreds of millions of

cycles. Therefore, the PreSET operation can be scheduled at any-

time during this period, and has a high likelihood of completion

before the dirty line is written to memory.

We discuss the extensions to cache architecture and memory

system in order to facilitate PreSET. Our evaluations show that

PreSET can reduce the effective read latency of our baseline sys-

tem from 982 cycles to 661 cycles. This compares favorably with

adaptive write cancellation (AWC) policies. In fact, combining

PreSET and AWC obtains an effective read latency of 594 cycles,

and provides an overall performance improvement of 34%. This

performance improvement is within 2% of a system that has PCM

write latency equal to the read latency. Thus, the proposed tech-

niques alleviate the problem of slow writes in PCM, making the

PCM-based system seem like a symmetric read-write system. Fur-

thermore, our analysis shows that if PreSET is implemented, then

most of the writes are fast and hence the system does not need pro-

vide large write queues, which is otherwise necessary to support.

Therefore, PreSET not only improves performance but also helps

with reducing the area and complexity of the memory controller.

While PreSET improves performance significantly, it increases

the amount of time the memory system spends in performing write

operations (either demand writes or PreSET writes). This incurs

significant power overheads and reduces system lifetime. To limit

the overhead of PreSET while retaining the performance benefits,

we propose throttling schemes that regulate the number of Pre-

SET operations. We describe both static and dynamic schemes for

PreSET Throttling. The proposed schemes have performance im-

provement similar to unconstrained version PreSET+AWC but sig-

nificantly reduces power overhead and lifetime degradation. These

schemes improve the energy-delay product of the system by more

than 25% and provide a system lifetime of 8+ years on average

(5.6 years minimum).

2 Background and Motivation

PCM is a non-volatile memory that exploits the ability of

chalcogenide glass [16][15] to switch the material between two

states, amorphous and polycrystalline. The amorphous phase has

high resistance and polycrystalline phase has low resistance. The

state of a PCM device is changed by heating. Different heat-time

profiles are used to switch from one phase to another. To RE-

SET the device (Figure 2A), a high power pulse of short duration

is required. This electrical pulse first raises the temperature of

the PCM material above its melting point, typically in excess of

600 C, and is then quickly terminated. The small region of melted

material subsequently cools extremely quickly as a result of ther-

mal conduction into the surroundings. This extremely rapid cool-

ing process locks the PCM material into an amorphous state. The

small dimensions of typical PCM devices results in a small ther-

mal time constant thus allowing RESET pulses with durations of

tens of nanoseconds to be effective. Therefore, RESET latency is

typically similar to the read latency [6].
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Figure 2. State of PCM cell after (A) RESET (B) SET

To SET a cell (Figure 2B), the amorphous material must be

encouraged to crystallize into a polycrystalline state. This can be

accomplished by heating the material above its crystallization tem-

perature but below its melting point for a sufficient length of time.

Since the rate of crystallization is a strong function of the tem-

perature, given the variability of PCM cells within an array, reli-

ably crystallizing typical PCM cells requires heating pulses that

are hundreds of nanoseconds in duration. Therefore, the SET la-

tency is much higher (often 8x or greater) compared to the RESET

latency [6]. Given that a memory line contains hundreds of bits, it

is highly likely, that both RESET and SET transitions will occur

during writing, hence the write latency of PCM array is determined

by the slower of the two operations.

As write accesses are not in the critical path, a higher write

latency can typically be tolerated using buffers and intelligent

scheduling. However, once a write request is scheduled for service

to a PCM bank, a subsequent read request for a different line in

the same bank waits until the write request gets completed. Thus,

writes can increase the effective latency for read requests. Read

accesses, unlike write accesses, are latency critical and slowing

them can have significant performance impact. To tolerate the

contention from slow writes, Qureshi et al. [8] proposed Adap-

tive Write Cancellation (AWC) policies that can cancel an ongoing

write request in order to service pending read request.

Figure 3 shows the average effective read latency (on the left)

and performance (on the right) for the baseline PCM system with

contention-less read latency of 500 cycles (methodology in Sec-

tion 4). The write latency is assumed to be 8x the read latency and

the baseline uses read priority scheduling. For comparison, con-

figurations where the baseline writes incur same latency as reads
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Figure 3. Effective read latency and relative performance of PCM systems (methodology is in Section 4)

(Symmetric), and writes consume zero cycle latency (NoWrites)

are also shown, in addition to AWC.

The effective read latency for the baseline is 982 cycles, almost

doubled compared to the latency without contention. If write la-

tency was identical to read latency (500 cycles) then the effective

read latency reduces to 583 cycles, indicating most of the con-

tention is due to writes. If all the writes were removed (NoWrites)

then there is a potential to improve performance by 39% (on aver-

age). AWC obtains only about half of this potential while relying

heavily on large write queues. The goal of this paper is to pro-

vide simple extensions to PCM controller that obtain almost all of

the potential performance benefit without relying on large write

queues. The next section describes our proposal.

3 Architecting Memory System for PreSET

The key observation that enables our solution is that the write

latency in PCM devices is data dependent, as shown in Figure 1.

The latency of RESET is similar to read latency, whereas the la-

tency of SET is much higher (approximately 8X). During a typical

memory write, which involves a large number of memory cells,

both operations are likely to occur hence the write latency is high.

If we were able to constrain memory writes to only RESET oper-

ations, we could reduce the latency of PCM write operations by

potentially 8X. We leverage this key insight and propose a novel

architecture technique called PreSET for PCM-based memory sys-

tems. Our proposal pro-actively SETs all the bits in a given mem-

ory line well in advance of the anticipated write to that memory

line. If when a writeback request reaches the memory, a PreSET

request has already been serviced for that memory line, the write is

completed with much lower latency as only RESET operations are

required. This section describes the observation, design support,

and policies for enabling effective PreSET in PCM systems.

3.1 Initiating PreSET Request

The key question in designing a system with PreSET is when

to initiate a PreSET request for a given line. A PreSET request

should not be initiated speculatively, as performing a PreSET op-

eration for clean lines can result in potential data loss. Therefore,

a PreSET operation must be performed only when it is guaranteed

that the current contents of the line will not be needed. We use the

insight that when a write is performed to a given cache line, the

corresponding contents of the line in memory becomes stale and

can be discarded. Therefore, a PreSET to a memory line can be

initiated as soon as a write to the cache line is performed. In fact,

the cache line may be written to multiple times before eviction,

but we need initiate only one PreSET operation for that line, as

PreSET is not dependent on the contents of the line.

Figure 4 explains these concepts using lifetime of a cache line

from install to eviction. At time t0, the line is installed in the

cache. At time t1, the line gets written (possibly by a writeback

from the smaller caches) for the first time in the cache. After that it

can be written several times, before getting evicted from the cache

at time tn, resulting in a writeback to memory. PreSET request can

be sent to memory at any time after t1 and must complete before

time tn. We define this time period as the PreSET Window.

First

0 t3 tk tnt1 t2

Write MemoryWrite
Last

Time

PreSET Window

Initial Install
from Memory

Writeback to

t

Figure 4. The window for PreSET is between first write to

cache line and writeback to memory.

3.2 Viability of PreSET Window

A PreSET is by construction a long latency operation (4000

cycles in our system), that can get in the way of reads and actual

write operations on the memory. It is treated with lowest priority

and is serviced only during spare cycles. Therefore, we want the

PreSET window to be large, so that the PreSET requests have a

high chance of finishing before the corresponding write request

arrives at memory.
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Figure 5. Cumulative density function of the number of

processor cycles between the setting of the dirty bit and

the actual eviction of a line from our 32MB DRAM cache.

While we can use even the write at the first level cache to ini-

tiate PreSET, for keeping the design simplified and the processor

chip unchanged, we choose to use only the write in the DRAM

cache for initiating PreSET. Figure 5 shows the number of cycles
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Figure 6. Architecture extensions to support PreSET (newly added structures/fields are shaded). Figure not to scale.

between first write and eviction for all writebacks to memory for

three typical benchmarks. On average, the PreSET window is in

the range of few hundred million cycles. For almost all writes, the

window is in the range of few tens of millions of cycles, which far

exceeds the time to do a PreSET. Therefore, we expect that in the

common case most lines would have PreSET request completed

before the corresponding write request appears at memory.

3.3 Architecture Support

The cache design and memory system must be extended to fa-

cilitate PreSET, as shown in Figure 6. The memory controller has

a queue called PreSET queue (PSQ), in addition to the read queue

(RDQ) and write queue (WRQ). The PSQ is much simpler than

WRQ, in that each PSQ entry stores only address information (3

bytes) whereas each WRQ entry stores data as well address (128+3

= 131 bytes). Therefore, even a PSQ of 128 entry incurs a storage

of less than 400 bytes (10X lower than a 32-entry WRQ). Further-

more, the PSQ need not be looked upon each read access, whereas

WRQ is always looked upon for each read access. Therefore, PSQ

can be designed as a circular buffer (or a set-associative structure)

and avoids the complexity of a CAM-structure needed for WRQ.

The tag store entry of the cache is extended to have two more

status bits: PreSET Initiated (PI) and PreSET Done (PD). When

a write is performed to the cache, the dirty bit (D) is set. A Pre-

SET request is sent to memory, only if PI bit is zero, and the PSQ

associated with the bank has empty space. If PI bit is set to 1, sub-

sequent writes to the cache line will not initiate a PreSET request.

When the PreSET request completes service, the cache gets noti-

fied to set the PD bit. The PD bit avoids looking up the PSQ for

writebacks for which PreSET has already been done. When a line

gets evicted and if PI=1 and PD=0 (which happens in extremely

rare cases), we snoop the PSQ and invalidate the PreSET request

to avoid data loss, in case the PreSET operation happens after the

demand write.

When a dirty line is evicted from the cache, and the PD bit is

set it is inserted with that information in the WRQ (each WRQ is

extended to have one status bit PD). If the PI bit is set but PD bit

is not set, that means the entry is still in PSQ. It is vital that such

unfulfilled PreSET request are squashed, otherwise it can result in

data loss (if PreSET is performed after the demand write). There-

fore, in such scenarios the PSQ entry associated with that line is

invalidated. When the memory controller schedules the write op-

eration from WRQ, the PD bit determines whether it should be

treated as a normal write (provisioning for both SET and RESET

transitions) or a fast write (only RESET transitions will occur).

3.4 Interface Support for Bimodal Writes

PreSET operation in itself does not require special support

from the device level. It is similar to a normal write where all data

bits are zero (or one, depending on the SET to data value map-

ping). However, we do rely on the interface supporting two types

of write latencies: one a slow write (for normal writes or for SET),

and another a fast write (for writes that require only RESET).

3.5 Scheduling PreSET at Memory Bank

As PreSET request is only a hint, it is serviced off the critical

path, during idle cycles at the memory bank. Our evaluations show

that the average memory utilization is 30%, indicating lots of op-

portunities for doing PreSET. A PreSET request is deemed to have

a priority lower than both read and writes. So, a request from PSQ

is scheduled for service only if the RDQ and WRQ of that bank

are empty.

A PreSET request can be conceived to be of two flavors: block-

ing and non-blocking. We evaluated a blocking PreSET that con-

tinues even if a read request arrives for that bank. We found that

such a blocking PreSET degrades performance compared to the

baseline by 5.2%. Therefore, it is vital that PreSET operations are

non-blocking and that they get canceled for a later arriving read

requests. Implementing non-blocking PreSET requires a memory

controller support similar to that for write cancellation [8].

Throughout this paper we will assume that PreSET operations

are always non-blocking for read requests. Note that, we do not

cancel an ongoing PreSET operation if only a write request arrives

at the bank, as the writes can wait in the WRQ for some time with-

out hurting performance, and we found that completing the ongo-

ing PreSET operation in such scenarios improves performance.

3.6 Combining PreSET and AWC

Prior work has proposed adaptive write cancellation (AWC)

policies for canceling an ongoing write operation in favor of a later

arriving read request, depending on how much write service is al-

ready completed. While PreSET helps convert most of the writes

into short latency writes, some long latency writes may remain.

The system can still benefit from canceling the write request. So,

we propose and investigate a policy that combines PreSET and

AWC, and call it PreSET+AWC.
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4 Experimental Methodology

4.1 Configuration

We use an in-house system simulator for our studies. The base-

line system is shown in Figure 7 with the parameters from Table 1.

We use a simple in-order processor model so that we can evaluate

our proposal for several billion instructions. The baseline con-

tains a 256MB write-back DRAM buffer organized as a 32MB

per-core private cache. Write requests arrive at main memory only

on DRAM cache evictions. The 32GB PCM-based main memory

has 4 ranks of 8 banks each. Both read and write requests are at

the granularity of cache line, and are serviced by one of the banks

based on line address.

Each bank has a separate 8-entry read queue (RDQ) and 32-

entry write queue (WRQ) that queues all pending requests. A read

request to a line pending in the WRQ is serviced by the WRQ. If

both RDQ and WRQ are non-empty then read request is serviced

unless the WRQ is > 80% full, in which case a write request is

serviced. This ensures that read requests are given priority in the

common case, but writes eventually get a chance to get service.

For access to PCM-based main memory we assume that the read

latency is 125 ns (500 cycles) and writes latency is 1 micro second

(4000 cycles). PreSET operation is assumed to take 4000 cycles,

and writes with only RESET takes 500 cycles.

Table 1. Baseline Configuration

System 8-core single-issue in-order CMP, 4GHz

L2 cache (private) 2MB 4-way, 128B linesize, write-back

DRAM cache (private) 32MB 8-way, 128B linesize, write-back

100 cycle access, tag-store in SRAM

Main memory 32GB PCM, 4 ranks of 8-banks each

32 entry write-queue per bank

Read priority scheduling if WRQ <80% full

PCM latency reads : 125ns (500 cycles)

writes: 1 µs (4000 cycles)

write (SET only): 4000 cycles

write (RESET only): 500 cycles

4.2 Workloads

We use a representative slice of six benchmarks from the

SPEC2006 suite: astar, cactusADM , GemsFDTD, leslie3d,

soplex and zeusmp. These benchmarks were chosen because

they have at least 0.6 memory accesses per 1000 instructions out

of the 32MB DRAM cache (for workloads that fit in the cache,

the proposed scheme neither helps nor hurts performance). We

run these benchmarks in a rate mode. We also use six multipro-

grammed workloads each containing 2 copies of four benchmarks.

We perform timing simulation till the main memory services

10 million references (this translates to several billion instructions

of execution time). Table 2 shows the percentage of cycles a PCM

bank is servicing a read (Read Utilization), write (Write Utiliza-

tion), and Idle on average for the baseline system. The idle periods

provide opportunity for performing PreSET operations.

Table 2. Benchmark Characteristics (Bank utilization are

for PCM-based main memory).

Name Description Bank Utilization (%)

Read Write Idle

astar r 8 copies of astar 3.4 17.3 79.3

cactus r 8 copies of cactusADM 6.7 15.6 77.7

Gems r 8 copies of GemsFDTD 8.6 32.6 58.8

leslie r 8 copies of leslie3d 9.0 25.8 65.2

soplex r 8 copies of soplex 11.5 17.9 70.6

zeusmp r 8 copies of zeusmp 7.4 20.1 72.5

mix 1 cactus-leslie-soplex-zeusmp (x2) 8.9 19.3 71.8

mix 2 astar-cactus-leslie-soplex (x2) 8.3 19.0 72.7

mix 3 cactus-Gems-soplex-zeusmp (x2) 8.9 21.1 70.0

mix 4 astar-Gems-soplex-zeusmp (x2) 8.4 21.3 70.3

mix 5 astar-cactus-soplex-zeusmp (x2) 8.0 17.0 75.0

mix 6 astar-cactus-Gems-soplex (x2) 8.2 20.8 71.0

4.3 Figure of Merit

The objective of our proposal is to reduce the latency to service

the read requests. If trdqin is the time at which the read request

enters a PCM read queue and tdone is the time at which it finishes

service by a PCM bank, then we define Effective Read Latency as:

Effective Read Latency = (tdone − trdqin) (1)

The value of the effective read latency averaged across all read

requests is reported as the figure of merit. Also, overall system

performance is reported as relative speedup:

Speedup =
Execution Time Of Baseline

Execution Time With Proposed Technique
(2)

We found that the performance improvement with this metric

is similar (within 1%) to improvement in Weighted Speedup [13].
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Figure 7. Simulated Baseline System with support for PreSET (Figure not to scale)
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Figure 8. Comparison of Effective Read Latency of different PCM systems

5 Results and Analysis

5.1 Impact on Effective Read Latency

One of the key performance metric for a memory system is the

latency to complete a read operation. Figure 8 compares the effec-

tive read latency of five systems: Baseline, Adaptive Write Can-

cellation (AWC), PreSET, PreSET+AWC, and a Baseline system

from which all writes are removed (NoWrites). The bar labeled

Amean represents the average over all workloads. The system

NoWrites represents an upper bound on possible performance im-

provement with techniques that try to reduce contention of writes

on reads. For PreSET and PreSET+AWC we assume a 128-entry

PSQ (< 400 bytes).

For all workloads, the contention from write requests is signif-

icant.1 For 10 out of 12 workloads, the effective read latency is

1The low memory utilization of Table 2 and high read latency of Fig-

ure 8 may seem inconsistent with each other to a casual reader. This behav-

ior happens because writes are 8x longer than reads and can be explained

with a simple model. If memory is busy with writes 25% of the time, then

there is 25% chance that a randomly arriving read will contend with a write.

Each such episode will cause the read to wait on average for [8x (write la-

tency)]/2=4X. So, the average contention for read would be 0.25*4X=1X,

i.e. effective latency of approximately 1000 cycles for raw latency of 500

cycles (similar to Figure 8).

more than 900 cycles, much higher than contention-less latency

of 500 cycles. The average latency for the baseline is 982 cycles.

This reduces to 567 cycles, if all writes were removed from the

baseline, indicating that most of the latency increase is due to con-

tention from write accesses. AWC reduces effective latency to 692

cycles (1.4X of contention-less read latency, which is similar to

that reported by Qureshi et al. in [8]). However, AWC still leaves

significant room for improvement. PreSET is more effective than

AWC, reducing the average latency to 660 cycles. The combina-

tion of PreSET+AWC is highly effective, and obtains an average

of 594 cycles, very close to the system with NoWrites. Thus, our

proposal alleviates the problem of contention from writes on reads.

5.2 Impact on System Performance

Figure 9 shows the normalized speedup of AWC, PreSET, Pre-

SET+AWC, and baseline with NoWrites. The bar labeled Gmean

represents the geometric mean over all workloads. For all work-

loads, the improvement in read latency translates into significant

performance improvement. On average, there is a potential im-

provement of 38.7% with NoWrites. AWC gets only 21% of this

potential, while PreSET obtains 27.8%. With PreSET+AWC, the

performance improvement is 34.7%, which is within 4% of the

upper-bound NoWrites system, indicating very little room for im-

provements from further optimizations.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

S
p

ee
d

 U
p

 w
rt

 B
a
se

li
n

e

AWC-Only PreSET-Only PreSET+AWC Baseline(NoWrites)

as
ta

r_
r 

ca
ct

us
_r

 

G
em

s_
r 

le
sl
ie

_r
 

so
pl

ex
_r

 

ze
us

m
p_

r 

m
ix

_1
 

m
ix

_2
 

m
ix

_3
 

m
ix

_4
 

m
ix

_5
 

m
ix

_6
 

G
m

ea
n 

Figure 9. Speedup with respect to Baseline for various systems
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5.3 Coverage of PreSET

If a PreSET operation is successful it allows the write operation

to be done with lower latency. Ideally we want the PreSET oper-

ation for all writes to finish before the write reaches the memory

system. However, PreSET is done only during idle periods and can

get canceled many times in case there is heavy read/write traffic.

Figure 10 shows the percentage of writebacks that are performed

after PreSET is done.
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Figure 10. Coverage of PreSET: Percentage of write-

backs for which PreSET was already done

On average 80% of the writes have PreSET done. For all

benchmarks, except Gems r majority of write access are done af-

ter PreSET. Gems r has heavy write traffic and the idle period is

less compared to other benchmarks. Therefore, even if the PreSET

window is large (393 million cycles), there is frequent cancellation

of PreSET requests and hence the coverage of less than 50%. For

mix workloads, a stream of heavy write request from one appli-

cation can often find enough spare time in memory banks, if other

workloads in the mix are not as memory intensive, hence the Pre-

SET coverage is high.

5.4 Impact of System Write Bandwidth

Our proposal relies on having spare bandwidth in the memory

banks to do PreSET. If the system has very little unused bandwidth

then PreSET may not be as effective. We use a baseline that has 32

banks and utilization of approximately 30%. Figure 11 compares

the performance of baseline, AWC, PreSET+AWC, and baseline

with NoWrites as number of banks is varied from 16 to 64. All

performance numbers are normalized with respect to baseline with

32 banks, and are averaged over all the workloads.
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Figure 11. Impact of changing the number of banks in

memory on different PCM system

When the number of banks is reduced to 16, the baseline per-

formance degrades by 19%. Therefore, even though the aver-

age utilization of banks in our baseline (with 32 banks) is only

30%, having that many banks is useful. Even at 16 banks Pre-

SET+AWC provides a speedup of 1.3x (1.05/0.81). However,

there is lots of potential for improvement if all writes were re-

moved (1.33/0.81=1.64x). Unfortunately, there is not enough

bandwidth to do PreSET. When the number of banks is increased

to 64, the contention from writes is reduced, hence the possible

performance improvement reduces as well. Nonetheless, given

the extra idle cycles in memory banks, PreSET+AWC gets all of

the potential improvement. Increasing the number of banks in a

PCM memory is not always practical though, because it is typi-

cally limited by maximum power consumption given that writes

are power hungry operations. Therefore, doubling the number of

banks would essentially double the number of concurrent write

operations, doubling the power budget of PCM memory.

5.5 Impact on Write Queue Size and Sys-
tem Complexity

Our baseline assumes that each bank has a 32-entry WRQ.

Each entry in the WRQ need to provision storage for both tag and

data values. Therefore, having a 32-entry WRQ for each of the

32 banks, incurs a total storage overhead of 131KB. Furthermore,

All WRQ entries associated with a bank are snooped on each read

access, therefore designing a large WRQ incurs high complexity.

Unfortunately, previously proposed AWC technique relies on hav-

ing a large WRQ. Figure 12 compares the performance of base-

line, AWC, Preset, PreSET+AWC, and baseline with NoWrites as

the number of WRQ associated with each bank is varied from 8 to

256. All performance numbers are normalized to the baseline with

a 32-entry WRQ and are averaged over all the workloads.
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Figure 12. Impact of WRQ size of effectiveness of AWC

and PreSET+AWC. The performance of the baseline sat-

urates at 64 entries. AWC needs large number of WRQ

entries, whereas PreSET+AWC is relatively less sensi-

tive to WRQ entries.

For the baseline, reducing WRQ size from 32 to 8 reduces per-

formance by 5%, whereas the performance saturates at a WRQ

size of 64. The effectiveness of AWC is heavily dependent on the

WRQ size. With a smaller 8-entry WRQ, the performance im-

provement of AWC reduces to only 5%. PreSET+AWC, on the

other hand, is not so sensitive to the size of WRQ. This happens

because PreSET converts most of the writes from long latency to

short latency (a latency reduction of 8x), hence the write requests

do not occupy WRQ for long time and therefore a smaller WRQ is

sufficient. PreSET+AWC consistently obtains performance which

is very close to a system with NoWrites.
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Note that the WRQ overhead is incurred on a per-bank ba-

sis, therefore even for a 32-entry WRQ we would have a system

with a total of 1024 WRQ entries where each entry must provi-

sion space for a cache line (128 bytes). Given the endurance and

performance requirements the WRQ cannot be made in PCM, and

would have to be made in significantly less dense technologies

such as SRAM/eDRAM. Therefore, having storage for few thou-

sand WRQ entries in the PCM controller becomes prohibitively

expensive. In fact, given that PreSET+AWC is not so reliant on

large WRQ, we can reduce the WRQ in our baseline system from

32 to 8, and still get 30% performance improvement compared to

the baseline with 32-entry WRQ.

Unlike the WRQ, the PSQ is not snooped on every read and can

be implemented as a set-associative structure instead of a CAM.

Thus, PreSET+AWC not only improves performance but also re-

duce the area overhead and complexity in memory controller, ob-

viating the need for large queue structures, and replacing them

with smaller and simpler structures.

5.6 Impact of PSQ Size on PreSET

We use a default of 128-entry PSQ in our evaluations. As PSQ

stores only address information and not data values, each PSQ en-

try is quite small (3 bytes). Therefore, the storage overhead of

128-entry PSQ is less than 400 bytes (10x lower compared to the

32-entry WRQ). We can provision an even larger PSQ so as to al-

low more PreSET requests to be buffered and hence increase the

effectiveness of PreSET. Table 3 show the percentage performance

improvement over baseline with PreSET+AWC as the number of

entries in per-bank PSQ is varied from 8 to 512. The performance

improvement is not very sensitive to PSQ size, especially beyond a

128-entry PSQ. Therefore, we use a 128-entry PSQ in our studies.

Table 3. Effect of PSQ size on PreSET+AWC

Num PSQ entries 32 64 128 256 512

Speedup 33.5% 34.2% 34.7% 35.0% 35.3%

5.7 Impact of SET to RESET Ratio

In our studies we assume that SET incurs 8 times the latency of

RESET. We analyze the sensitivity of our proposed scheme as this

latency ratio is varied. For this analysis we assume that the SET

latency is always 8 times longer than read latency, and vary the

latency of only RESET operations. Table 4 shows the performance

improvement of PreSET (alone) and PreSET+AWC, as the latency

ratio of SET to RESET is varied from 2 to 8.

Table 4. Effect of varying SET-to-RESET latency on per-

formance improvement of PreSET and PreSET+AWC

SET-to-RESET Latency 2X 3X 4X 8X

PRESET-Alone 17.3% 22.7% 24.9% 27.8%

PRESET+AWC 30.9% 33.0% 33.9% 34.7%

For comparisons, note that AWC improves performance by

21%, and the upper-bound (NoWrites) is 38%, and these improve-

ments are not dependent on ratio of SET latency to RESET latency.

For the standalone PreSET technique, the performance improve-

ment is quite sensitive to SET-to-RESET latency, increasing from

17.3% at 2X latency ratio to 27.8% when latency ratio is 8X. Pre-

SET+AWC, on the other hand, is not as sensitive to this ratio. For

example,even at 4X latency ratio, the performance improvement

of PreSET+AWC is still within 2% of that with 8X latency.

5.8 Bank Usage Distribution

The PreSET operation increases the number of cycles the bank

spends in writing, with the aim of reducing the effective latency

for reads. The extra writes caused by PreSET is essentially the

overhead for our proposal. To analyze this, we divided the time a

memory bank spends into four categories: reads, writes, PreSET,

and idle. Figure 13 shows this distribution for baseline, AWC,

PreSET, and PreSET+AWC, averaged over all the workloads. All

numbers are normalized with respect to baseline.

The number of read cycles remain unchanged at 8%. The

baseline spends 20% of the time in writes, and AWC increases

it to 26%. With PreSET, the actual time doing the writes is re-

duced because writes become shorter latency (in common case).

However, the bank utilization is increased because of PreSET op-

erations. Note that because PreSET requests are non-blocking,

they could be serviced multiple times for a given write, hence the

large fraction of cycles spent in PreSET. When AWC is enabled

with PreSET, it can cancel write operations, hence amount of time

writing increases, offering less opportunities for PreSET. For Pre-

SET+AWC, the total amount of time spent in writing (both de-

mand as well as PreSET) increases from 20% to 40%. Given that

the amount of time spent in writing has almost doubled, this can

have a significant impact on power consumption and lifetime. The

next section describes efficient variants of PreSET which reduce

these overheads significantly while retaining most of the perfor-

mance benefits.
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Figure 13. Bank utilization for different PCM systems, normalized to baseline
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6 PreSET Throttling for Reduced Overheads

Ideally, we want to have PreSET operations only when it is

likely to improve performance and avoid when alternative means

of tolerating slow writes is sufficient. If the system already has

AWC, then PreSET provides an advantage by converting long la-

tency writes into short latency writes and thus avoiding the write

queue to become full. However, AWC can tolerate occasional

episodes of long latency writes, therefore it is not necessary to try

to do PreSET for all dirty lines. Based on this insight we develop

PreSET Throttling, which permits only a given percentage of all

dirty lines to perform PreSET. PreSET throttling is regulated by

the parameter PreSET Drop Percentage (PDP), which denotes the

percentage of PreSET requests squashed.

Recall that when a line is written to DRAM cache, the basic

PreSET scheme tries to schedule a PreSET request for that line.

If the PreSET request can be successfully inserted in the PreSET

Queue, it sets the “PreSET Initiated” (PI) bit associated with the

line to 1. To enable PreSET Throttling, when a PreSET request is

initiated for a line, we consult a pseudo-random number genera-

tor that provides a value between 0 and 100. If the random value

is less than PDP, then we do not send the PreSET request to the

memory system and still set PI bit to 1. This also avoids sending

subsequent PreSET requests for the line. Since the PreSET request

was not sent, the “PreSET Done” (PD) bit associated with the line

will remain at 0.2 When such a line gets evicted, it will be ser-

viced in a normal manner (without PreSET) and will rely on AWC

for tolerating the long write latency. We describe two flavors of

PreSET Throttling: Static and Dynamic.

6.1 Static PreSET Throttling

We can simply set the PDP parameter statically. We call this

scheme PreSET with Static Throttle (PreSET-ST). PreSET-ST al-

lows us to smoothly choose between different data-points of per-

formance benefits and overheads. Say, if we want to do Pre-

SET only for about 60% of the lines, we would set PDP=40%.

Given that we have AWC to handle occasional long latency writes,

we would not expect the performance improvement of PreSET-

ST+AWC to reduce linearly with PDP. And indeed this is what

we observe in our evaluations. Figure 14 shows the performance

improvement of PreSET-ST+AWC, and the percentage of time the

memory bank is doing PreSET, as PDP is varied from 0% to 100%.

At PDP=30%, the PreSET operations reduce by 30%, whereas

the performance improvement changes negligibly (from 34.6% to

33.5%). When all PreSET requests are dropped (PDP=100%) the

PreSET+AWC scheme degenerates into AWC, with performance

improvement of 21% over the baseline. Given the negligible per-

formance impact, we will use PDP=30% as the default value for

all subsequent evaluations of PreSET-ST.

6.2 PreSET with Dynamic Throttling

We can also set the PDP parameter in PreSET Throttling dy-

namically based on the state of the system. We propose such a

scheme called PreSET with Dynamic Throttle (PreSET-DT), that

2We describe this implementation only for simplicity. If PreSET Throt-

tling is implemented in this manner, then all lines where PreSET gets

dropped will end up snooping the PSQ for invalidation. PSQ snooping

can simply be avoided by using the impossible combination of bits (PI=0

PD=1) for denoting lines for which PreSET is dropped. With such an im-

plementation, when a line with PI=0 and PD=1 is evicted, it will be ser-

viced normally (without PreSET) without the need to snoop the PSQ.
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Figure 14. Performance improvement and associated

bank utilization of PreSET operations for PreSET-

ST+AWC. The shaded oval represents the operating

point of PreSET-ST+AWC with PDP=30% (default).

determines PDP to be a function of the memory bank utilization.

We measure the percentage of time the memory banks spends on

write operations or PreSET operations in a given time quanta (five

million cycles in our studies). We set PDP equal to this percentage

at the end of the time quanta, as use this PDP for the next time

quanta. The rationale behind selecting PDP as a function of mem-

ory utilization of write/PreSET is that if the memory system is do-

ing a heavy amount of writes, then it would reach close to its power

budget and would reach the endurance limited lifetime sooner than

otherwise. Therefore, we do not want to exacerbate write traffic in

such cases. However, if there is significant amount of spare band-

width in memory system, then it would be better to do PreSET and

obtain performance benefits. Our evaluations show that PreSET-

DT+AWC provides an average performance improvement of 31%

while having a bank utilization of 23%. While the PreSET-DT

scheme is more conservative than PreSET-ST (30% PDP), the key

advantage of PreSET-DI is that it limits power consumption and

helps provide longer lifetime for write heavy workloads.

6.3 Impact on System Power and Energy

PreSET converts a given writes into two parts. First, an off-

the-critical path PreSET, that performs only SET operations for all

the bits in the line, and Second, a demand write which performs

only RESET operations for some of the bits in the line. Such

bifurcation causes extra bit flips, incurring extra power and en-

ergy. It is important to note though, that unlike RESET (which is

a high power operation), PreSET only performs SET, which con-

sume relatively much less power than RESET. Therefore, PreSET

does not increase peak power consumption of memory system but

it does increase average power consumption. Figure 15 shows the

power, performance, energy, and energy-delay-product for differ-

ent schemes. For evaluating PCM power, we use a model similar

to Zhou et al. [17].

For power analysis, we break down the system power into three

parts: PCM write power, PCM read power, and other components

(DRAM cache and processor). For the PCM memory, most of the

power is consumed in writing, and it accounts for 21% of overall

system power. AWC increases overall system power to 1.33X and

PreSET+AWC increases it to 1.38X. The throttling schemes are ef-

fective in limiting the power increase to 1.29X (static) and 1.27X

(dynamic). Thus, throttling based schemes have approximately

one-fourth lower power overhead than unconstrained version of

PreSET+AWC, while retaining almost all of the performance ben-
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Figure 15. Power-Performance comparison of different schemes. Note that PreSET-based schemes not only improve perfor-

mance but also have significantly lower energy-delay product, much better than AWC-alone.

efits. Given that all the PreSET-based proposals increase perfor-

mance significantly the total energy remains similar to baseline,

whereas the total energy with AWC is higher than baseline.3

Given that the system performs execution at a faster rate with

PreSET-based schemes, the increase in power is not unexpected.

However, we need a metric that can indicate the balance between

performance and power. The Energy-Delay-Product (EDP) is one

such metric which is often used as a combined figure-of-metric to

compare different power-performance design points. Given that

PreSET-based schemes reduce execution time significantly, they

obtain much lower EDP. For the PreSET-only system EDP reduces

by 22%, for the PreSET+AWC it reduces by 24%, with PreSET-

ST+AWC it reduces by 27%, and with PreSET-DT+AWC it re-

duces by 25%. Comparatively, AWC reduces EDP by only 9%.

Thus, PreSET-based schemes are attractive not only for improving

performance but also for improving energy-delay product.

6.4 Impact on System Lifetime

The PreSET operation increases the number of write cycles

which also impacts system lifetime. In this section, we compare

the lifetime obtained by different schemes. We pessimistically

assume that the PCM memory has a per-cell endurance of only

16 million writes (several studies [9][12][11] have assumed much

higher endurance, which would make the lifetime problem even

less severe). For our lifetime evaluations, we further assume per-

fect wear-leveling to simplify our analysis. Note that recent wear

leveling algorithms such as Randomized Start-Gap [9] and Secu-

rity Refresh [12] provide a lifetime very close (97%) to ideal wear

leveling for typical workloads while incurring a write overhead of

less than 1% [10] and storage overhead of less than 100 bytes, so

our assumption of perfect wear leveling is not far from reality.

System lifetime is not only a function of endurance but also a

function of the rate at which the PCM memory gets written. For

3This happens because AWC incurs high power (for RESET opera-

tions) during the initial portions of write operations. When a write gets

canceled this high power operation is repeated again, which causes signif-

icant power overheads. For example, even if a write gets canceled after

20% of its service is completed, the power consumption of this canceled

write can be more than half of a completed write operation because of the

initial high-power RESET operations. With PreSET, the final write that

causes RESET gets completed with much shorter latency, thus avoiding

the likelihood of re-executing the high power RESET operations.

example, if the baseline memory system is written continuously at

100% write traffic (without any read operations or idle time) then

the system would last for approximately four years.4 Figure 16

shows the lifetime of the baseline as a function of write bandwidth

utilization. At 100% write traffic the system would last for 4 years

and at 25% write traffic it would last for 16 years. Typical memory

systems are designed to handle bursty accesses and to handle both

read and write operations, so the episodes of continuous writes at

full bandwidth is uncommon. For our workloads the memory write

bandwidth utilization ranges from 16%-26%,5 hence the lifetime

of the baseline ranges from 16-24 years.
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Figure 16. Lifetime as a function of write bandwidth uti-

lization. Our baseline system would be rated for four

years assuming 100% writes. The write bandwidth uti-

lization for our workloads is shown by the shaded oval.

Figure 17 shows the system lifetime obtained for baseline,

AWC, PreSET, PreSET+AWC, and PreSET with throttle. The bar

labeled Amean denotes the arithmetic mean over all workloads.

PreSET+AWC obtains a lifetime of 7.8 years on average, whereas

with static throttle it becomes 8.6 years and with dynamic throttle

it becomes 9.4 years. Thus, throttle based schemes help increase

4The number of lines per bank is 2
23, each line can be written 2

24

times, for a total of 247 writes per bank. If 220 writes per second can be

performed for each bank, with approximately 2
25 seconds per year, the

system would last for 22 years.
5One can increase write bandwidth utilization simply by reducing the

number of banks. Unfortunately, it increases the memory bank contention

as well. From Section 5.6, reducing number of banks of baseline from 32

to 16 causes approximately 20% slowdown.
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Figure 17. Estimated system lifetime for different schemes, for a system with rated lifetime of four years.

system lifetime. The key benefit of dynamic throttling scheme is

to help improve lifetime of workloads that are write intensive, that

would have much lower lifetime otherwise. For example, Gems r

obtains a lifetime of only 4.9 years with PreSET+AWC, whereas

PreSET-DT+AWC increases it to 5.6 years.

As PreSET-based schemes cannot increase write-bandwidth

utilization to more than 100%, the lifetime with PreSET-based

techniques cannot be less than the rated lifetime of four years, re-

gardless of the workload. Therefore, even for workloads that write

continuously to memory, lifetime remains at four years, although

as there would be no leftover bandwidth to do PreSET, there would

be no performance/power benefits from PreSET.

7 Related Work

7.1 Related Concepts in Flash Domain

The notion that closely resembles the PreSET operation for

PCM is the block Erase operation used in NOR and NAND Flash

memories [2]. Similar to the SET and RESET operations in PCM,

the Program (1→0) and Erase (0→1) operations in Flash memo-

ries have highly asymmetric latencies. Erase is typically one or

more order of magnitude slower than Program. Given the high

Erase latency, the Erase operation in Flash memories is performed

over large blocks, typically 64-128 KB.

However, PreSET in PCM is fundamentally different from

Erase in Flash memories for three reasons. First, PreSET is an

optional operation, whereas Erase is a requirement before a partic-

ular block can be written in Flash memory. Second, the granularity

of PreSET operation is the same as the unit of writing, whereas the

unit of Erase is typically 16-64 times larger than the granularity of

writes to Flash memories. Third, and fundamentally, PreSET is

performed in-place and does not necessitate the use of large in-

direction tables which are needed in Flash memories because of

out-of-place Program operations. Thus, PreSET avoids the signif-

icant area and latency overheads of large indirection tables.

For ensuring backwards compatibility with NOR Flash de-

vices, some of the PCM products (e.g. Samsung part number

K571229ACM) perform a block erase operation before the block

can be written. The patent application by Lam et al. [3] describe

a Flash-like block erasure scheme for PCM which initializes the

block to a SET state, and then transitions only the required bits to

the RESET state. However, no architecture technique is described

on how to leverage this block erasure to enhance system perfor-

mance. For example, applying erasure after the line reaches PCM

memory ends up degrading system performance, and applying era-

sure before the line is written to results in data loss.

7.2 Related work in Writeback Scheduling

Other related work includes techniques for preventing bursty

write traffic through intelligent write scheduling. Eager Write-

back [5] speculatively cleans dirty lines in the last-level cache, by

scheduling a writeback to memory for a given cache-line when the

line is not expected to be written again prior to eviction. Unfortu-

nately, an inaccurate prediction of last write results in extra write

requests to memory. In comparison, PreSET request do not rely

on speculation and can be sent at even the first write to a line. Fur-

thermore, sending PreSET on first write instead of last write gets

a much larger PreSET Window. Nonetheless, PreSET and Eager

Writeback are complementary and can be combined.

The Virtual Write Queues [14] technique extends the idea of

eager writeback, by performing clustered write operations to same

DRAM page, in order to get page mode locality. While large gran-

ularity writes (several KB) are common in DRAM systems, they

are unlikely to be present in PCM systems because of power effi-

ciency reasons, thereby limiting the opportunity to do page mode

writes in PCM memories.

The PreSET operation is complementary to the previous two

techniques, and can be used in combination with them to improve

system performance. The PreSET operation improves the physical

write latency of a single write operation, and the prior techniques

can be used to schedule the actual writeback operations, reducing

bus and queue latencies.

7.3 Related Work in Reducing Bit-Flips

Zhou et al. [17] proposed redundant bit removal to reduce the

unnecessary bit writes to PCM. It performs a read before write, and

writes only the bits that have changed. As both types of transitions

can still happen in the changing bits, the proposal does not reduce

write latency. We can apply redundant bit removal for PreSET

operations too, so that SET is performed only for the bits that are

in RESET state. Furthermore, when a write happens after PreSET

has completed, then only write the bits that cause RESET (without

the need to do the read before the write).

Cho et al. [1] proposed Flip-N-Write to improve write power

by reducing the number of bit transitions required while rewriting
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a previously written memory line. The key idea here is to store

the data in either the original form or inverted form depending

on which format reduces the number of bit transitions. We can

apply Flip-N-Write to RESET operations for lines that are already

PreSET, by writing the data in either normal or inverted form based

on which causes fewer RESET transitions, thereby saving power.

8 Conclusion

The write operation in Phase Change Memory (PCM) is much

slower than the read operation. Servicing such long latency write

accesses can cause severe contention for read accesses, which re-

sults in significant increase in effective read latency and degrada-

tion in system performance. This paper exploits the fundamental

property of PCM devices that writes are slow for only one type of

data transition (SET) and are almost as fast as reads for the other

transition (RESET), and makes the following contributions:

1. We propose PreSET, an architectural technique that proac-

tively performs a SET operation for all the bits in a given

memory line. Writing to a line that has been SET is much

faster, and hence causes less contention for read requests.

2. We show that even a simple hardware based technique that

initiates PreSET request on first write to cache line provides

a high likelihood of PreSET getting completed before the

corresponding write arrives to memory. We also discuss the

hardware, memory controller, and interface support required

to facilitate PreSET.

3. We evaluate PreSET and show that it provides better read

latencies than adaptive write cancellation (AWC) policies

without relying on large and complex hardware structures.

PreSET when combined with AWC reduces the effective

read latency of baseline from 982 cycles to 594 cycles. This

provides an average performance improvement of 34%.

4. We also propose static and dynamic schemes for throttling

PreSET operations. These schemes reduce the episodes of

PreSET operations significantly while retaining a perfor-

mance improvement similar to unconstrained version of Pre-

SET. The proposal improves energy-delay-product by 25%

and provides a system lifetime of 5+ years.

We believe that PreSET will be an important aspect of future

PCM systems in order to tolerate the poor write performance of

PCM memories. In this paper, we only analyzed systems that per-

form an in-place PreSET. A limited amount of out-of-place Pre-

SET can help provide low write latencies, for scenarios where

write latency is critical to performance (such as database trans-

action commit or persistent systems). Furthermore, we analyzed

PreSET solely with the goal of improving system performance.

PreSET policies that can adapt to energy consumption, power con-

straints, and lifetime can be designed as well. Exploring such ex-

tensions is a part of our current and future work.
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