
XED: Exposing On-Die Error Detection Information for Strong Memory Reliability

Prashant J. Nair† Vilas Sridharan‡ Moinuddin K. Qureshi†
†School of Electrical and Computer Engineering

Georgia Institute of Technology
{pnair6,moin}@ece.gatech.edu

‡RAS Architecture
Advanced Micro Devices Inc.
vilas.sridharan@amd.com

You are in a pitiable condition if you have to conceal what you wish to tell.” -Publilius Syrus

Abstract—Large-granularity memory failures continue to be
a critical impediment to system reliability. To make matters
worse, as DRAM scales to smaller nodes, the frequency of
unreliable bits in DRAM chips continues to increase. To
mitigate such scaling-related failures, memory vendors are
planning to equip existing DRAM chips with On-Die ECC.
For maintaining compatibility with memory standards, On-Die
ECC is kept invisible from the memory controller.

This paper explores how to design high reliability memory
systems in presence of On-Die ECC. We show that if On-
Die ECC is not exposed to the memory system, having a 9-
chip ECC-DIMM (implementing SECDED) provides almost no
reliability benefits compared to an 8-chip non-ECC DIMM. We
also show that if the error detection of On-Die ECC can be
exposed to the memory controller, then Chipkill-level reliability
can be achieved even with a 9-chip ECC-DIMM. To this end, we
propose eXposed On-Die Error Detection (XED), which exposes
the On-Die error detection information without requiring
changes to the memory standards or consuming bandwidth
overheads. When the On-Die ECC detects an error, XED
transmits a pre-defined “catch-word” instead of the corrected
data value. On receiving the catch-word, the memory controller
uses the parity stored in the 9-chip of the ECC-DIMM to
correct the faulty chip (similar to RAID-3). Our studies show
that XED provides Chipkill-level reliability (172x higher than
SECDED), while incurring negligible overheads, with a 21%
lower execution time than Chipkill. We also show that XED
can enable Chipkill systems to provide Double-Chipkill level
reliability while avoiding the associated storage, performance,
and power overheads.

Keywords-On-Die ECC, Chipkill, Double-Chipkill, RAID-3

I. INTRODUCTION

Technology scaling has been the prime driver of increas-

ing the capacity of the Dynamic Random Access Memory

(DRAM) modules. Unfortunately, as technology scales to

smaller nodes, DRAM cells tend to become unreliable and

exhibit errors [1,2]. The industry plans to continue DRAM

scaling by placing Error Correcting Codes (ECC) inside

DRAM dies, calling it On-Die ECC (also known as In-
DRAM ECC) [3]. On-Die ECC enables DRAM manufac-

turers to correct errors from broken cells [4]. Consequently,

DRAM chips with On-Die ECC are already proposed for

systems with DDR3, DDR4 and LPDDR4 standards [3,5,6].

For maintaining compatibility with DDR standards and to

reduce the bandwidth overheads for transmitting On-Die

ECC information, manufacturers plan to conceal the On-Die

error information to remain within the DRAM chips [3,6].

Thus, On-Die ECC is invisible to the system and cannot be

leveraged to improve resilience against runtime faults. This

paper looks at how to design systems with stronger memory

resilience in the presence of On-Die ECC.

Recent field studies from super-computing clusters show

that DRAM reliability continues to be a critical bottleneck

for the overall system reliability [7]–[9]. Furthermore, these

studies also highlight that large-granularity failures that

happen at runtime, such as row-failures, column-failures

and bank-failures, are almost as common as bit failures.

DRAM modules can be protected from single bit failures

using an ECC-DIMM that provisions an extra chip for error

correction. However, tolerating large-granularity failures in

the memory system is expensive and high-reliability systems

often need to implement Chipkill to tolerate a chip failure

at runtime. Unfortunately, implementing Chipkill requires

activating 18 chips, which necessitates either using a non-

commodity DIMM (x4 devices), and or accessing two

memory ranks (x8 devices) simultaneously, which increases

power and reduces parallelism. Ideally, we want to im-

plement Chipkill using commodity memory modules and

without the storage, performance, and power overheads.

����

����

����

����

����

� � � � � 	

��
�

��
���

��
�

���
��

��
�

��
��

��
��

��
�

��
��

��

!����

"#�$���%&&�'��(�$)**���+���%&&��,�&(�-�

��.�&(�-�

��/
��������	
��
��������
��

������
�����
�������
��������
�������
���

��#����0���%&&���(����

1��������(�-���������

"#�$���%&&�'��(���$)**���+���%&&��.�&(�-�
&(�-2���

Figure 1. Effectiveness of reliability solutions in presence of On-Die ECC.

We analyze how On-Die ECC affects the reliability of

DIMM-based ECC and Chipkill. Figure 1 shows the prob-

ability of system failure, by considering real world failure-

rates, for the memory system over a period of 7 years. We

compare three systems: (a) Non-ECC DIMM with 8 chips,

(b) ECC-DIMM with 9 chips, and (c) Chipkill-based system

with 18 chips. We observe that if the system is provisioned

with On-Die ECC there is almost no benefit of having

the DIMM-level ECC. Furthermore, Chipkill-based systems

provide 43x more reliability than ECC-DIMM. From this

analysis, we may conclude that the 9-chip ECC-DIMM

solution is superfluous in the presence of On-Die ECC.

We argue that this is an effect of concealing the On-Die

ECC information from the external system. We show that

revealing the On-Die ECC error detection to the memory

controller can enable Chipkill-level reliability while avoiding

the associated overheads.

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.38

341

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.38

341

Unfortunately, exposing On-Die ECC to the memory sys-

tem requires that more bits be transferred from the DRAM

chips to the memory controller [3,5,6]. This can accom-

plished by either providing more lanes or using additional

bursts, both of which are incompatible with existing DDR

standards [10,11]. Ideally, we would like to expose the On-

Die error information without any bandwidth or latency

overheads and without changing the existing standards. We

leverage the observation that the memory controller does not

need to have visibility of the On-Die ECC bits; it simply

needs to know if the On-Die ECC has detected an error.

The memory system can then use the On-Die error detection

information in conjunction with the DIMM-Level parity and

correct errors in a manner similar to RAID-3. To this end,

this paper proposes XED (pronounced as “zed”, the British

pronunciation of the letter “z”), a technique that eXposes

On-Die Error Detection information while avoiding the

bandwidth overheads and changes to the memory standards.

To efficiently communicate that On-Die ECC has detected

an error to the memory controller, XED relies on Catch-
Word. A Catch-Word is predefined randomly selected data-

value that is transmitted from the chip to memory controller

to convey that a fault has occurred in a given DRAM chip.

Both the memory controller and the DRAM chip a priori

agrees on the given Catch-Word. XED uses the 9th chip in

the ECC-DIMM to store parity information of all the other

chips. When the On-Die ECC identifies an error, the DRAM

chip transmits the Catch-Word instead of the requested data-

value to the memory controller. When the memory controller

recognizes the Catch-Word, it ignores the value from the

associated chip and uses the parity from the 9th chip to

reconstruct the data of the faulty chip. XED exploits the

observation that typically a chip (x8 devices) provides a 64-

bit data-value on each memory access. However, the chip

cannot store all possible 264 data-values. In fact, even a chip

as large as 8Gb stores only 227 64-bit words. Even if all these

words had unique values, the likelihood that the chip stores

a data-value that matches with the Catch-Word is negligibly

small (2−37, or 1 in 140 billion).1

We discuss how XED can mitigate a chip failure by using

an ECC-DIMM. We also discuss how XED can mitigate

scaling faults in multiple chips. We then show how XED

can perform correction when runtime chip failure occurs

concurrently with scaling faults. Our evaluations show that

XED provides 172x higher reliability than ECC-DIMM

alone. Furthermore, XED incurs negligible performance

overheads (< 0.01%) and provides a 21% lower execution

time compared to traditional Chipkill. We also analyze

1While the likelihood of data-value matching the Catch-Word is negligi-
bly small (once every million years for an x8 DIMM), XED can continue to
operate reliably even when this occurs. In fact, XED can reliably detect the
episode of a data-value matching the Catch-Word, and use this information
to change the Catch-Word. We discuss detecting collision and updating the
Catch-Word in Section V-D3

XED for a system that implements Chipkill and show that

XED enables this system to achieve Double-Chipkill level

reliability without the overheads of Double-Chipkill.
Overall, our paper makes the following contributions:

1) We show that DIMM-Level ECC provides no added

reliability benefit to a memory system with On-Die

ECC. This is because large-granularity runtime-faults

are the main cause of memory failures [7,8,12]–[16].

Therefore, implementing the conventional DIMM-

level SECDED with the 9th chip incurs area and power

overheads without providing any reliability benefits.

2) We propose XED, a technique that uses Catch-Words

to reveal On-Die ECC error detection information

to the memory controller without relying on extra

bandwidth and changes to the memory interface.

3) We propose a simple correction scheme for XED

that uses the ECC-DIMM to store parity information

and relies on RAID-3 based correction to tolerate a

chip failure. We also show that XED is effective at

tolerating chip failure in the presence of scaling fail-

ures. Our evaluation shows that XED enables Chipkill-

level reliability without the power and performance

overheads of traditional Chipkill implementations.

4) We show that XED can enable conventional Chipkill

systems to provide Double-Chipkill level reliability

while obviating the storage, performance, and power

overheads of Double-Chipkill.

II. BACKGROUND

We provide a brief background on the DRAM organiza-

tion and On-Die ECC. We also discuss the sources of errors

and discuss the typical techniques for error mitigation.

A. DRAM Organization
DRAM memory is typically implemented as Dual Inline

Memory Modules (DIMM), consisting of eight chips (x8

devices) providing a 64-bit wide databus. Each chip is

further divided into banks, and each bank is further divided

into rows and columns [17,18]. An access to a DRAM

DIMM activates a given bank in all of the chips. The access

may activate a row of cells in the DRAM and then only

a small portion from this row (corresponding to a cache

line size, typically 64 bytes) is streamed out over the data

bus [19]–[21]. Thus, each chip is responsible for providing

64-bit per access, which is sent using 8 bursts of 8 bits each.

If the DIMM is equipped with ECC, it will have a 9th

chip and will support 72 data lines (64 for data and 8 for

ECC). Each chip is still responsible for providing 64 bits

for each memory access.

B. On-Die ECC: The Why and the How
As technology scales to smaller nodes, the number of

faulty cells in a DRAM chip is expected to increase sig-

nificantly. Mitigating these design-time faults with row-

sparing or column-sparing will be prohibitively expensive.

342342

To increase yield, DRAM companies would like to use

DRAM chips with scaling faults while still ensuring reliable

operation and without significant overheads. To achieve

this, DRAM companies are planning to equip each chip

with On-Die ECC (also called as in-DRAM ECC), whereby

each 64-bit data within the chip is protected by an 8-

bit SECDED code. DRAM errors are handled internally

within the DRAM chip and this information is not made

visible to the memory controller. As such, the On-Die ECC

works transparently without requiring any changes to the

existing memory interfaces and without making the memory

controller aware that the chip is equipped with On-Die ECC.

C. Fault Modes: Birthtime versus Runtime

We classify the faults into two categories: birthtime faults

and runtime faults. Birthtime faults are those that occur at

manufacturing time and can be detected by the memory

vendors. To ensure reliable operation of the chips, it is

important that the memory vendors mitigate the birthtime

faults or simply discard the faulty chips. Scaling faults [1]–

[3,22,23] are birthtime faults and the On-Die ECC is de-

signed such that these faults do not become visible to the

external system. To ensure that a chip with On-Die ECC

is not faulty, the manufactures will need to ensure that no

64-bit word has more than 1 faulty bit (if a word had multi-

bit scaling-faults then use row sparing or column sparing to

fix those uncommon cases). In our paper, we assume that

scaling faults are limited to at most 1 bit per 64-bit word.

Runtime faults are those that occur during the operation of

the DRAM chip. Runtime failures can be either transient or

permanent, and can occur at different granularities, such as

bit-failure, word-failure, column-failure, row-failure, bank-

failure or rank-failure [7]–[9]. Recent field studies show that

large-granularity runtime failures are almost as common as

bit-failures. Therefore, we need solutions to efficiently han-

dle not only bit-failures but also large-granularity failures.

The typical error mitigation techniques are described next.

D. Typical Error Mitigation Techniques

1) SECDED: Memory systems may develop single-bit

faults due to alpha-particle strikes and weak cells [24,25].

To protect against single-bit faults, memory systems can

use a variant of ECC codes that corrects single-bit errors

and detect two-bit errors (SECDED) [26]–[28]. DIMMs

equipped with SECDED typically provide 8 bits of ECC

for every 64 bits of data, and while activating a single rank.

2) Chipkill: Large-granularity failures, such as chip fail-

ures, can be tolerated by Chipkill, which employs symbol-

based error correction code. Each data chip provides one

symbol and there are extra chips provisioned for storing

”check” symbols that are used locate and correct the faulty

symbol (chip). With two check symbols, Chipkill can correct

one faulty symbol (chip) and detect up to two faulty symbols

(chips) [29]. As Chipkill needs two extra chips for storing

these symbols, commercial implementations of Chipkill re-

quire that 18 chips be activated for each memory access

(16 for data and two for check symbols). Unfortunately,

this would mean that we either use non-commodity chips

(x4 devices) or obtain two cachelines for each access (x8

devices), causing a 100% overfetch which increases power

consumption and reduces parallelism.
3) Erasures: The Chipkill design tries to do both, locate

the faulty chip as well as correct the faulty chip. If we have

an alternative means of knowing which chip is faulty, then

we can tolerate a chip failure by simply relying on one chip

(in general, for tolerating N chip failures we need only N

extra chips). This is called as Erasure Coding [29]–[31].

E. Our Goal
Our goal is to obtain Chipkill-level reliability without the

associated overheads of area, power, and performance. We

observe that if the DRAM chips already have On-Die ECC,

then having the information about which chip encountered a

fault can help us design an Erasure-based scheme to tolerate

chip failures. However, we want to expose the On-Die error

detection information from inside the DRAM chip to the

memory controller without incurring extra bandwidth and

changing the memory interfaces. To that end, we propose

eXposed On-Die Error Detection (XED). Before we describe

XED, we describe our reliability evaluation infrastructure.

III. RELIABILITY EVALUATION

To evaluate reliability of our proposed schemes we use

FAULTSIM, an industry-grade fault and repair simulator [32].

We extend FAULTSIM to accommodate scaling-faults faults.

Based on prior studies, we assume a scaling-fault rate of

10−4 [1,3]. To model runtime-faults, we use real-world field

data from Sridharan et al. [7] as shown in Table I.

Table I
DRAM FAILURES PER BILLION HOURS (FIT) [7]

Fault Rate (FIT)

DRAM Chip Failure Mode Transient Permanent

Single bit 14.2 18.6

Single word 1.4 0.3

Single column 1.4 5.6

Single row 0.2 8.2

Single bank 0.8 10

Multi-bank 0.3 1.4

Multi-rank 0.9 2.8

Our memory system has 4 channels, each containing dual-

ranked DIMM of 4GB capacity (x8 devices of 2Gb each).

We perform Monte-Carlo simulations over a period of 7

years and check if the system encounters an uncorrectable,

mis-corrected, or silent error at anytime during the 7-year

period. If so, we deemed the system as a “failed” system.

We compute Probability of System Failure as the fraction of

systems that failed at anytime during the 7-year period. We

simulate a total of 1 billion systems and report the average

Probability of System-Failure as the figure of merit.

343343

IV. XED: AN OVERVIEW

We investigate a memory system in which all DRAM

chips are equipped with On-Die ECC. Our key observation is

that exposing the information about On-Die error detection

to the memory controller can enable high-reliability memory

systems at low cost. XED exposes the information that the

On-Die ECC detected (or corrected) an error to the memory

controller without requiring any changes to the bus interface

or requiring extra bandwidth. We implement XED using a

conventional ECC-DIMM consisting of 9 chips.

Figure 2 shows an overview of XED. Unlike conventional

ECC-DIMM, which uses the 9th chip to store the ECC code,

XED uses the 9th chip to store the parity information com-

puted across the remaining eight chips. XED transfers error

information by replacing data with Catch-Words. Thereafter,

XED can correct data errors with the help of the error

location and the parity information stored in the 9th chip

(similar to RAID-3 [33]). This enables XED to not only

identify the faulty chip, but also to reconstruct the data for

that faulty chip.

XED

correct invisible errors (WEAK)
(a) The System−Level ECC must

Memory Controller

(b) The System−Level ECC can
correct visible errors (STRONG)

Memory Controller

Location of Errors

No Pins or Protocol Change

Location of Errors

No Pins or Protocol Change

Reveals Error Information Reveals Error Information

RAID−3 Type Correction RAID−3 Type Correction

Faulty Chip
ECC−DIMM

DATA Level
ECC ECC
Level Word
DIMM

DATA
Catch

DATA
DIMM

Figure 2. (a) Conventional ECC-DIMM is not useful in presence of On-
Die ECC (b) XED exposes detection information of On-Die ECC to provide
stronger reliability (using RAID-3) without any interface changes.

This paper provides an interface that enables exposing the

On-Die error detection information using Catch-Words that

act as error indicators. XED relies on the observation that

a typical memory chip (with x8 devices) provides a 64-bit

data-value on each transfer. However, the chip does not store

all possible 264 values. In-fact, even a relatively large 8Gb

chip stores only 227 words of 64-bit each. Even if all the

stored 64-bit words were unique, the likelihood of the chip

storing the data-value that matches the randomly selected

Catch-Word is negligibly small (2−37, or 1 in 140 billion).

So the appearance of Catch-Word at the memory controller

signals that an episode of error detection or correction by

On-Die ECC occurred within the DRAM chip. This paper

analyzes the effectiveness of XED in the presence of chip

failures and scaling faults.

V. EFFICIENT CHIPKILL WITH XED

This section describes the implementation of XED. We

also discuss how correction is performed using the position

of faulty chip and the DIMM-level parity stored in the 9th

chip of XED. In this section, we assume that at most one

chip is faulty. We discuss the case of multiple scaling faults

(Section VII-B) and a chip failure in the presence of scaling

faults (Section VII-C) in later sections.

A. Implementing XED using an ECC-DIMM

We equip each chip with two registers: XED-Enable
and Catch-Word-Register (CWR). To enable XED on the

DIMM, the XED-Enable register is set to 1. Furthermore,

the CWR is also set to a randomly selected 64-bit value by

the memory controller. Fortunately, DRAM DIMMs use a

separate interface to update internal parameters using Mode
Set Registers (MRS). XED-Enable and CWR registers can

also be configured using the MRS. As the Catch-Word is

64-bits long and XED-Enable is 1-bit long, the total storage

overhead for enabling XED is only 65 bits per chip.

XED-Enable register is set at boot time and the memory

controller generates a unique random Catch-Word and stores

it in each chip. The memory controller also retains a copy

of CWR. This helps the memory controller in deciding if

the data provided by the chip matches with the Catch-Word.

To implement XED, DRAM chips are also equipped with

a Data-Catch-Word Multiplexer (DC-Mux) that dynamically

selects between the requested data value and Catch-Words

based on the correction or detection of errors. Figure 3 shows

the internals of a DRAM chip equipped with a DC-Mux. If

no error detected or corrected by the On-Die ECC then DC-

Mux selects the data. However, if the On-Die ECC detects

or corrects an error, the DC-Mux to selects the Catch-Word.

Note that this selection happens on if the XED-Enable bit is

set. If XED-Enable is not set, then the DRAM Chip supplies

the data value and acts as the baseline ECC-DIMM.

DRAM with XED

else
Send Data

if(Error)
Send Catch−Word

Data OR Catch−WordData

Concealed Error Information
DRAM with

ECC Engine
Catch−Word

DC−Mux

Register

Figure 3. XED uses a multiplexer to provide the Catch-Word or the data
value, depending on if the error is detected or corrected by On-Die ECC.

B. Detection: A By-Product Of On-Die ECC

The SECDED code corrects one faulty bit and detects of

two faulty bits. As SECDED code always detect the error

before correcting it, we can also reuse the SECDED code to

find out if an error was detected. The distance between valid

code-words is called as the hamming distance and any valid

344344

data would always land on valid code-words [4]. However,

if the data is erroneous then it tends to land on an invalid

code-word. An ECC scheme mitigates errors by selecting

a unique nearest valid code-word for the detected invalid

code-word. Therefore, On-Die ECC can implicitly serve as

a strong detection code if it informs the memory system

whenever an invalid code-word is encountered.

For example, Figure 4 depicts a scenario where an invalid

code-word is encountered by the ECC engine, so XED

would use the DC-Mux to transmit a Catch-Words instead

of the requested data. Thus, the DC-Mux transmits the

requested data only when the On-Die ECC engine detects a

valid code-word, or when XED-Enable is set to 0.

Pass Data through DC−Mux
else

if (Invalid Code−Words)

Valid ValidInvalid
Code−WordsCode−Word−1 Code−Word−2

(Detected)
Error2

Error3Error1
(Corrected) (Corrected)

ECC

Pass Catch−Word through DC−Mux

Figure 4. Leveraging ECC-based correction for stronger detection.
For example, a three-bit error may get mis-corrected with conventional
SECDED DIMM, but XED will be able to correct it.

C. Mitigate a Chip Failure Using XED

XED uses of Catch-Words to indentify the faulty chip and

the DIMM-level ECC to correct erroneous data of the faulty

chip. We describe the correction performed by XED.

1) Using Catch-Words and Parity To Locate Errors: The

ninth chip in a XED is provisioned to store “Parity” of the

data words in a burst. A parity code enables the memory

controller to identify any single erroneous data word. For

example, if data words D0 to D7 form a data burst, then

Parity is computed as an XOR (⊕) of all words between D0

to D7, as shown in Equation (1)

Parity = D0⊕D1⊕D2⊕D3⊕D4 · · · ⊕ D7

⇒ Parity ⊕D0⊕D1⊕D2⊕D3⊕D4 · · · ⊕ D7 = 0
(1)

During a write, the parity is stored in the 9th DRAM-

chip. On a subsequent read, if any data word or the Parity

gets corrupted, then Equation (1) will not be satisfied.

Consequently, memory system detects a data error. The key

drawback of this technique is that, using Parity alone, a

memory system cannot identify which data was erroneous.

To identify the faulty chips, we use the On-Die error code

that is provisioned to act as a strong error detection code

within each chip. On detecting an error, the chip relays the

Catch-Word rather than transmitting the erroneous data. As

the memory controller can identify the Catch-Word, it can

detect the faulty chip. For example, Figure 5 shows a faulty

chip that sends a Catch-Word (CW3) instead of Data (D3).

72 Data Lanes

Chip With Data Error

CW3

Legend

CWX = Catch−Word XDX = Data Word X PA = Parity

XED

Memory Controller

PAD0 D1 D2 D4 D5 D6 D7

Figure 5. Catch-Words are transmitted instead of Data if On-Die error code
detects errors. When used with Parity, Catch-Words enable the memory
system to identify the faulty chip.

In this case, using Equation (1), we get Equation (2) which

represents the case of a single erroneous chip.

Parity ⊕D0⊕D1⊕D2⊕ CW3 ⊕D4 · · · ⊕ D7 �= 0
(2)

Using the Catch-Words as an identifier and Equation (2) to

detect errors, the memory system can identify that Chip-3

is the faulty chip. As catch-words are transmitted instead of

valid data, there is no change in the memory protocol. There-

fore, XED is compatible with existing memory interfaces

and can relay the error information without any changes in

the memory protocols.

2) Using Parity to Correct Errors: On detecting only a

single Catch-Word, the memory controller can correct the

erroneous data by using Parity. For example, a corrupted

data-word D3 can be recovered using Parity as shown in

Equation (3). Using Parity and other valid data-words, the

memory controller reconstructs the corrupted data-word that

is pointed by the Catch-Word.

Parity �= D0⊕D1⊕D2⊕CW3⊕D4 · · ·⊕D7 · · · [from (2)]

Solving for D3 instead of CW3
⇒ D3 = D0⊕D1⊕D2⊕ Parity ⊕D4 · · · ⊕ D7 (3)

Therefore, XED-based systems can achieve Chipkill-level

reliability by activating only one rank of 9 chips. Thus, XED

enables computer systems to obtain Chipkill-level reliability

by using commodity x8 DRAM-chips.

D. Collisions of Catch-Words with Data

It is possible that a legitimate data-word matches a Catch-

Word. We refer to such an incident as the collision of Catch-

Words with data-words. Note that occurrence of a collision

does not indicate loss of reliability with XED. If collision

happens, XED will ignore the data value from the given chip

345345

assuming it as a Catch-Word, and recreate the same value

using the parity information stored in the ninth chip. So,

even in the rare case of a collision, XED still provides the

correct value, albeit with unnecessary correction.

1) Identifying a Collision: A collision can easily be

identified if a Catch-Word is encountered, and the value

corrected from XED (using the parity stored in the 9th chip)

matches with the Catch-Word.

2) Chances of Collision: We quantitatively identify the

chance of a collision for a XED-based DRAM chip. If we

conservatively assume that a different data-word is written

in every transaction, we can measure the probability of

collision of Catch-Words for each DRAM chip. Figure 6

depicts the probability of collision over time. As we use x8

DRAM-chips, we have a randomly selected 64-bit Catch-

Word. Therefore, the probability that a given data value

being written to the DRAM chip matches with the Catch-

Word is 1 out of 264, an extremely unlikely event. On

average, an x8 DRAM-chip will have a collision once every

3.2 million years, assuming a memory write every 4ns.

���

���

���

���

���

���

��� ��	 ���� ���� ���� ���
 ���� ����

�
��
��
���
��
��
���

��
���
��
�

�����������

���������	
������������������

������!"#��$�
%
�����������&"��'

!"#��$��%��(��#��"'

Figure 6. XED with x8 chips is likely to encounter collisions once every
3.2 million years, on average.

3) Updating Catch-Words on Detecting a Collision:
When a collision with Catch-Word is detected, we recom-

mend that the memory controller regenerate a new Catch-

Word and update all the DRAM chips with new Catch-

Words. Doing so, would increase the average time between

collisions. For updating the Catch-Word, the memory con-

troller does not have to read the entire data from the chip

or update all ECC values within each chip. This is because,

randomly generating a Catch-Word will reduce the average

chances of collision to be every 3.2 million years irrespective

of the data value within each chip.

E. The Need for Strong On-Die Error Detection

We assume 8-bits of On-Die ECC for every 64-bits of

data, with an aim of implementing SECDED on 64-bit

granularity [3]. If there is freedom in choosing the code

for On-Die ECC, we want to explore codes that not only

guarantee single-bit correction but also are highly effective at

multi-bit detection. While Hamming-Code [4] is popular for

implementing SECDED in memory systems, we recommend

that the On-Die ECC use CRC8-ATM code [34,35] for

implementing SECDED. CRC8-ATM has previously been

used in computer networks [34,35]. Both Hamming-Code

and CRC8-ATM provide the functionality of SECDED,

however CRC8-ATM code has stronger error detection capa-

bilities. Table II shows the invalid-code detection capability

of the Hamming Code and the CRC8-ATM code under both

random errors as well as burst errors.

Table II
DETECTION-RATE OF RANDOM AND BURST ERRORS

(72,64) Hamming Code (72,64) CRC8-ATM Code

Errors Random Burst Random Burst

1 100% 100% 100% 100%

2 100% 100% 100% 100%

3 100% 100% 100% 100%

4 98.3% 50.73% 99.2% 100%

5 100% 100% 100% 100%

6 99.1% 100% 99.22% 100%

7 100% 100% 100% 100%

8 99.16% 50.75% 99.22% 100%

Hamming Code has as low as 50.7% detection-rate for

invalid code-words in the presence of burst errors. On the

other hand, a CRC8-ATM code has 100% detection-rate of

invalid code-words in the presence of burst errors. Therefore,

the CRC8-ATM code is more effective than Hamming Code

for detecting burst errors. Therefore, we recommend using

CRC8-ATM code as a design choice for On-Die ECC.

The SECDED code should incur low latency for encoding

and decoding. Fortunately, CRC8-ATMs implementations

can be performed within one cycle by using only 256

entry lookup tables [34,35]. The CRC8-ATM computation

consumes only a single cycle latency as it only uses a tree of

XOR-gates for encoding-decoding. The current the On-Die

ECC specifications do not provision any additional latency

for encoding or decoding and leverage the timing slacks

within DRAM chips for ECC computation (1 to 2 cycles).

VI. MITIGATING CHIP FAILURES WHEN ON-DIE ECC

FAILS TO DETECT AN ERROR

XED relies on On-Die ECC to detect faults within the

DRAM chips. Unfortunately, this detection is imperfect, and

there is a small (0.8%) likelihood that a multi-bit error within

the chip remains undetected. If the system encounters a

multi-bit failure in a chip, and the On-Die ECC fails to

detect this fault, XED will still be able to detect this fault

at the system level because of the parity mismatch at the

DIMM-level ECC. We could deem such a scenario to be

an uncorrectable error, and inform the system that an un-

correctable error has occurred. Unfortunately, the resilience

of such a design would be much worse than Chipkill, as

we are unable to correct the faulty chip. However, if we

could identify the faulty chip, then we could use system-

level parity to reconstruct the data of the faulty chip. We

describe two schemes to identify the faulty chip when the

On-Die ECC fails to detect an error.

346346

A. Inter-Line Fault Diagnosis

A multi-bit failure can occur at runtime due to large-

granularity faults, such a row-failure, column-failure or

bank-failure. Such error modes cause not only the requested

line to fail, but also the spatially close lines to fail. We use

the insight that even if the error in a single cacheline goes

undetected by On-Die ECC, it is highly unlikely that errors

in the neighboring faulty lines will also go undetected by

On-Die ECC. Therefore, if we read multiple neighboring

lines, then we are likely to notice errors in the neighboring

lines for the faulty chip. The chip with the highest number

of faults in the neighboring lines is deemed as the faulty

chip. We propose to stream out the entire row buffer (128

lines), and use a threshold of 10% faulty lines to identify the

faulty chip. Our analysis in Section VIII shows that using

this threshold is sufficient to avoid identifying chips as faulty

simply due to scaling faults. We term this scheme as Inter-
Line Fault Diagnosis.

Performing Inter-Line Fault Diagnosis incurs high latency

(128 reads), so we want to avoid performing this diagnosis

frequently. We propose to store the result of this diagnosis

in a hardware structure called the Faulty-Row Chip Tracker
(FCT) that tracks the location of the faulty row and the

corresponding faulty chip identified using Inter-Line Fault

Diagnosis. An FCT-entry is a tuple of the row-address (32-

bits) and the faulty chip (4 bits). We use a small FCT with

few entries (4-8) as the system is either likely to encounter

1 or 2 faulty rows (due to a row failure) or thousands of

faulty rows (due to column failure or bank failure). If only

a single row-failure occurs, only one FCT entry is updated

and the chip is not marked as faulty. However, for column

or bank failure, all FCT entries would get used and point to

the same chip. This chip is permanently marked as faulty,

and for all subsequent accesses to this chip, XED would

reconstruct the data for this chip using parity information.

B. Intra-Line Fault Diagnosis

While Inter-Line Fault Diagnosis is effective at detecting

errors that span across multiple lines, it is ineffective when

the multi-bit error is constrained to be within the given line.

In such scenarios, the neighboring lines will be error free

and the Inter-Line Fault Diagnosis will be unable to identify

the faulty chips. When this occurs, we perform an Intra-Line
Fault Diagnosis that tries to detect permanent errors in the

requested line. To accomplish this, we first copy the data of

the requested line in a buffer. A diagnosis is then performed

by writing sequences of ‘all-zeros’ and ‘all-ones’

into the requested memory line and reading the value. The

chip with the permanent word faults or bit faults will get

detected by this diagnosis. If the fault occurred in only one

chip, then the data for the chip can be recovered using parity

information.

We note that Intra-Line Fault Diagnosis will be unable to

detect word failures that are transient. Fortunately, the rate

of a transient word fault is relatively small (7.7×10−4 over

a period of 7 years) and the likelihood that the On-Die ECC

will be unable to detect it is also quite small (0.8%), so

these cases happen with a negligibly low rate (6.1×10−6,

two orders of magnitude smaller than a multi-chip failure).2

C. Results: Effectiveness of XED

We perform reliability evaluations with a system that em-

ploys DRAM chips with On-Die ECC. Figure 7 shows, that

XEDs provide 172x more reliability than Ordinary DIMMs.

XEDs are also more 4x more resilient than any ECC-DIMM

based Chipkill. This is because, Chipkill operates over 18-

DRAM chips, whereas XEDs operate over only 9-DRAM

chips. A larger number of chips reduces the mean time to

failure (MTTF) for a system.

����

����

����

����

����

� � � � � 	

��
�

��
���

��
�

���
��

��
�

��
��

��
��

��
�

��
��

��

!����

���$�$������$���
��$

���

��

����	�
� ����	�
�
�����	�
� �	�
����

Figure 7. Reliability of ECC-DIMM, XED, and Chipkill. XED is 172x
more reliable than ECC-DIMM and 4x more reliable than Chipkill.

We noted (in Figure 1) that if error detection information

of On-Die ECC is not exposed to the external system, the

having the 9th chip in the ECC-DIMM does not provide any

added reliability benefits. This is because, once the chips can

tolerate single bit failures, the dominant source of failure is

due to large-granularity failures such a row or column or

bank failures. Simply using a 9th chip to store SECDED is

ineffective at mitigating such large-granularity faults.

VII. XED FOR MITIGATING SCALING ERRORS

The On-Die ECC is meant to protect the DRAM chip

against scaling faults. While the DRAM manufactures will

ensure that there are no two faulty bits are placed within

the same 64-bit word of the given chip, it is possible that

two separate chips can each encounter 1 faulty bit while

providing data for a single 64 byte access. Ideally, XED

should correct all of these scaling faults when there are

no runtime errors. We analyze the effectiveness of XED at

mitigating scaling faults for both when they occur without

runtime faults and in the presence of runtime faults.

2There is a small probability that two words within a line will each have
1-bit scaling fault. If a single-bit runtime fault occurs in either of these
two words, it would result in an detectable uncorrectable error (DUE).
Fortunately, the rate of this event is negligibly small (10−15 over 7 years).

347347

A. Chance of Receiving Multiple Catch-Words

It is possible that two or more DRAM chips can detect

scaling errors simultaneously and relay Catch-Words. As

scaling errors are single-bit failures, they will always be de-

tected by the On-Die Error Code. Fortunately, the chances of

two Catch-Words for any memory transaction are extremely

low. Table III shows that even at an error rate of 10−4, there

is only 2×10−5 chance of getting multiple Catch-Words in

a given access. On receiving Catch-Words from multiple

chips, XED is able to correct the data for all these chips, as

longs as the errors are only due to scaling faults.

Table III
LIKELIHOOD OF DIRECTED ON-DIE CORRECTION WITH XED

Scaling-Fault Rate Chance of Receiving Multiple Catch-Words

10−4 2×10−5

10−5 2×10−7

10−6 2×10−9

B. Correcting Scaling Errors in Multiple Chips

To correct scaling-faults, XED relies on the error cor-

rection capability of On-Die ECC, which is guaranteed to

correct the single bit error. On receiving a line with multiple

Catch-Words, the memory controller enters a serial mode,

where it allows only one request to go through the DIMM.

The memory controller resets the XED-Enable bit, reads the

data from the given location (as XED-Enable is not set,

the DIMM will send the corrected values), and then set the

XED-Enable bit. It will then use the parity information in

the 9th chip to ensure that the data read from this operation

matches with the parity. Note that correcting scaling errors

requires multiple read and write operations. Fortunately,

this overhead is incurred infrequently – once every 200K

accesses even for a high error rate of 10−4.

C. Correcting Runtime Failures along-with Scaling Errors

A runtime failure in one chip can occur concurrently

with scaling-related faults in other chips to generate multiple

Catch-Words. This can be detected as the system-level, as the

parity of the 9th chip will cause a mismatch. In this case, the

memory controller needs to identify the chip with the large

granularity fault and use the parity to recover correct data

for the chip failure. To achieve this, the memory controller

instructs the On-Die ECC to correct these errors and per-

forms Inter-Line and Intra-Line diagnosis on the faulty chip.

A scaling fault is corrected by On-Die ECC and the chip

failure is identified by using Inter-Line Fault Diagnosis and

Intra-Line Fault Diagnosis. If the diagnosis is successful at

identifying a faulty chip, the memory controller can recover

the data of the faulty chip using parity information. However,

if the diagnosis cannot determine a faulty, then XED signals

an episode of Detected Uncorrectable Error (DUE) so that

the system can restart or to restore an earlier checkpoint.

D. Results: XED for Runtime Errors + Scaling Errors

Figure 8 shows the effectiveness of XED, ECC-DIMM,

and Chipkill in the presence of scaling errors. We assume

the rate of scaling errors to be 10−4. We observe that, even

in the presence of scaling errors, XED continues to provide

stronger reliability than even Chipkill. Chipkill provides 43x

stronger reliability than ECC-DIMM, whereas XED provides

172x stronger reliability than ECC-DIMM. This is because,

On-Die ECC enables the memory system to correct scaling-

faults in addition to runtime-faults.

����

����

����

����

����

� � � � � 	

��

�
��

���
��

�
���

��
��

�
��

��
��

��
��

�
��

��
��

!����

���$�$������$����������	�
���
����	�
�������	�

�������	
��������	�	���

���

��

���	����
� �$

Figure 8. Reliability of ECC-DIMM, XED and Chipkill for runtime faults
occurring in the presence of scaling-faults (10−4).

VIII. SDC AND DUE RATE OF XED

XED is guaranteed to correct scaling errors in any number

of chips. However, for a chip failure, there is a small

likelihood that the error may go unnoticed, resulting in a

mis-correction, or cause a detectable error which cannot be

corrected. We quantify the vulnerability of XED using two

metrics: Detected Uncorrectable Error (DUE) and Silent
Data Corruption (SDC). DUE indicates the scenario when

the system encounters an uncorrectable error, whereas SDC

captures the scenarios where the error remains undetected

or gets mis-corrected.

DUE: The dominant cause of DUE are transient word-

faults. When this occurs, XED first performs Inter-Line Fault

Diagnosis followed by Intra-Line Fault Diagnosis, both of

which fail to identify the faulty chip. In this case, even

though XED detects the error due to parity mismatch of the

DIMM-level parity, XED is unable to perform correction

and reports an uncorrectable error. Fortunately, the rate of

encountering a transient word-fault during a 7 year period

is only 7.7×10−4. Furthermore, the likelihood that this fault

is undetected by On-Die ECC is only 0.8%. Therefore, the

rate that XED reports an uncorrectable error due to transient

word-fault, over a period of 7 years, is 6.1×10−6.

SDC: The dominant cause of SDC is an incorrect iden-

tification of a faulty chip by Inter-Line Fault Diagnosis.

This diagnosis relies on a faulty chip encountering a large

number of errors and the other chips not encountering as

many errors. We use a threshold of 10% faulty-lines within

348348

a row to identify the faulty chip. Under high rate of scaling-

related faults, there is a small probability that 10% of the

lines in the row will have scaling errors. This may cause the

diagnosis to deem the incorrect chip as faulty. Fortunately,

even at a high error rate of scaling related fault, the chance

that 10% of the lines in a row will have errors is negligibly

small (10−12 under scaling-related fault rate of 10−4).

Table IV shows the DUE and SDC rate for XED, assum-

ing runtime failures are constrained to be within one chip.

The SDC rate is 1.4×10−13 and the DUE rate is 6.1×10−6.

Note that the DUE rate is two orders of magnitude smaller

than the likelihood of data loss due to multi-chip failure.

Given that our solution is not designed to tolerate multi-chip

failures, such failures will determine the overall reliability

of the system, rather than the SDC and DUE rates of XED.

Table IV
SDC AND DUE RATE OF XED

Source of Vulnerability Rate over 7 years

XED: Scaling-Related Faults No SDC or DUE
XED: Row/ Column/ Bank Failure 1.4×10−13 (SDC)

XED: Word Failure 6.1×10−6 (DUE)

Data Loss from Multi-Chip Failures 5.8×10−4

IX. DOUBLE-CHIPKILL WITH XED

Memory systems that seek stronger reliability than Chip-

kill implement Double-Chipkill to correct up-to two faulty

chips. Double-Chipkill requires four extra symbols, two each

for identifying the faulty chips and for correcting the data

of these faulty chips. Therefore, it is typically implemented

with 36 chips, whereby 32 chips store the data and 4 chips

store the check symbols. Unfortunately, accessing 36 chips

requires activation of upto two ranks over non-commodity

DIMMs consisting of x4 DRAM-chips. Thus, even with

x4 devices, Double-Chipkill requires overfetch of 100%. It

would be desirable to obtain Double-Chipkill level reliability

on a single cache line, without activating multiple ranks or

channels. We show how XED can be applied to conventional

Chipkill designs (with x4 devices) to obtain the reliability

similar to Double-Chipkill. For this section only, we assume

all systems are designed with x4 devices.

A. Use Erasure Coding For Error Correction

When XED is implemented on the top of conventional

Chipkill design, we would have two extra chips (16 data

chips plus two extra symbol chips). Given that XED can

provide the location of the faulty chips, we can perform

erasure based error correction using the two symbol chips to

correct upto two chip failures. As this implementation uses

18 chips of x4 devices, each access obtains only a single

cacheline, and avoids the power and performance overheads

of Double-Chipkill. We note that, with x4 devices, the Catch-

Word is only 32-bits, so the expected time to collision is

approximately 6.6 hours (fortunately, the latency to update

the Catch-Word is only a few hundred nanoseconds).

B. Results: Double-Chipkill with XED
Figure 9 compares the reliability of Double-Chipkill,

Single-Chipkill, and XED implemented with Single-Chipkill

systems, all evaluated in the absence of scaling errors. Over-

all, Double-Chipkill provides almost an order of magnitude

improvement over Single-Chipkill. Unfortunately, it incurs

significant power and performance overheads compared with

Single-Chipkill. XED allows the memory system to get

Double-Chipkill level reliability while retaining the hard-

ware of Single-Chipkill. In fact, given that XED on the top

of Chipkill has only 18 chips instead of the 36 chips for

Double-Chipkill, we observe that XED provides almost 8.5x

higher reliability than Double-Chipkill while obviating the

performance and power overheads of Double-Chipkill.

���

����

����

����

� � � � �

��
�

��
���

��
�

���
��

��
�

��
��

��
��

��
�

��
��

��

!����

������������������
���������

	
����������������������������

����

����

��������������

Figure 9. Reliability of Single-Chipkill, Double-Chipkill, and XED-
based Single-Chipkill. Even with hardware similar to Single-Chipkill, XED
provides 8.5x more reliability than Double-Chipkill.

Figure 10 compares the reliability of Double-Chipkill,

Single-Chipkill, and XED on top of Single-Chipkill in the

presence of scaling errors. We assume the rate of scaling

errors to be 10−4. We note that, in the presence of scaling

errors, Double-Chipkill is 5.5x more effective than Single-

Chipkill. XED implemented with Single-Chipkill continues

to provide 8.5x better reliability than Double-Chipkill, pri-

marily due to fewer chips.

����

����

����

����

� � � � � �

��
�

��
���

��
�

���
��

��
�

��
��

��
��

��
�

��
��

��

!����

������������������
���������

	
����������������������������

����

����

�������	
��������	�	���

��������������

Figure 10. Reliability of Single-Chipkill, Double-Chipkill, and XED-based
Single-Chipkill in the presence of scaling faults. XED on Single-Chipkill
provides 8.5x more reliability than Double-Chipkill.

349349

SPEC 2006 PARSEC BENCH
BIO− COMMERCIAL

bwaves

lib
quantum
milc

soplexlbm
mcf wrf

cac
tusA

DM
zeu

sm
p
bzip

2
deal

II

xala
ncbmk

blac
k fac

e
fer

ret
flu

id tig
r

mummer
sw

apt
str

eamfre
q

comm1

comm2

comm3

comm4

comm5
Gmean

omnetp
p

XED + Single Chipkill (18 Chips)

XED (9 Chips)
 Chipkill (18 Chips)

 Double−Chipkill (36 Chips)

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e

les
lie

3d

Gem
sFDTD

sphinx
gcc

Figure 11. Normalized Execution Time (with respect to ECC-DIMM) for XED, Chipkill, XED on the top of Chipkill and Double-Chipkill. XED activates
2x fewer ranks and has 21% (61%) lower execution time than Chipkill (Double-Chipkill).

X. EXPERIMENTAL METHODOLOGY

To evaluate memory power and performance impact,

we use USIMM, a cycle accurate memory system simula-

tor [36,37]. USIMM enforces strict timing and also models

all JEDEC DDR3 protocol specifications. USIMM is con-

figured with the power parameters from industrial 2Gb x8-

DRAM chips and x4-DRAM chips [38]. As On-Die ECC

needs 12.5% more DRAM cells per die, we increase the

background current and the current for refreshes, activation

and precharge by 12.5%. Since error detections require only

a syndrome check, it is assumed to consume 1 core cycle.

The error correction at the memory controller is assumed

to consume 4 core cycles. For erasure codes, the error

correction is conservatively assumed to incur 60 core cycles.

Table V shows the parameters for the baseline system.

Table V
BASELINE SYSTEM CONFIGURATION

Number of cores 8

Processor clock speed 3.2GHz

Processor ROB size 160

Processor retire width 4

Processor fetch width 4

Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory bus speed 800MHz

DDR3 Memory channels 4

Ranks per channel 2

Banks per rank 8

Rows per bank 32K

Columns (cache lines) per row 128

For our evaluations, we chose benchmarks which have

greater than “1 Miss Per 1000 Instructions” from Last Level

Cache, from the SPECCPU 2006 [39], PARSEC [40] and

BioBench [41] suites. We also include five commercial

applications [37]. For simulations, we generate a represen-

tative slice of 1 billion instructions using Pinpoints. Our

evaluations execute the benchmark in rate mode and all cores

execute the same benchmark. We perform timing simulation

until all the benchmarks in the workload finish execution,

and measure the average execution time of all cores.

XI. RESULTS

A. Impact on Performance

Figure 11 shows the impact on execution time for

Chipkill and Double-Chipkill-level protection using ECC-

DIMMs and compares them to their XED implementations.

On a baseline that is normalized to a ECC-DIMM based

SECDED, a conventional Chipkill reduces the rank-level

parallelism by 2x (by activating two ranks) and increases

execution time by 21% on an average. Furthermore, applica-

tions that are bandwidth bound (eg. libquantum) shows

upto 63.5% increase in execution time. Furthermore, even

latency sensitive applications like mcf shows upto 50.7%

increase in execution time. XED activates only a single rank

and consumes no performance overheads. The overheads

of XED happen only on receiving multiple Catch-Words,

something that happens rarely (once every 200K accesses).

For Double-Chipkill, XED on the top of Chipkill activates

18 DRAM-chips (by activating two ranks) instead of to

36 DRAM-chips (by activating four ranks) in traditional

Double-Chipkill. Consequently, by activating 18 DRAM-

chips, XED based Double-Chipkill has the same overheads

as traditional ECC-DIMM based Chipkill. Due to this, XED

based Double-Chipkill increases the execution time by 21%

which is similar to conventional Chipkill. Unfortunately,

traditional Double-Chipkill systems increase the execution

time by 82%. Furthermore, bandwidth sensitive applications

such as libquantum increase the execution time by 220%.

Even in latency sensitive benchmarks like mcf, a Double-

Chipkill increases the execution time by 180%.

B. Impact on Power

Figure 12 shows the impact of memory power while

providing Chipkill and Double-Chipkill using ECC-DIMMs

when compared to XED based systems. On a baseline

that is normalized to an ECC-DIMM based SECDED, a

conventional Chipkill not only activates two ranks but also

increases execution time. Since power is “energy spent over

the total execution” of the application, ECC-DIMM based

Chipkill reduces the memory power consumption by 8%. On

350350

SPEC 2006 PARSEC BENCH
BIO− COMMERCIAL

 Double−Chipkill (36 Chips)

Gem
sFDTD

sphinx
gcc

bwaves

lib
quantum
milc

soplexlbm
mcf wrf

cac
tusA

DM
zeu

sm
p
bzip

2
deal

II

xala
ncbmk

blac
k fac

e
fer

ret
flu

id tig
r

mummer
sw

apt
str

eamfre
q

comm1

comm2

comm3

comm4

comm5
Gmean

omnetp
p

 0.7
 0.8
 0.9
 1.0
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

N
or

m
al

iz
ed

 M
em

or
y

Po
w

er

XED + Single Chipkill (18 Chips)

XED (9 Chips)
 Chipkill (18 Chips)

les
lie

3d

Figure 12. Normalized Memory Power (with respect to ECC-DIMM) for XED, Chipkill, XED on the top of Chipkill and Double-Chipkill.. The reduction
in memory power in Chipkill is due to the increased execution time. Double-Chipkill activates two channels and consumes significantly more power.

the contrary, XED consumes the same amount of power as

ECC-DIMM based SECDED implementation as it activates

only a single rank. Furthermore, because it activates only

a single rank, XED also takes almost the same amount of

execution time as SECDED systems.

Conventional Double-Chipkill systems consume 8.4%

more memory power than ECC-DIMM based SECDED

implementation. This is because, even though ECC-DIMM

based Double-Chipkill systems increase execution time by

63.5%, they also activate 36-DRAM chips (by activating four

ranks). This higher execution time does not compensate for

the activation overheads and increases the memory power

consumption by 8.4%. XED based Double-Chipkill reduces

the memory power consumption by 8% by activating only

18 DRAM-chips instead of 36 DRAM-chips for traditional

Double-Chipkill. Furthermore, the likelihood of receiving

multiple Catch-Words are rare (1 in every 200K accesses)

and therefore they consume negligible power overheads.

C. Impact of adding a Burst or Transaction

XED relies on Catch-Word to convey error detection

information. There are alternative ways to convey this infor-

mation such as using additional bursts or transactions. The

memory vendors can change the DDR protocol to expose

On-Die ECC information by adding a burst. Adding another

burst incurs a 25% overhead in current memory systems as it

increases the burst size from 8 to 10. Furthermore, DRAM

vendors are reducing the burst-size to one or two [42,43]

which would increase this overhead to about 50%-100%.

Alternatively, the memory controller can issue another trans-

action to fetch the On-Die ECC. Figure 13 shows the nor-

malized execution time and power for these two alternatives

(additional burst or additional transaction) compared to XED

for both Chipkill and Double-Chipkill. Both these alternative

implementations increase power consumption and execution

time significantly compared to XED implementations for

both Chipkill and Double-Chipkill.

The recently introduced DDR4 standards provide an

ALERT n pin [6,11] to indicate errors in address, command,

Memory PowerExecution
Time

Chipkill
Chipkill Chipkill
DoubleChipkill

N
or

m
al

iz
ed

 V
al

ue

 Expose On−Die ECC using Additional Transaction
 Expose On−Die ECC using an Extra Burst

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

Double

Figure 13. The performance and power overheads of exposing On-Die
ECC using adding an additional two bursts or a transaction, instead of XED.

or write operations. As there is only one ALERT n pin

provisioned for the entire DIMM, the ALERT n signal

can only convey that one of the chip is faulty, however

it cannot identify the chip that encountered the fault. If

future standards [44] could extend the ALERT n pin to also

convey the location of the faulty chip, then XED can be

implemented using ALERT n instead of using Catch-Words.

XII. RELATED WORK

A. Strong Memory Reliability: Orthogonal Proposals

Our paper implements high-reliability memory systems

in the presence of On-Die ECC. Several prior studies have

looked at enhancing memory reliability, albeit they do not

leverage On-Die ECC, and are orthogonal to XED. For

instance, Memguard [45] tries to use ordinary Non-ECC

DIMMs to provide strong reliability by storing hashes of

data and check-pointing data. Memguard stores hashes of

data values to detect errors. Memguard does not expose

or reuse On-Die ECC and incurs checkpointing overheads

for tolerating chip-failures. In a similar vein, COP [46] and

Frugal-ECC [47] can use ordinary DIMMs to provide ECC

351351

protection by storing ECC alongside compressed lines. Un-

like XED, COP and Frugal-ECC are vulnerable to cachelines

are incompressible. XED enables all cachelines, whether

they are compressible or not, to be protected and guarantees

very high reliability. Virtualized ECC (VECC) [12] enables

memory systems to have tiers of ECC and can provide

Chipkill-level ECC using x8 DRAM-chips. However, VECC

requires support from the OS for managing the locations

of these ECC tiers. Bamboo-ECC [48] and ARCC [15]

tries to tradeoff reliability with the storage and performance

overheads of maintaining ECC. These schemes will benefit

from XED as XED can be plugged into these schemes to

provide additional reliability.

Prior work have also looked at RAID schemes and ap-

plied them to DRAM-DIMMs. Unfortunately, these RAID

inspired schemes tend to have read modify write and parity

update overheads. For instance, Multi-ECC [49] provides

Chipkill using x8 DRAM-chips by using Checksum based

detection and parity-based correction. Unfortunately, Multi-

ECC has additional write overheads to update the checksum.

Another related work is the LOT-ECC [13] design that

uses x8 chips to provide Chipkill by having tiers of error

detection and correction code. We compare LOT-ECC and

with XED. Figure 14 shows the execution time of LOT-ECC

and XED when compared to a baseline ECC-DIMM. LOT-

ECC has 6.6% higher execution time compared to XED, as

it increases the number of writes to the memory system.

 1.06

 1.08

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

 LOTECC (with Write−Coalescing)

SPEC PARSEC BIOBENCH COMM GMEAN

XED

 1.00

 1.02

 1.04

Figure 14. Execution time of LOT-ECC [13] with respect to XED. LOT-
ECC causes a slowdown of 6.6%.

B. Enabling DRAM Scaling By Tolerating Faults

Prior works such as Archshield [1] and CiDRA [2]

have been proposed to mitigate scaling-faults. ArchShield

is designed specifically to handle scaling faults and can

tolerate runtime failures at only a single bit granularity.

CiDRA also discusses mitigating multiple runtime single-bit

failures using On-Die ECC and uses a small SRAM cache

to mitigate multi-bit failures. Unfortunately, it is impractical

to extend this design to handle a chip failure. For example,

to tolerate chip failures, CiDRA will need to provision an

SRAM structure that is sized for at-least one DRAM chip

(upto a few GBs), incurring prohibitive overheads. On the

contrary, XED avoids such SRAM overheads and enables

On-Die ECC to be seamlessly used to tolerate both scaling-

faults and runtime-faults.

Going forward, Citadel [16], Freefault [50] and Parity

Helix [51] tries to address large-granularity faults in stacked

memories. XED can be used with these techniques to

provide higher reliability even for stacked memories.

XIII. SUMMARY

As DRAM technology scales to smaller nodes, the rate of

unreliable bits within the DRAM chips is increasing [3,22].

Memory vendors are planning to provision On-Die ECC to

handle the scaling-induced faulty bits [3,5,6]. To maintain

compatibility with DDR standards, and to avoid the band-

width overheads of transmitting the ECC code, the On-Die

ECC information is not currently exposed to the memory

controller and therefore, this information cannot be used

to improve memory reliability. To enable low-cost higher-

reliability memory systems in presence of On-Die ECC,

this paper proposes proposes XED (pronounced as “zed”,

the British pronunciation of the letter “z”), a technique

that eXposes On-Die Error Detection information to the

memory controller while avoiding the bandwidth overheads

and changes to the memory standards. Our proposed imple-

mentation of XED has the following features:

1) XED exposes On-Die error detection information us-

ing Catch-Words, thereby avoiding any changes to the

DDR protocol or incurring bandwidth overheads.

2) XED uses the 9-th chip in the ECC-DIMM to store

parity information of all the chips, and uses the error

detection information from the On-Die ECC to correct

the data from the faulty chip using a RAID-3 scheme.

3) XED not only tolerates chip-failure, but also mitigate

scaling faults even at very high error rates (10−4).

XED provides Chipkill-level reliability using only a single

9-chip ECC-DIMM, and Double-Chipkill on a conventional

implementation of Single-Chipkill. Our reliability evalua-

tions show that XED provides 172x higher reliability than an

ECC-DIMM and reduces execution time by 21% compared

to traditional Chipkill implementations. As DRAM technol-

ogy ventures into sub 20nm regime, we believe solutions

such as XED that spans across multiple sub-systems will

become necessary to provide high reliability at low-cost.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

comments and feedback. We also thank our shepherd, Mat-

tan Erez, for his comments and feedback which was helpful

in shaping our paper. We are grateful to all members of

our research lab and Kevin Lepak of AMD research for

providing insightful feedback. This work was supported in

part by NSF grant 1319587 and C-FAR, one of the six SRC

STARnet Centers, sponsored by MARCO and DARPA.

352352

REFERENCES

[1] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: ar-
chitectural framework for assisting dram scaling by tolerating
high error rates,” in ISCA 2013.

[2] Y. H. Son et al., “Cidra: A cache-inspired dram resilience
architecture,” in HPCA 2015.

[3] K. Uksong et al., “Co-architecting controllers and DRAM
to enhance DRAM process scaling,” in The Memory Forum,
ISCA, 2014.

[4] R. W. HAMMING, “Error detecting and error correcting
codes,” BELL SYSTEM TECHNICAL JOURNAL, vol. 29,
no. 2, pp. 147–160, 1950.

[5] M. Greenberg, “Reliability, availability, and serviceability
(ras) for ddr dram interfaces,” in memcon, 2014.

[6] T.-Y. Oh et al., “25.1 a 3.2gb/s/pin 8gb 1.0v lpddr4 sdram
with integrated ecc engine for sub-1v dram core operation,”
in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, Feb 2014, pp. 430–431.

[7] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in SC 2012.

[8] V. Sridharan et al., “Feng shui of supercomputer memory:
Positional effects in dram and sram faults,” in SC 2013.

[9] ——, “Memory errors in modern systems: The good, the bad,
and the ugly,” in ASPLOS 2015.

[10] JEDEC Standard, “DDR3 Standard,” in JESD79-3E, 2015.
[11] ——, “DDR4 Standard,” in JESD79-4, 2015.
[12] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for

main memory,” in ASPLOS 2010.
[13] A. Udipi et al., “Lot-ecc: Localized and tiered reliability

mechanisms for commodity memory systems,” in ISCA 2012.
[14] S. Li et al., “System implications of memory reliability in

exascale computing,” in SC 2011.
[15] X. Jian and R. Kumar, “Adaptive reliability chipkill correct

(arcc),” in HPCA 2013.
[16] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel:

Efficiently protecting stacked memory from large granularity
failures,” in MICRO 2014.

[17] B. L. Jacob, S. W. Ng, and D. T. Wang, Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[18] Y. Kim et al., “A case for exploiting subarray-level parallelism
(salp) in dram,” in ISCA 2012.

[19] A. N. Udipi et al., “Rethinking dram design and organization
for energy-constrained multi-cores,” in ISCA 2010.

[20] T. Zhang et al., “Half-dram: A high-bandwidth and low-
power dram architecture from the rethinking of fine-grained
activation,” in ISCA 2014.

[21] H. Zheng et al., “Mini-rank: Adaptive dram architecture for
improving memory power efficiency,” in MICRO 2008.

[22] S. Hong, “Memory technology trend and future challenges,”
in Electron Devices Meeting (IEDM), 2010 IEEE Interna-
tional, Dec 2010, pp. 12.4.1–12.4.4.

[23] B. Gu et al., “Challenges and future directions of laser fuse
processing in memory repair,” Proc. Semicon China, 2003.

[24] K. Takeuchi et al., “Alpha-particle-induced charge collection
measurements for megabit dram cells,” Electron Devices,
IEEE Transactions on, Sep 1989.

[25] M. K. Qureshi et al., “Avatar: A variable-retention-time (vrt)
aware refresh for dram systems,” in DSN 2015.

[26] C. Chen and M. Hsiao, “Error-correcting codes for semicon-
ductor memory applications: a state-of-the-art review,” IBM
Journal, vol. 28, no. 2, pp. 124–134, March 1984.

[27] R. T. Chien, “Cyclic decoding procedures for bose-
chaudhuri-hocquenghem codes,” in IEEE Transactions on
Information Theory, vol. 10, no. 4, Oct 1964, pp. 357–363.

[28] R. Bose and D. Ray-Chaudhuri, “On a class of error cor-
recting binary group codes,” Information and Control, vol. 3,
no. 1, pp. 68 – 79, 1960.

[29] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the society for industrial and applied
mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[30] J. Nerl et al., “System and method for controlling application
of an error correction code (ecc) algorithm in a memory
subsystem,” Patent US 7 437 651 B2.

[31] ——, “System and method for applying error correction code
(ecc) erasure mode and clearing recorded information from a
page deallocation table,” Patent US 7 313 749 B2.

[32] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Faultsim: A
fast, configurable memory-reliability simulator for conven-
tional and 3d-stacked systems,” in ACM-TACO 2015.

[33] E. Marcus and H. Stern, Blueprints for High Availability.
Wiley, 2003.

[34] B. Lin, “Correcting single-bit errors with crc8 in atm cell
headers,” Freescale Semiconductor, Inc., Tech. Rep., 2005.

[35] INTERNATIONAL TELECOMMUNICATION UNION
(ITU), “Series i: Integrated services digital network isdn
user -network interfaces - layer 1 recommendations,” ITU-T,
Tech. Rep. I.432.1, 1999.

[36] N. Chatterjee et al., “Usimm: the utah simulated memory
module,” University of Utah and Intel Corp, Tech. Rep.
UUCS-12-002, Feb. 2012.

[37] (2012) Memory scheduling championship (msc).
[38] TN-41-01: Calculating Memory System Power for DDR3:

Rev. B 8/07 EN, Micron Technology Inc, 2007.
[39] “Spec cpu2006 benchmark suite,” in Standard Performance

Evaluation Corporation.
[40] C. Bienia, “Benchmarking modern multiprocessors,” in Ph.D.

Thesis, Princeton University, 2011.
[41] K. Albayraktaroglu et al., “Biobench: A benchmark suite of

bioinformatics applications.”
[42] JEDEC Standard, “High Bandwidth Memory (HBM)

DRAM,” in JESD235, 2013.
[43] ——, “WIDE-IO DRAM,” in JESD229, 2013.
[44] S. Kwon, Y. H. Son, and J. H. Ahn, “Understanding ddr4 in

pursuit of in-dram ecc,” in SoC Design Conference (ISOCC),
2014 International, 2014, pp. 276–277.

[45] L. Chen and Z. Zhang, “Memguard: A low cost and energy
efficient design to support and enhance memory system
reliability,” in ISCA 2014.

[46] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Cop: To
compress and protect main memory,” in ISCA 2015.

[47] J. Kim et al., “Frugal ecc: Efficient and versatile memory
error protection through fine-grained compression,” in SC
2015.

[48] ——, “Bamboo ecc: Strong, safe, and flexible codes for
reliable computer memory,” in HPCA 2015.

[49] X. Jian et al., “Low-power, low-storage-overhead chipkill
correct via multi-line error correction,” in SC 2013.

[50] D. W. Kim and M. Erez, “Balancing reliability, cost, and
performance tradeoffs with freefault,” in HPCA 2015.

[51] X. Jian, V. Sridharan, and R. Kumar, “Parity helix: Efficient
protection for single-dimensional faults in multi-dimensional

memory systems,” in HPCA 2016.

353353

