
Hydra: Enabling Low-Overhead Mitigation of Row-Hammer
at Ultra-Low Thresholds via Hybrid Tracking

Moinuddin Qureshi
Georgia Tech

moin@gatech.edu

Aditya Rohan
Georgia Tech

arohan7@gatech.edu

Gururaj Saileshwar
Georgia Tech

gururaj.s@gatech.edu

Prashant J. Nair
Univ. of British Columbia
prashantnair@ece.ubc.ca

ABSTRACT
DRAM systems continue to be plagued by the Row-Hammer (RH)
security vulnerability. The threshold number of row activations
(𝑇𝑅𝐻 ) required to induce RH has reduced rapidly from 139K in 2014
to 4.8K in 2020, and 𝑇𝑅𝐻 is expected to reduce further, making
RH even more severe for future DRAM. Therefore, solutions for
mitigating RH should be effective not only at current 𝑇𝑅𝐻 but also
at future 𝑇𝑅𝐻 . In this paper, we investigate the mitigation of RH
at ultra-low thresholds (500 and below). At such thresholds, state-
of-the-art solutions, which rely on SRAM or CAM for tracking
row activations, incur impractical storage overheads (340KB or
more per rank at 𝑇𝑅𝐻 of 500), making such solutions unappealing
for commercial adoption. Alternative solutions, which store per-
row metadata in the addressable DRAM space, incur significant
slowdown (25% on average) due to extra memory accesses, even in
the presence of metadata caches. Our goal is to develop scalable RH
mitigation while incurring low SRAM and performance overheads.

To that end, this paper proposes Hydra, a Hybrid Tracker for
RH mitigation, which combines the best of both SRAM and DRAM
to enable low-cost mitigation of RH at ultra-low thresholds. Hy-
dra consists of two structures. First, an SRAM-based structure that
tracks aggregated counts at the granularity of a group of rows, and
is sufficient for the vast majority of rows that receive only a few
activations. Second, a per-row tracker stored in the DRAM-array,
which can track an arbitrary number of rows, however, to limit
performance overheads, this tracker is used only for the small num-
ber of rows that exceed the tracking capability of the SRAM-based
structure. We provide a security analysis of Hydra to show that
Hydra can reliably issue a mitigation within the specified threshold.
Our evaluations show that Hydra enables robust mitigation of RH,
while incurring an SRAM overhead of only 28 KB per-rank and an
average slowdown of only 0.7% (at 𝑇𝑅𝐻 of 500).
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1 INTRODUCTION
Relentless DRAM scaling has been the key driver to enabling high-
capacity memory chips. With each technology generation, the cells
become smaller and closer together, which is critical for increasing
density. Unfortunately, packing cells closely increases inter-cell
interference between neighboring devices. One such interference
is Row-Hammer (RH) [16, 19], which occurs when a frequently
accessed DRAM row causes bit flips in the nearby rows. The bit-flips
caused by RH are a major security threat [2, 7, 10, 12–14, 20, 27, 30].
For example, an attacker could flip bits in the Page-Tables to enable
privilege escalation and access data stored at arbitrary locations.
Furthermore, the data-dependent nature of RH can be leveraged to
stealthily infer data stored in nearby rows [20].

The severity of RH is typically characterized by the metric Row-
Hammer Threshold (𝑇𝑅𝐻 ), which denotes the number of row acti-
vations required in a given row to induce a bit-flip in the nearby
rows. During the last seven years,𝑇𝑅𝐻 has decreased by more than
an order of magnitude, dropping from 139K in DDR3 (in 2014 [19])
to 4.8K for LPDDR4 (in 2020 [17]), as shown in Figure 1(a). 𝑇𝑅𝐻 is
expected to reduce even further, making RH an even more severe
problem for future systems. Therefore, it is important that the solu-
tions we develop to mitigate RH are effective not only for current
𝑇𝑅𝐻 but also for the future, when𝑇𝑅𝐻 may reduce by another order
of magnitude. In this paper, we investigate solutions for mitigating
RH in a regime of ultra-low threshold, where 𝑇𝑅𝐻 is 500 or lower.

Developing techniques to mitigate RH has been an active area of
research. The hardware-based techniques proposed to mitigate RH
typically consist of a tracking mechanism that identifies when a row
reaches a specified number of activations and then issues mitiga-
tion (e.g., refresh the neighboring rows). A typical memory system
contains millions of rows (for example, a 16GB module would have
two million rows of 8KB each), so tracking the activation counts of
each row naively with a dedicated counter per row requires storage
of multiple megabytes. Several proposals have tried to reduce the
storage and performance overhead of tracking. We classify such
tracking proposals as SRAM-based and DRAM-based.1

1The term “in-DRAM Tracking" is sometimes used for proposals where a small SRAM
table, placed inside the DRAM chip, keeps track of frequently accessed rows. We still
classify such solutions as SRAM-based tracking, as these proposals store the tracking
metadata within SRAM and not the cells of the DRAM array. Thus, these proposals
still require significant SRAM overheads to do reliable tracking at ultra-low thresholds.

https://doi.org/10.1145/3470496.3527421
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ISCA ’22, June 18–22, 2022, New York City, NY MoinuddinQureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J. Nair

139K

22K
18K

10K
5K

DDR3
(2014)

DDR4 LPDDR4
(2020)

?

DDR5

R
ow

-H
am

m
er

 T
hr

es
ho

ld

Memory 
Controller

Last Level 
Cache

DRAM
DRAM-based

trackers

SRAM 
Overhead

Sl
ow

do
w

n

KBs MBs

Memory 
Controller

Last Level 
Cache

DRAM

SRAM-based
trackers

High

Low
GOAL

(a) Row-Hammer Threshold over time (b) Tradeoffs for SRAM and DRAM-based trackers

Figure 1: (a) Trend of Row-Hammer Threshold (𝑇𝑅𝐻 ) from 2014 to 2021 (b) SRAM-based tracking has high SRAM overhead and
DRAM-based tracking has large slowdown.

Proposals for SRAM-based tracking use intelligent algorithms
to track information for only a subset of rows that are frequently
accessed. The SRAM structures are placed either at the memory-
controller side (e.g. Graphene [23], CBT [28], D-CBF [31]) or inside
the DRAM-chip (e.g., TWiCE [21], TRR [10], Mithril [18]). For guar-
anteed detection, the minimum number of entries that must be
tracked by the structures gets dictated by the number of rows that
can reach 𝑇𝑅𝐻 within the refresh window. Thus, the number of
entries in these structures increases inversely with 𝑇𝑅𝐻 , necessitat-
ing a doubling of the number of entries with each halving of 𝑇𝑅𝐻 .
Unfortunately, at ultra-low thresholds, these proposals require im-
practical storage overheads (e.g., at 𝑇𝑅𝐻 of 500, Graphene requires
340KB per rank, and these overheads would get doubled for DDR5
due to the increased number of banks), making them unappealing
for adoption. Furthermore, provisioning the structures without the
minimum number of entries allows an attacker to easily escape
detection (e.g., TRRespass [10]) by thrashing the structures.

An alternative to SRAM-based tracking is to store the tracking
metadata within the DRAM array, which provides the flexibility to
track an arbitrary number of rows. An example of DRAM-based
tracking is CRA [16], which maintains a dedicated counter for each
row in the addressable space of the memory system (a portion of
the memory space is reserved for the counters). On a row activation,
the memory controller increments the counter associated with the
row and issues mitigation if the specified threshold is reached. To
reduce the extra memory accesses for counter updates, CRA uses
a metadata-cache (32KB) to store the counter-lines for recently
accessed rows. Unfortunately, even in the presence of metadata-
cache, extra accesses are frequent because of poor locality and a
large number of accessed rows, resulting in a significant slowdown
(25% on average). Therefore, CRA is not deemed a viable solution.

The goal of our paper is to develop RH mitigation at ultra-low
thresholds while incurring both low SRAM-overhead and low per-
formance overhead, as shown in Figure 1(b). To this end, we pro-
pose Hydra,2 a Hybrid Tracker for mitigating RH, which combines
the best of both SRAM-Tracking (low performance overhead) and
DRAM-Tracking (low SRAM overhead and flexibility of tracking all

2Similar to Hydra, the many-headed serpent, our solution has multiple lines of defense,
including (the first head) group-count tracker, then (the second head) the row-count
cache, and finally (the third head) per-row counts stored inside the DRAM. To get to
the third head, the attacker needs to defeat the first two heads sequentially.

rows). Hydra is based on the key observation that most workloads
typically have only a small number of rows that incur hundreds
of activations within the refresh period of 64ms. The vast major-
ity of the rows receive only a few activations; therefore, low-cost
aggregate tracking may be sufficient for such rows.

Hydra splits tracking into two parts. First, aggregated tracking
at the granularity of a group of rows, using an SRAM-based Group-
Count Table (GCT). Second, per-row tracking, using the Row-Count
Table (RCT), which is stored in DRAM and cached on-chip in a
specialized Row-Count Cache (RCC).

The GCT is an untagged table of counters, indexed by the row
address (all rows mapping to the same entry form the row-group).
EachGCT-entry can be incremented only until it reaches a threshold
value𝑇𝐺 , which is lower than the target threshold (for example,𝑇𝐺
of 200 for target threshold of 250). When an update causes the GCT
entry to reach 𝑇𝐺 , the RCT entries of all the rows in the row-group
are initialized to 𝑇𝐺 . Subsequently, any access that encounters a
GCT-entry equal to 𝑇𝐺 uses the per-row tracking. If the count of
an RCT-entry reaches the specified threshold, mitigation is issued
and the count of the RCT-entry is reset. Thus, Hydra uses GCT to
filter out the common case of rows with low activation counts and
uses the per-row tracking of RCT only when GCT is insufficient.

We note that Hydra is simply a tracking mechanism and can
be used with any mitigation (victim refresh or inserting delay).
For example, we can refresh 𝑁 victim rows on each side of the
aggressor, where N is set based on the Blast Radius. Without loss of
generality, we use N=2 in our studies.

We provide security analysis to show that Hydra is guaranteed
to issue a mitigation within the specified 𝑇𝑅𝐻 . We also analyze the
adaptive attacks an adversary may try to use to defeat Hydra, such
as leveraging the accesses to the counts stored in DRAM to launch
RH or using mitigation itself to cause bit-flips. We discuss defense
against such attacks.

For our baseline 32GB (dual rank) memory system, the default
Hydra uses a total of 32K-entry GCT (32KB) and 8K-entry RCC
(24KB), for a total overhead of approximately 56KB (28KB per rank).
We note that the SRAM overhead of Hydra is significantly lower
than prior techniques that would need 680KB to 3MB for the dual-
rank system. Our evaluations with 36 workloads show that Hydra
incurs an average slowdown of only 0.7% at 𝑇𝑅𝐻 of 500 (and 4% at
𝑇𝑅𝐻 of 125, when the structures are scaled proportionately).
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Table 1: Total Per-Rank SRAM/CAM storage required for prior methods for 16-GB Rank (16-Banks and 8KB Rows)
* indicates that storage overhead would need to be doubled for DDR-5 (due to 32 banks).

†Prior studies were typically evaluated with 𝑇𝑅𝐻 of 32K

Row-Hammer Graphene [23] TWiCE [21] CAT [28] D-CBF [31] One-Counter-Per-Row Goal
Threshold (𝑇𝑅𝐻 ) (100% CAM) (37% CAM) (35% CAM) (Blacklisting Only) (Serves as Upperbound)

250 679 KB* >2 MB* >2 MB* 1.5 MB 2.0 MB ≤ 64KB
500 340 KB* 2.3 MB* 1.5 MB* 768 KB 2.3 MB ≤ 64KB
1000 170 KB* 1.2 MB* 784 KB* 384 KB 2.5 MB ≤ 64KB

32,000† 5 KB* 37 KB* 25 KB* 53 KB 3.8 MB -

Overall, our paper makes the following contributions:
(1) We study the effectiveness of conventional tracking at ultra-

low thresholds and show they either incur prohibitive SRAM
overheads or unacceptable slowdown.

(2) We propose Hydra, a hybrid tracker for mitigating RH that
combines the best of both SRAM and DRAM tracking to
enable low-cost tracking at ultra-low thresholds.

(3) We analyze the security of Hydra and show that it provides
guaranteed tracking. We also analyze different attack vectors
for Hydra and defenses for such attacks.

To the best of our knowledge, Hydra is the only RH mitigation
that is effective at ultra-low thresholds, as it provides both low
storage overhead and low performance overhead.

2 BACKGROUND & MOTIVATION
2.1 DRAM Organization and Timing Parameters
DRAM modules contain multiple banks, which operate in parallel
and share a common data bus. Internally, the banks are organized
as a two-dimensional array of rows and columns. To access data
from DRAM, a row must be activated, which brings the data into a
row buffer. If the memory controller needs to access data in another
row, it must first clear the row-buffer using the precharge command,
followed by activation of the given row. DRAM cells leak data
and require periodic refresh operations to maintain data integrity.
Memory systems typically use a refresh period of 64ms[15].

An important DRAM timing parameter is 𝑡𝑅𝐶 (Row Cycle Time),
which indicates the time between consecutive activations in a
given bank. The 𝑇𝑅𝐶 for DDR4 systems is approximately 45ns,
which means a bank can encounter up to 1.36 million activations
(𝐴𝐶𝑇𝑚𝑎𝑥 ) in the refresh window of 64ms, after discounting the
time spent in refresh.

2.2 Row-Hammer and Security Implications
Row-Hammer (RH) occurs when a row undergoes a large number
of activations, which cause bit-flips in nearby rows. Row-Hammer
Threshold (𝑇𝑅𝐻 ) denotes the number of activations required on a row
to induce bit-flips in the nearby row.When the RHphenomenonwas
first characterized in 2014, 𝑇𝑅𝐻 was 139K, whereas it has reduced
by an order of magnitude to 4.8K [17] - 9K [11]. 𝑇𝑅𝐻 is likely to
reduce even further for future DRAM technology. Therefore, it
is important that any solution for mitigating RH is designed to
tolerate not just the current 𝑇𝑅𝐻 but the 𝑇𝑅𝐻 for future nodes.

The bit-flips caused by RH are not just a reliability issue but a
severe security problem. RH gives the attacker a powerful weapon

to flip bits in Page-Tables to cause privilege escalation, or exploit
the data-dependent nature of RH to read confidential data [20].
Thus, mitigating RH is important to ensure security.

2.3 Threat Model
We assume an unprivileged attacker that can run code natively on
the system. The system uses DRAM that is vulnerable to bit-flips
due to Row-Hammer (RH). The attacker runs process(es) under user
privilege and exploits RH to flip bits in the page-table or in another
program’s data to corrupt it. We assume the RH bit-flip occurs at
any unspecified victim location when any row in memory incurs
more activations than 𝑇𝑅𝐻 within the refresh interval of 64ms.

2.4 SRAM-Based Tracking
In this section, we focus on hardware solutions that rely on SRAM-
based tracking of activation counts (we discuss related work in
greater detail in Section 7). The storage overhead of tracking-based
schemes typically depends on the number of rows that can en-
counter at-least 𝑇𝑅𝐻 activations within the refresh period. With
lowering 𝑇𝑅𝐻 , the number of rows that can be attacked increased,
and hence the hardware overhead of tracking structures must in-
crease in direct proportion. In this paper, our goal is to develop
an RH mitigation solution at ultra-low thresholds (𝑇𝑅𝐻 of 500 or
lower). We analyze the storage overhead of state-of-the-art trackers
at such ultra-low thresholds for a 16-GB rank, as shown in Table 1.
One-Counter-Per-Row (OCPR):This represents the naive scheme
that stores one counter for each row. For a system with 𝑅 rows and
a threshold of 𝑇𝑅𝐻 , OCPR needs 𝑅 entries, each of 𝑙𝑜𝑔2(𝑇𝑅𝐻 ) bits.
The storage for OCPR ranges from 2MB to 4MB, which is too large
to store on-chip. However, OCPR serves as the upper bound for the
storage overhead of tracking.
Graphene [23]: Graphene is the current state-of-the-art tracker.
It uses the Misra-Gries algorithm to identify top-N frequently
accessed rows, where N is decided based on 𝑇𝑅𝐻 . At 𝑇𝑅𝐻=500,
Graphene would need a significant overhead of 340KB per rank
(furthermore, the design would need a 5400-entry CAM, which is
beyond practical limits).
TWiCE [21]: TWiCE employs a table to keep track of activation
counts and periodically sends a request that reduces the counts and
removes entries that are unlikely to reach 𝑇𝑅𝐻 within the refresh
period. The number of entries in TWiCE depends on 𝑇𝑅𝐻 . While
TWiCE is effective at 𝑇𝑅𝐻=32K, at 𝑇𝑅𝐻=500, it would need almost
as much storage as OCPR.
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Figure 2: Performance of CRA as the size of the metadata cache is varied. CRA continues to incur significant slowdown.

Counter-Adaptive Trees (CAT) [28]: This design employs a re-
configurable tree where the counter entries are dynamically real-
located from upper nodes to lower nodes depending on the row
activation counts of the lower node. To ensure security, the number
of entries in CAT increases in proportion to the number of rows
that can be attacked. While CAT is quite effective at 𝑇𝑅𝐻=32K, at
𝑇𝑅𝐻=500, it needs 1.5MB per rank.
Dual-Counting Bloom Filter (D-CBF) [31]: This design employs
two time-shifted Bloom Filters (with three hashes) to identify fre-
quently accessed rows. Unfortunately, once the row is identified as
a hot-row, it will continue to be in this status until the end of the
refresh window (when one of the filters is reset). Thus, D-CBF is
compatible only with mitigation of access-rate control (and not the
mitigation of victim refresh). This also means that D-CBF must be
designed for very low false-positive rates, necessitating large filter
sizes. At 𝑇𝑅𝐻=500, D-CBF requires an overhead of 768KB per rank,
which is still prohibitively large for a memory controller.

We note that at 𝑇𝑅𝐻=32K (the threshold used in prior studies),
SRAM-based tracking proposals are highly storage-efficient com-
pared to the naive OCPR scheme, requiring only a few KB compared
to multi-megabyte for OCPR. However, at𝑇𝑅𝐻 of 500 or lower, exist-
ing SRAM-based proposals incur acceptably large storage overheads
(close to OCPR and sometimes even more than OCPR as they use
tagged structures, whereas OCPR is untagged), ranging from 340KB
per rank (Graphene) to more than 2MB per rank (TWiCE).

Note that Graphene, TWiCE, and CAT require tracking struc-
tures per bank, and their total storage requirements gets doubled
when we move from DDR-4 (16 banks) to DDR-5 (32 banks). Thus,
the total SRAM overhead required for tracking is significantly large
for practical implementation, making such SRAM-based tracking
solutions unappealing at ultra-low thresholds.

2.5 DRAM-Based Tracking
The SRAM overheads associated with tracking can be reduced if
we can place the tracking metadata within the addressable space
of the DRAM array, as proposed in CRA [16]. CRA maintains a
dedicated table of per row counters in a reserved portion of the
memory space. These counters can be read (and written) by the
memory controller using regular 64-byte fetches from the reserved
region. To reduce the memory accesses for counter updates, CRA
uses a metadata-cache (default size of 32KB). The metadata caches
have a similar organization as a conventional cache and retain the
memory lines corresponding to the recently activated rows.

Unfortunately, even in the presence of metadata-cache, CRA
experiences a significant number of extra accesses for fetching
counter lines because of poor spatial locality and large footprint of
accessed rows. Figure 2 shows the normalized performance of CRA
compared with a system that does not do any tracking, as the size
of the metadata cache is varied from 64KB to 256KB. CRA results
in an average slowdown of 25.8% (for 64KB cache) to 16.8% (for
256KB cache). Such a high slowdown incurred by CRA makes it
unappealing for practical adoption in future systems.

2.6 Goal of our Paper
At 𝑇𝑅𝐻 of 500 or lower, existing SRAM-based tracking solutions in-
cur significant storage overheads. Whereas DRAM-based tracking
incurs significant performance overhead (although this overhead is
not dependent on the 𝑇𝑅𝐻 ). Ideally, we want the performance of
SRAM-based tracking and the low SRAM-overheads of the DRAM-
based tracking. The goal of this paper is to develop such a scalable
solution that can mitigate RH at ultra-low thresholds while incur-
ring low SRAM (≤ 64KB) and performance (≤ 1%) overheads. Before
we describe our solution, we present our evaluation methodology.

3 EVALUATION METHODOLOGY
3.1 Simulation Framework
We use USIMM [6], a detailed memory system simulator, for our
studies. We modified USIMM to enforce the JEDEC DDR4 protocol
with parameters from industrial 16Gb x8-DRAM chips. We use the
DRAM-based power model provided by Micron [22]. Our mem-
ory controller accurately models refreshes, activations, precharges,
read and write timings. It also prioritizes read requests over write
requests. Table 2 shows the configuration for our baseline system.
For each bank, 1.36 million activations are possible in 64ms.

Table 2: Baseline System Configuration
Cores (OoO) 8 @ 3.2GHz
ROB size 160

Fetch and Retire width 4
Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory size 32 GB – DDR4
Memory bus speed 1.6 GHz (3.2GHz DDR)
T𝑅𝐶𝐷 -T𝑅𝑃 -T𝐶𝐴𝑆 14-14-14 ns
T𝑅𝐶 and T𝑅𝐹𝐶 45ns and 350 ns

Banks x Ranks x Channels 16 x 1 x 2
Size of row 8KB
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3.2 Workload Characterization
We evaluate our design using a total of 36 workloads derived
from SPEC2017 [1], PARSEC [5], and GAP [24] benchmarks. The
SPEC2017 and GAP benchmarks are traced using pintools and sim-
points. We use the PARSEC benchmarks provided with USIMM.
We also include the Giga Updates Per Second (GUPS) kernel in our
study, as it is known to stress the memory system by continuously
accessing random locations in the large working set. We run these
workloads in rate mode and continue executing these benchmarks
until all eight cores complete 250 million instructions each.

Table 3 shows the key characteristics of our workloads, including
the LLC-Misses Per 1000 Instructions (MPKI-LLC) and three sta-
tistics, which are gathered over a window of 64ms (and averaged):
the number of unique rows (Unique Rows) touched, the number of
rows that receive more than 250 activations (ACT-250+), and the
average number of activations per row touched (ACTs Per Row).

Table 3: Workload Characteristics (for 8-core, 32GBmemory)
(* denotes statistics gathered every 64ms and averaged)

Workload MPKI Unique ACT-250+ ACTs Per
LLC Rows* Rows* Row*

bwaves 39.6 77.9K 0 38.6
parest 27.6 13.8K 5,882 237

fotonik3d 25.9 212K 0 17.5
lbm 25.6 41.8K 0 82.1
mcf 20.8 112K 0 28.8

omnetpp 9.75 312K 195 10.7
roms 9.15 115K 1,169 22.9
xz 5.87 102K 1,755 26.4

cam4 3.23 45.5K 5 54.1
cactuBSSN 3.20 24.6K 4,609 107
xalancbmk 1.61 60.8K 0 49.8
blender 1.52 52.4K 2,288 58.7
gcc 0.65 144K 159 18.0
nab 0.61 61.9K 0 31.9

deepsjeng 0.29 802K 0 1.78
x264 0.28 25.0K 0 34.0
wrf 0.27 19.3K 18 20.9
namd 0.26 24.7K 0 34.9
imagick 0.16 10.7K 0 19.1
perlbench 0.09 25.6K 0 5.88

leela 0.03 0.72K 0 2.68
povray 0.03 0.50K 0 2.28
face 13.2 49.3K 171 42.5
ferret 4.93 48.6K 1,206 47.6
stream 4.51 43.3K 997 36.8
swapt 4.14 43.2K 1,023 38.4
black 4.12 48.8K 937 36.2
freq 3.65 56.5K 1,213 34.9
fluid 2.41 90.8K 858 26.0
bc_t 84.6 231K 9 13.9
bc_w 58.3 129K 0 18.2
cc_t 43.5 192K 0 16.7
pr_t 30.0 113K 0 18.2
pr_w 28.6 98.7K 0 19.5
cc_w 16.9 93.2K 0 16.6
GUPS 3.85 69.1K 0 31.4

4 HYDRA: ENABLING HYBRID TRACKING
To enable efficient tracking at ultra-low 𝑇𝑅𝐻 , we propose Hydra,
a hybrid tracker for mitigating RH, that provides both low SRAM
overheads (few tens of KBs) and low performance overheads (less
than 1% on average). In this section, we first analyze the scaling
of SRAM-based trackers, then provide the intuition that helps us
develop an efficient solution, and finally, the design of Hydra. For
the purpose of this paper, we showcase a design of Hydra that is
implemented within the memory controller(s).

4.1 Scaling Challenge for SRAM Trackers
We analyze the reason behind the explosion in storage overhead as
the Row-Hammer Threshold (𝑇𝑅𝐻 ) reduces. Based on the DRAM
timing (45ns per activation), an attacker could inflict a maximum
of 1.36 million activations at each DRAM bank. For 𝑇𝑅𝐻 of 500, the
attacker could thus have 2720 rows that could reach𝑇𝑅𝐻 . Thus, even
an idealized tracker (that a priori knew which rows would reach
𝑇𝑅𝐻 ) would need to track at least 2720 rows per bank. Graphene [23],
the current best-known tracker, needs approximately double the
number of entries3 requiring 5441 entries per bank, or 87K entries
across 16-banks in the rank, leading to 340KB of tracking storage,
which is a significant barrier for commercial adoption.

Furthermore, Graphene requires CAM structures, as it needs to
look up all the 5.5K entries (of the given bank) for updating the
tracker state on each activation, and such large CAM structures
are considered well beyond the practical limits. Trackers that do
not use CAM require even more storage overhead. If the trackers
are not provisioned with a sufficient number of entries, then an
adversary can thrash the structures to escape detection [10].

4.2 Insights to Enable Efficient Tracking
To develop a solution that requires only a small amount of SRAM
overheads (few tens of kilobytes) and low performance overhead,
we exploit two observations. First, typical workloads tend to have
only a small number of the rows that receive hundreds of activations
(within the refresh period of 64ms). As shown in Table 3, within
a refresh interval of 64ms, workloads can access several hundreds
of thousands of rows (maximum 802K for deepsjeng), however,
relatively few rows (maximum 5882 for parest) encounter more
than 250 row activations. Thus, the vast majority of the rows re-
ceive only a few activations and tracking aggregate counts for such
rows may be sufficient, thus avoiding the SRAM and performance
overhead associated with per-row tracking. Second, we could pro-
vision the per-row SRAM tracking resources to handle only few
thousand rows that are heavily accessed, while relying on a backup
tracking (stored in DRAM-array) for providing guaranteed track-
ing resources for the workloads for which the on-chip resources
are insufficient. Based on these insights, our solution is designed
to perform Hybrid-Tracking, thereby combining the best of both
SRAM-Tracking (low performance overhead) and DRAM-Tracking
(low SRAM overhead and ability to track any number of rows).

3Graphene requires further doubling of tracker state due to periodic reset which cause
loss of tracking information. An attacker can make (𝑇𝑅𝐻 −1) accesses each before and
after the reset, so 2 · (𝑇𝑅𝐻 − 1) accesses within 64ms without triggering a mitigation.
To avoid the vulnerability due to the reset, Graphene operates the tracker at𝑇𝑅𝐻 /2.
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4.3 Hydra: Overview and Organization
Figure 3 shows the overview of Hydra. Hydra splits tracking into
two parts. First, aggregated tracking at the granularity of a group
of rows, using an SRAM-based Group-Count Table (GCT). Second,
per-row tracking, using the Row-Count Table (RCT), which is stored
in the DRAM memory space and cached on-chip in a specialized
Row-Count Cache (RCC).

We define 𝑇𝐻 as the tracking threshold of Hydra (note 𝑇𝐻 may
be lower than 𝑇𝑅𝐻 ). Hydra is designed to issue mitigation when
the count associated with any row reaches 𝑇𝐻 . We define𝑇𝐺 as the
tracking threshold of GCT, where 𝑇𝐺 < 𝑇𝐻 . The activation count
of a row can be tracked in an aggregated manner (considering
other rows in the group) by the GCT only until 𝑇𝐺 . For tracking
the activation counts beyond 𝑇𝐺 , the row gets a dedicated per-
row entry in the RCT (cached on-chip in the RCC). Thus, Hydra
dedicates the per-row tracking resources only when the GCT is
insufficient. Unless specified otherwise, we use 𝑇𝐻 = 250 and 𝑇𝐺 =
200 to mitigate RH at 𝑇𝑅𝐻 of 500 (default).

Memory Controller Main Memory

DRAM Address
Space

Row-Count
Table (RCT)

Write Queue

Read Queue

Row-ID

Group-Count Table 
(GCT)

Row-Count Cache 
(RCC)

Figure 3: Overview of Hydra. Hydra splits tracking into two
parts (a) aggregated tracking using GCT (b) per-row tracking
using RCT (cached in RCC).

4.4 Structures
Group-Count Table (GCT): The purpose of the GCT is to effi-
ciently filter away row count updates for the vast majority of the
rows that have only a few activations. The GCT is organized as an
untagged table of counters (each sized to count up to 𝑇𝐺 ). Given
that the GCT has much smaller number of entries than the total
number of rows in the memory, it is indexed by a subset of bits in
the row address. All the rows that map to the same entry of the
GCT form the Row-Group. Thus, each GCT-entry maintains only an
aggregated count over all the rows in the row-group. For example,
our baseline memory system is 32 GB, so it would have 4 million
rows (8KB each). We use 32K entry GCT. This means a row-group
consists of 128-rows. With 𝑇𝐺 = 200, the 32k-entry GCT can filter
updates for up-to 6.4 million activations.

Each entry in the GCT can have a value ranging from 0 to 𝑇𝐺 .
On an activation, if the GCT-entry indexed by the row is less than
𝑇𝐺 , it is incremented by one. If the GCT-entry equals𝑇𝐺 , it remains
in that state until the GCT is reset. Thus, the value 𝑇𝐺 represents
that the GCT-entry is incapable of tracking counts for all of the
rows in the row-group.

Row-Count Table (RCT):When the value of the GCT-entry in-
dexed by the row becomes𝑇𝐺 , Hydra switches from group tracking
to per-row tracking for all the rows in that group. To have the
flexibility of having an arbitrary number of per-row tracking en-
tries, Hydra maintains the per-row state in a reserved area of the
DRAM (accessible by the memory controller) in a structure called
the Row-Count Table (RCT). RCT is organized as an untagged ta-
ble of counters, with one counter for each row in memory. Each
RCT-entry is sized to count up to 𝑇𝐻 . The total size of the RCT is
quite small compared to the total memory capacity. For example,
to support 𝑇𝐻 of 250, each RCT entry must be 1-byte. Our 32GB
memory system contains 4 million rows (8KB each). So, the total
size of the RCT is 4MB (less than 0.02% of the 32GB memory space).

The RCT-entries get accessed only for the rows for which the
GCT-entry has reached 𝑇𝐺 . To maintain reliable counts, when an
access causes the GCT-entry to increment from𝑇𝐺 − 1 to𝑇𝐺 , all the
RCT-entries corresponding to that row-group are initialized to 𝑇𝐺 .
Our default design of Hydra contains 128 rows in a row-group. To
make the process of initializing the RCT-entries to𝑇𝐺 more efficient,
we use a GCT indexing such that 128 rows (with identical 7-bits of
MSB) map to the same GCT-entry.4 We ensure that the RCT-entries
of these 128 rows are resident in two consecutive memory lines (64
bytes each), therefore, the process of updating RCT-entries for a
row-group to 𝑇𝐺 requires just two line reads and two line writes to
memory. We note that the overhead for the update is negligible as
it is incurred at most once in 64ms for a row-group, and only after
the row-group has 𝑇𝐺 activations.
Row-Count Cache (RCC): As RCT is a memory-mapped struc-
ture, accesses to the RCT incur high latency. Even though the RCT
is accessed only for rows for which the GCT is insufficient, we
would still like to make the process of accessing RCT efficient, so
that heavily accessed rows do not incur the overheads of doing
extra accesses to memory. We achieve this by caching the recently
accessed RCT entries in a specialized Row-Count Cache (RCC).

Typical metadata caches for caching the information stored in
memory-mapped structures (e.g., for row-counts of CRA [16] and
encryption-counters for secure memories [8]) are organized similar
to conventional caches: they use 64-byte granularity and memory
address for tagging. Unlike these metadata caches, the RCC is orga-
nized at the granularity of a single RCT-entry (to avoid the reliance
on spatial locality in accesses to different rows in memory, as such
accesses tend to have much poor spatial locality compared to the
spatial locality found in accesses to different lines of a page) and
uses the row address for the purpose of indexing and identification
(to reduce the tagging overhead). The RCT is set-associative.

Each entry in the RCC contains a valid bit, the tag for the row-
address, and the corresponding RCT-entry (activation counts for
the row). The RCC is accessed only for rows for which the GCT
entry has reached 𝑇𝐺 . If the access to the RCC is a hit, we get the
count information for the row and we can update it locally within
4The conflicts in GCT affect the performance overhead and not the security of our
scheme (see Section 5). The mapping of rows to row-group in our default design tries
to minimize the conflicts in the GCT. We also evaluated a randomized design, whereby
the b-bit row address is passed through a b-bit block cipher and this randomized
address is used to index the GCT and the RCT. The randomization (thus the mapping
of rows to row-groups) can be changed every refresh interval (64ms) by changing the
key of the cipher. We found that such a randomized design performs within 0.1% of
the static scheme. For simplicity, we present the static design.
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(a) Access to Group-Count Table (GCT)
 [90.7% times (on average)]
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Figure 4: The three types of accesses in Hydra (a) satisfied by the GCT (b) satisfied by the RCC (c) satisfied by RCT in DRAM.

the RCC. However, if there is an RCC miss, then the memory line
storing the RCT-entry for the given row is accessed and the RCT-
entry is installed in the RCC. This install can evict a valid RCC
entry (guaranteed to be dirty if valid), in which case, we need to
update the RCT corresponding to the evicted entry. This is done
by fetching the memory line that stores the RCT entry for the row
represented by the evicted entry, updating the RCT entry of that
row with the new count, and writing back this memory line.

The RCC must be sized to accommodate the state for the rows
that have activation counts exceeding 𝑇𝐺 . Based on the characteri-
zation data in Table 3, we observe that at most a few thousand rows
have a large number of activations within the interval of 64ms. For
our default implementation of Hydra, we provision an RCC con-
taining 8K-entries (4K-entries per rank). Each RCC-entry requires
three bytes (including tag).

4.5 Working and Operation
Hydra provides a storage and performance-efficient way to track
activation counts. The request for updating the activation count
of a row can be classified into three categories based on which
structure services the request, as shown in Figure 4:

(1) The common case is that the request indexes into the GCT
and increments the GCT-entry. The GCT-entry remains less
than 𝑇𝐺 , so no further action is required. This alone is suffi-
cient for most of the requests.

(2) The request indexes into the GCT and finds that the GCT-
entry equals 𝑇𝐺 . It accesses the RCC and finds a hit. The
counter associatedwith the row is incremented. If the counter
reaches 𝑇𝐻 , a mitigation is issued, and the counter is reset.

(3) Same as (2), except that the request encounters an RCC miss.
The RCT-entry is fetched from DRAM and installed in the
RCC (any evicted entry is written back). The counter associ-
ated with the row is incremented. If the counter reaches 𝑇𝐻 ,
a mitigation is issued and the counter is reset.

The estimated row counts with Hydra can be imprecise (the
counts can be equal to or higher than the actual value). In the
best-case scenario, the GCT-entry of a given row does not get
any updates from any other row in the row-group. In this case,
the counting will be precise and a mitigation will be issued only

after 𝑇𝐻 activations. In the worst case, the row performs its first
activation after the GCT-entry for the row has already reached
𝑇𝐺 . In this case, a mitigation can be issued for the row after it
performs (𝑇𝐻 −𝑇𝐺 ) activations. However, if the row continues to
receive many activations, then Hydra will ensure that subsequent
mitigations are performed at the rate of once every 𝑇𝐻 activations,
similar to perfect tracking.

4.6 Periodic Reset and Tracking Threshold
We want to track the activation counts within a refresh period.
Therefore, every 64ms, we reset the SRAM structures (GCT and
RCC) of Hydra. Our design for Hydra lets us skip the resetting of
the RCT entries in the main memory. The hierarchical nature of
Hydra means that RCT entries will not be accessed until the GCT
entry associated with them reaches 𝑇𝐺 , and when that happens,
the RCT-entries are initialized to 𝑇𝐺 (overwriting the stale count).

After a reset of the Hydra tracker, the implicit row counts of
all the rows are zero. As this reset may not be synchronized with
refresh operations, this means that the attacker could potentially
perform (𝑇𝐻 − 1) activations to the row before the reset and (𝑇𝐻 −
1) activations after reset and still not encounter any mitigation.
Thus, resetting causes the actual threshold tolerated by Hydra to be
(2 ·𝑇𝐻 − 1). Therefore, to tolerate a Row-Hammer Threshold (𝑇𝑅𝐻 )
of 500, we set 𝑇𝐻 to be 250. This halving of effective threshold due
to reset is a phenomenon that is common to prior trackers [23].

4.7 Mitigation Policy
We note that Hydra is simply a tracking mechanism and can be
used with any mitigation policy (such as victim refresh or inserting
delay or randomized row-swap [26]). We use victim refresh as it
is more practical at ultra-low thresholds.5 The number of victim
rows (N) that get refreshed on each side can be decided based on
the Blast Radius. Given that recent attacks [11] have caused bit-flips
at a distance of two, we use a N=2 in our studies. We also assume
that the system knows the DRAM mappings, so that it can identify
the victim rows for a given aggressor to issue mitigations. This is a
common assumption that is also made in most of the prior works.

5Delay insertion becomes unviable at ultra-low threshold. For example, at𝑇𝑅𝐻 = 500
we can allow a maximum access rate of once per 128𝜇s to a row, which is almost 1000x
lower than the access rate in the baseline, possibly leading to denial-of-service.
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5 SECURITY ANALYSIS
For successful RH mitigation, Hydra must ensure that it issues
a mitigation before a threshold number of activations (𝑇𝑅𝐻 ) are
performed on a row. We define 𝑇𝑅𝐻 as the minimum number of
per-row activations to at least one row that is sufficient to cause
a bit-flip via any attack pattern (single-sided, double-sided, many-
sided, Half-Double[11] or a future attack pattern). To prove that the
tracking of Hydra is secure, we onlymake the following assumption:

A successful row hammer attack requires activating at least one
row more than 𝑇𝑅𝐻 times within a refresh period.

Hydra is reset every 64ms. We call the period between consecu-
tive reset as the tracking window. As refresh for DRAM rows occurs
in a staggered manner throughout 64 ms, a given DRAM row can
experience two tracking windows within a single refresh period of
64ms. So Hydra provides a stronger security guarantee, as follows:

Theorem-1: Hydra issues mitigation for a row (a) at or before
𝑇𝑅𝐻 /2 activations and (b) at or before each 𝑇𝑅𝐻 /2 activations
since its past mitigation in a tracking window.

We denote 𝑇𝑅𝐻 /2 as the Hydra threshold 𝑇𝐻 . We denote 𝑇𝑡𝑟𝑢𝑒
for any row as the exact or true count of its activations.

5.1 Proof of Security for Tracking by Hydra
To prove the security (Theorem 1), we analyze how the activation
counts for a potential aggressor row are tracked within the different
Hydra structures. There are three phases for any row during a
tracking window:

(1) Phase-1: Initially, when the row is tracked by a GCT entry,
until the GCT threshold (𝑇𝐺 ) is reached.

(2) Phase-2: After the GCT-entry reaches 𝑇𝐺 , when the row is
tracked by a per-row counter in the RCT, until it reaches 𝑇𝐻
(𝑇𝑅𝐻 /2) and issues a mitigation.

(3) Phase-3: After issuing the first mitigation, the RCT counter
is reset and continues tracking until the end of the tracking
window.

In Phase-1, for a given row, the GCT entry is incremented when-
ever the row has an activation or if any other row in its row-group
has an activation. Let 𝑇𝑡𝑟𝑢𝑒 be the number of activations to a given
row at any point in the tracking window. At any instant in Phase-1,
the value of its GCT-entry is always greater than or equal to the
𝑇𝑡𝑟𝑢𝑒 of any row within the row group. Therefore, at the end of
Phase-1, when the GCT-entry has a value equal to 𝑇𝐺 , we get the
following lemma:

Lemma-1: When GCT-entry of an aggressor row with true count
𝑇𝑡𝑟𝑢𝑒1 (the number of activations in Phase-1) reaches 𝑇𝐺 , the
following always holds: 𝑇𝐺 ≥ 𝑇𝑡𝑟𝑢𝑒1.

At the beginning of Phase-2, when the GCT entry reaches 𝑇𝐺 ,
the RCT-entry for all the rows in the row-group are initialized to a
value of𝑇𝐺 . Subsequently, in Phase-2, the tracking is exact: the RCT-
entry of the row is incremented only when there is an activation
for the row (the RCC is only for performance and does not affect
the accuracy of counters). We thus get the following lemma:

Lemma-2:When the RCT-entry reaches the threshold 𝑇𝐻 after
aggressor row has𝑇𝑡𝑟𝑢𝑒2 activations in Phase-2,𝑇𝐻 = 𝑇𝐺 +𝑇𝑡𝑟𝑢𝑒2,
as tracking is exact in Phase-2.

From Lemma 1 & 2, it follows that𝑇𝐻 >= 𝑇𝑡𝑟𝑢𝑒1 +𝑇𝑡𝑟𝑢𝑒2. There-
fore, if the first mitigation for an aggressor row in a tracking-
window is performed at 𝑇𝐻 = 𝑇𝑅𝐻 /2, it happens at or before when
the activation count of the row (𝑇𝑡𝑟𝑢𝑒1+𝑇𝑡𝑟𝑢𝑒2) reaches𝑇𝑅𝐻 /2. This
proves part (a) of Theorem-1.

In Phase-3, on each mitigation, the counter in RCT is reset to
0, and subsequently, the tracking continues to be exact (counter
is incremented only when the row is activated). So the RCT-entry
reaches 𝑇𝐻 again, only after 𝑇𝐻 activations for the row after the
mitigation. Therefore, if 𝑇𝐻=𝑇𝑅𝐻 /2, the aggressor row is mitigated
before performing 𝑇𝑅𝐻 /2 activations to the row. This proves part
(b) of Theorem-1, and overall the security of Hydra’s tracking.

5.2 Adaptive Attacks on Hydra
5.2.1 Attack by Exploiting the Activation from Victim Refresh. The
mitigative action of performing refreshes of victims (neighboring
aggressors) itself causes activations on victim rows. Recent Half-
Double [11] attack exploits activations arising from refreshes of
distance-1 neighbors to cause bit-flips in distance-2 neighbors. To
be resilient to such attacks, Hydra also includes any activation
encountered due to victim refresh as part of the overall activation
counts of the row.

5.2.2 Security Against Attacking Counter Rows. Given that the RCT
is stored in DRAM, an adversary may attempt Row-Hammer on
the RCT entries itself by causing rapid accesses to the RCT entries
resulting in rapid DRAM accesses. To address this, we simply use a
dedicated set of 1-byte counters in SRAM to track activations to the
RCT rows in DRAM. As the footprint of the RCT is only 4MB (512
rows), we only need 512-bytes of dedicated counters in SRAM. We
issue mitigation when these dedicated counters reach the threshold
(𝑇𝐻 ) and reset them when Hydra structures are reset.

5.3 Memory Performance Attacks
An attacker may attempt memory performance attacks on Hydra
structures. An attacker could use rapid access to random DRAM
rows to overwhelm the counters in the GCT, forcing the victim
program to use RCT entries for all DRAM activations. The attacker
may also thrash RCC, forcing the victim program to perform read-
modify-write to DRAM to increment RCT counter on DRAM acti-
vation. Thus, without the use of GCT and RCC, the victim is forced
to perform 2x extra activations for each activation in the baseline.

We note that the extra activations are not in the critical path, so
they do not directly cause latency overheads, but bandwidth over-
heads (slowdown depends on memory bandwidth). For bandwidth-
limited systems, the adversary can anyway cause performance
attacks even in the baseline by flooding the memory with requests,
and memory system isolation solutions for such problems are ap-
plicable to our design as well. Thus, the worst-case slowdown from
our design is similar in range to the ones due to row-buffer conflicts.
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6 RESULTS AND ANALYSIS
In this section, we analyze the cost-effectiveness of Hydra at track-
ing activations. Unless specified otherwise, we target a 𝑇𝑅𝐻=500,
and therefore, we use 𝑇𝐻=250 and set 𝑇𝐺=200 for Hydra. Our de-
fault design of Hydra maintains a 32K-entry GCT and 8K-entry
RCC (these structures are evenly divided across the two channels).
We will compare Hydra with the current state-of-the-art tracker
Graphene [23] (which requires 340KB per rank or equivalently a
total of 680KB across the two channels) and CRA (which is provi-
sioned with 64KB counter cache, evenly split across the two chan-
nels). We use the same mitigation policy (refresh two victim rows
on each side of the aggressor row) for all three designs.

6.1 Impact on Performance
Figure 5 shows the performance of Graphene, CRA, and Hydra,
normalized to the baseline that does not perform any row-hammer
mitigation. Graphene incurs negligible slowdown (0.1% on average)
as it performs extra activations only for mitigation. However, it
incurs high SRAM overheads. CRA requires extra accesses for the
metadata and suffers an average slowdown of 25%. Hydra incurs
an average slowdown of only 0.7%, on average. The slowdown due
to tracking of Hydra primarily comes due to any extra memory
accesses caused by counter updates to the RCT inmemory. However,
the GCT successfully filters out most of the counter updates, and the
rest are filtered by the RCC. Therefore, extra memory accesses for
tracking are significantly reduced. Only one workload (xz) shows
a slowdown of greater than 3% with Hydra.

6.2 Effectiveness of GCT at Filtering Updates
Figure 6 shows the percentage of row activations handled by each
of the three levels, namely GCT, RCC, and the RCT. On average,
90.7% of the activations are handled solely by the GCT. A large part
of the remaining activations (average 9.0%) is handled by the RCC,
and only 0.3% of the counter accesses require memory accesses.

6.3 Sensitivity to Row-Hammer Threshold
We use a default 𝑇𝑅𝐻 of 500 in our study. Figure 7 shows the slow-
down due to the tracking and mitigation with Hydra, compared to
a non-secure baseline, for 𝑇𝑅𝐻 of 250 and 125. We scale the struc-
tures of Hydra proportionally (2x and 4x). GUPS incurs significant
slowdowns at reduced𝑇𝑅𝐻 . The average slowdown of Hydra is 0.7%
at 𝑇𝑅𝐻 of 500, and it increases to 1.6% at 𝑇𝑅𝐻 of 250, and 4% at 𝑇𝑅𝐻
of 125. We note that at lower 𝑇𝑅𝐻 , it is not just the tracking but
also the mitigation activity that causes significant slowdowns.
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ISCA ’22, June 18–22, 2022, New York City, NY MoinuddinQureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J. Nair

      
  bwaves

      
  parest

     f
otonik3d

      
     l

bm

      
     m

cf

      
 omnetpp

      
    ro

ms

      
      

xz

      
    c

am4

     c
actuBSSN

     x
alancbmk

      
 blender

      
     g

cc

      
     n

ab

     d
eepsjeng

      
    x

264

      
     w

rf

      
    n

amd

      
 imagick

     p
erlbench

      
   le

ela

      
  povray

      
    fa

ce

      
  ferret

      
  str

eam

      
   sw

apt

      
   black

      
    fr

eq

      
   flu

id

      
    b

c_t

      
    b

c_w

      
    c

c_t

      
    p

r_t

      
    p

r_w

      
    c

c_w

      
    G

UPS
      

      
  

     S
PEC(22)

    P
ARSEC(7)

      
 GAP(6)

      
ALL(36)0.0

0.2
0.4
0.6
0.8
1.0

No
rm

. P
er

fo
rm

an
ce SPEC-2017 PARSEC GAP GEOMEAN

Hydra-NoGCT Hydra-NoRCC Hydra

Figure 8: Slowdown of Hydra without GCT or RCC. The average slowdown of Hydra-NoRCC is 4.5% and Hydra-NoGCT is 20%.

6.4 Relative Contribution of GCT and RCC
To analyze the relative contribution of each of the two SRAM struc-
tures (GCT and RCC), we study Hydra configurations without the
GCT and without the RCC. Figure 8 shows the performance of these
two designs and the default Hydra, all relative to the non-secure
baseline. The version without the RCC has an average slowdown
of 4.5%, however, the version without the GCT incurs an average
slowdown of 20%. Thus, the filtering due to the GCT is critical for
the effectiveness of Hydra and relying alone on RCC caching is
insufficient (without the GCT, the RCC gets thrashed by the large
number of rows that perform row activations).

6.5 Impact of GCT Size
Figure 9 shows the slowdown from Hydra as the size of the GCT is
varied from 16K to 128K. Our default design uses 32K entries, which
means each GCT entry keeps an aggregate count over a row-group
of 128 rows. If the number of GCT entries is halved, the number of
rows in the row-group doubles, which increases the rate at which
the GCT entries reach 𝑇𝐺 . With 16K-entry GCT, we observe a
significant slowdown for GUPS. GCT with 32K entries provides a
good trade-off between SRAM area cost and performance.
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Figure 9: Sensitivity of Hydra to GCT capacity.

6.6 Impact of GCT-Threshold (𝑇𝐺 )
We use a default GCT-Threshold (𝑇𝐺 ) of 200, given𝑇𝐻 of 250. Figure
10 shows the impact of varying 𝑇𝐺 on performance. If 𝑇𝐺 is a
higher fraction of 𝑇𝑅𝐻 , it prevents the GCT entries from reaching
𝑇𝐺 quickly and thus maintains the filtering effects for a longer time
(see GUPS). However, if𝑇𝐺 is closer to𝑇𝐻 , every new row, mapping
to a GCT-entry that is full, will need to perform an activation almost
immediately (hence the average for PARSEC goes up from𝑇𝐺 = 200
to 𝑇𝐺 = 237). Therefore, we select 𝑇𝐺 of 200 (80% of 𝑇𝐻 ).
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Figure 10: The effect of varyingGCT-Threshold (𝑇𝐺 ) onHydra.
𝑇𝐺 values are chosen as a percentage of 𝑇𝐻 (250).

6.7 Storage Analysis
Hydra requires SRAM storage for GCT and RCC. In addition, it
requires storage for counting the activations for rows that store
the RIT (RIT-ACT). Table 4 shows the SRAM storage overhead of
Hydra. We assume a 13-bit tag for RCC (tag reduced due to set-
associativity). The total SRAM overhead of Hydra is 56.5KB. Hydra
also requires 4MB of DRAM (less than 0.02% of the DRAM capacity).

Table 4: Storage Overhead for 32GB Memory (2 Channels)

Structure Entry-Size Entries Cost
GCT 8-bit (counter) 32K 32 KB
RCC 24-bit (valid+tag+SRRIP+ 8-bit counter) 8K 24KB

RIT-ACT 8-bit (counter) 512 0.5 KB
Total 56.5KB

6.8 Power Analysis
The power overhead of Hydra comes from two factors: (1) extra
DRAM accesses incurred to obtain the RCT entries and for per-
forming mitigation, and (2) energy spent in the newly added SRAM
structures (GCT and RCC).

To estimate the DRAM power overheads, we use USIMM [6]. We
observe that the extra memory accesses due to RCT and mitigation
cause an overhead of only 0.2% of the overall DRAM power. To
estimate the SRAMpower overheads, we use CACTI [3] (with 22 nm
technology). We observe that the SRAM structures (GCT and RCC)
required for Hydra incur a power overhead of 18.6mW (10.6mW for
the GCT and 8mW for the RCC). Overall, the power overhead of
Hydra for the DRAM accesses and SRAM structures is negligible.
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7 RELATEDWORK
The focus of our paper is hardware-based RHmitigation.We discuss
the proposals most closely related to our work.

7.1 SRAM-Based Tracking for RH Mitigation
Most of the hardware-based solutions for RH rely on tracking fre-
quently accessed rows in SRAM/CAM structures, placed either at
the memory-controller or within the DRAM chip. While such pro-
posals are quite storage efficient at 𝑇𝑅𝐻=32K (commonly used in
prior studies), they require prohibitive storage overheads at ultra-
low 𝑇𝑅𝐻 (500 or lower). Table 5 compares the storage requirement
for prior schemes for our 32GB memory (two ranks, 8KB rows) for
𝑇𝑅𝐻=500. Prior SRAM-based tracking proposals incur prohibitive
SRAM overheads. Hydra requires only 56.5 KB SRAM.

Table 5: Total SRAM Overhead for 32GB Memory (2 ranks)

Scheme DDR-4 DDR-5
(16 banks/rank) (32 banks/rank)

Graphene [23] 680 KB (CAM) 1.4 MB (CAM)
TWiCE [21] 4.6 MB 9.2 MB
CAT [28] 3 MB 6 MB
D-CBF [31] 1.5 MB 1.5 MB

Hydra 56.5 KB 56.5 KB

Comparison with D-CBF: Both D-CBF and Hydra (GCT) use
filters to identify (possibly) hot-rows, however, these two proposals
are at radically different design points. As D-CBF is a single-line
of defense, D-CBF must be over-provisioned to support extremely
low false-positive rates. Whereas, Hydra uses three lines of defense,
GCT for identifying (possibly) hot-rows, then the RCC for caching
per-row count, and RCT for providing unconstrained storage (if
both the GCT and RCC fail). Thus, Hydra can easily use a small filter
and handle overflows. Furthermore, D-CBF can support mitigation
via only delay and not victim refresh (once the entry in the filter
saturates, it stays in that state until reset). Unfortunately, inserting
a delay is not viable at ultra-low thresholds.6 Hydra can support
victim refresh as it can reset the per-row state.

7.2 DRAM-Based Tracking for RH Mitigation
The SRAM overheads associated with tracking can be avoided by
placing the counters in the DRAM array. Counter-Based Row Acti-
vation (CRA) [16] uses this technique and relies on extra memory
access to obtain the counters. CRA incurs an average slowdown of
20%. Hydra incurs less than 0.5% slowdown. Panopticon [4] proposes
to redesign the DRAM subarray to store the counter alongside the
DRAM row and increments this counter on each activation. Thus,
the design requires that each DRAM read operation internally be-
comes a read-modify-write, causing a significant change to the
memory interface protocols. Our goal is to mitigate RH without
needing to redesign DRAM arrays or the memory protocols.
6For example, at𝑇𝑅𝐻 =500, about 250 activations would go in identifying the hot-row,
and the remaining 250 activations must be spread over almost 64ms, which means the
access rate to the hot-row would get limited to once every 0.25 millisecond, which is
almost 2000× lower than the access rate possible in the baseline. We note that such
Denial-of-Service would occur even in regular workloads as we observe that several
workloads have a few thousand rows receiving 250+ activations (Table 3).

7.3 Probabilistic Methods for RH Mitigation
Probabilistic methods, such as PARA [19], provide RH protection
in a stateless manner by issuing a mitigation with a probability
(𝑝). While this is effective at high Row-Hammer Threshold (e.g.
at 𝑇𝑅𝐻 = 32K, 𝑝 < 1%), 𝑝 must be increased proportionately as
𝑇𝑅𝐻 is reduced, which causes significant performance overheads at
𝑇𝑅𝐻 of 1000 or lower [17]. MRLOC [32] and ProHIT [29] also use
probabilistic decisions, however, they are not secure.

7.4 Attacks on Row-Hammer Defenses
The recently disclosed Half-Double [11] attack causes bit-flips at
a distance of two from the aggressor row, even in the presence
of victim refreshes. This type of failure can be attributed to two
reasons: (1) a relatively smaller (but non-zero) charge leakage at
a distance of two from each aggressor activation (b) the charge
leakage at a distance of two due to the victim refreshes at the
immediate neighbor. For our studies, we refresh two neighbors on
each side, and include the activations due to mitigation as part of
activation counts for each row. For example, Half-Double requires
about 300K hammers on one of the rows. In our default design,
this would issue 1200 mitigations for the row under attack, which
in turn would issue 4 mitigations for the rows that receive these
mitigations. Therefore, our design is resilient to such an attack.

To mitigate RH, the DRAM industry developed Target Row Re-
fresh (TRR). A recent attack, TRRespass [10], exploits the fact that
TRR keeps track of only a small number of aggressor rows and
breaks TRR by issuing many requests. Thus, it is important to size
the tracking structures considering the worst-case access pattern.
Hydra provides low-cost storage for an arbitrary number of rows
thus avoiding such attacks that thrash the trackers.

Hydra assumes that the designer knows the 𝑇𝑅𝐻 of the mem-
ory device, however, if the memory chip has lower 𝑇𝑅𝐻 than the
specified value, this could lead to breakthrough attacks even in
the presence of RH mitigation. Such breakthrough attacks can be
detected using low-cost integrity protection [9, 25].

8 CONCLUSION
Even after several years of research and promises by the memory
vendors, Row-Hammer (RH) continues to be a persistent prob-
lem. In this paper, we study RH mitigations at thresholds of a few
hundred DRAM row activations. To the best of our knowledge,
currently there is no known method to efficiently track the row
activation counts at such thresholds without incurring either pro-
hibitive SRAM storage (with SRAM-based tracking) or performance
overhead (with DRAM-based tracking). In this paper, we propose
Hydra, a hybrid tracker for mitigating RH, that combines the best
of both worlds – low performance-overhead of SRAM trackers and
low SRAM-overheads of the DRAM trackers. Hydra splits the task
of tracking into two parts: SRAM for aggregate counting over a
group of rows and DRAM for per-row counting when the aggre-
gated count is insufficient. To mitigate 𝑇𝑅𝐻 of 500 for our 32GB
memory system, Hydra requires only 56.5 KB SRAM and the aver-
age performance overhead of only 0.7%. While we evaluate Hydra
using the mitigating action of victim-refresh, it can also be used
with other mitigating actions, such as rowmigration [26]. Exploring
such extensions is a part of our future work.
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