
Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching
Suhas Vittal

suhaskvittal@gatech.edu
Georgia Tech
Atlanta, USA

Poulami Das
poulami@gatech.edu

Georgia Tech
Atlanta, USA

Moin Qureshi
moin@gatech.edu
Georgia Tech
Atlanta, USA

ABSTRACT
Quantum devices suffer from high error rates, which makes them
ineffective for running practical applications. Quantum computers
can be made fault tolerant using Quantum Error Correction (QEC),
which protects quantum information by encoding logical qubits
using data qubits and parity qubits. The data qubits collectively
store the quantum information and the parity qubits are measured
periodically to produce a syndrome, which is decoded by a classical
decoder to identify the location and type of errors. To prevent errors
from accumulating and causing a logical error, decoders must accu-
rately identify errors in real-time, necessitating the use of hardware
solutions because software decoders are slow. Ideally, a real-time de-
coder must match the performance of the Minimum-Weight Perfect
Matching (MWPM) decoder. However, due to the complexity of the
underlying Blossom algorithm, state-of-the-art real-time decoders
either use lookup tables, which are not scalable, or use approximate
decoding, which significantly increases logical error rates.

In this paper, we leverage two key insights to enable practical
real-time MWPM decoding. First, for near-term implementations
(with redundancies up to distance 𝑑 = 7) of surface codes, the Ham-
ming weight of the syndromes tends to be quite small (less than or
equal to 10). For this regime, we propose Astrea, which simply per-
forms a brute-force search for the few hundred possible options to
perform accurate decoding within a few nanoseconds (1ns average,
456ns worst-case), thus representing the first decoder to be able to
do MWPM in real-time up-to distance 7. Second, even for codes that
produce syndromes with higher Hamming weights (e.g. 𝑑 = 9) the
search for optimal pairings can be made more efficient by simply
discarding the weights that denote significantly lower probability
than the logical error-rate of the code. For this regime, we propose
a greedy design called Astrea-G, which filters high-cost weights and
reorders the search from high-likelihood pairings to low-likelihood
pairings to produce the most likely decoding within 1`s (average
450ns). Our evaluations show that Astrea-G provides similar logical
error-rates as the software-based MWPM for up-to 𝑑 = 9 codes
while meeting the real-time decoding latency constraints.

CCS CONCEPTS
• Computer systems organization→ Quantum computing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589037

KEYWORDS
Quantum error correction, Error decoding, Real-time decoding

ACM Reference Format:
Suhas Vittal, Poulami Das, and Moin Qureshi. 2023. Astrea: Accurate Quan-
tum Error-Decoding via Practical Minimum-Weight Perfect-Matching. In
Proceedings of the 50th Annual International Symposium on Computer Archi-
tecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3579371.3589037

1 INTRODUCTION
Quantum computers promise significant speedup over conventional
computing systems for many important application domains, such
as quantum chemistry and crypto-analysis [8, 12, 20, 25, 29, 30, 37,
42, 43, 47, 49, 53]. However, the high error rates of the quantum
devices limit us from running most practical quantum applications.
Quantum Error Correction (QEC) enables fault-tolerant quantum
computations by encoding a logical qubit using several physical
qubits [5, 10, 11, 17, 22, 28, 36, 41, 52]. If the physical error-rate is
lower than a certain threshold, then the error-rate of a logical qubit,
or the logical error rate decreases exponentially with increasing
redundancy or distance (𝑑) of the QEC code. With increasing system
sizes and improving device qualities, there are growing interests
in enabling QEC codes on real quantum hardware. For example,
Google recently demonstrated exponential suppression of errors
using a limited form of 𝑑 = 5 code [1]. Scaling QEC codes and
fault-tolerant operations for larger distances (𝑑 = 7 and 𝑑 = 9) are
significant milestones for quantum computing in the near term.

This paper focuses on surface code, which is widely regarded as
the most promising QEC code due to its high threshold and sim-
ple grid structure [17, 22, 36]. The surface code encodes a logical
qubit using an alternating lattice of data and parity qubits. The
data qubits collectively store the quantum state, whereas the parity
qubits detect errors on the data qubits. During program execution,
QEC operations are interleaved between the program instructions.
As shown in Figure 1(a), the control processor sends QEC instruc-
tions to perform syndrome extraction, a process during which parity
qubits interact with their neighboring data qubits to extract infor-
mation about errors. Errors result in failed parity checks which
are obtained when the parity qubits are measured to generate a
syndrome. The syndrome, which is a bitstring of 0s and 1s, is sent to
a classical decoder that uses it to identify errors on the data qubits.
Finally, the decoder sends a logical correction to reverse the errors
that have occurred on the data qubits and the control processor
updates its future operations.

The logical error rate depends on the physical error rate and the
decoder performance [22]. Decoders must decode syndromes in

https://doi.org/10.1145/3579371.3589037
https://doi.org/10.1145/3579371.3589037

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

Logical Qubit
(b)

P

D

D D

D

P

D

D
P

D

D

Correction

Instructions
Syndrome

Control
Processor Decoder

MWPM Logical
Error Rate

(c)

Ignore

(d)

Easy
To Decode

AFS

Latency

Ac
cu

ra
cy Clique+

MWPM

NISQ+

Goal

(a)

Figure 1: (a) Overview of quantum error correction (b) Trade-off between the accuracy and latency of various decoders (c)
The first insight (used in Astrea) is that syndromes with low hamming-weights can be decoded easily in hardware and high
hamming-weight syndromes with probability higher than the logical error rates can be ignored without impacting accuracy. (d)
The second insight (used in Astrea-G) is that not all pairings are created equal – pairings whose weight denotes a significantly
lower probability than the logical error rate can be ignored, leading to a significantly more efficient search.

real-time, typically within a microsecond on existing quantum com-
puters, such as Google Sycamore [3], to prevent the accumulation
of errors. Moreover, syndromes are imperfect due to operational er-
rors that occur during syndrome extraction. To tolerate these errors
and assess errors more accurately, decoders must decode 𝑑 syn-
drome rounds simultaneously for a code of distance 𝑑 in real-time.
The decoding problem can be reduced to a graph matching prob-
lem, where nonzero syndrome bits across 𝑑 syndrome extraction
rounds are uniquely paired with each other to create a matching.
Each pair of syndrome bits have a weight that corresponds to the
probability that errors will cause the associated parity checks to
fail: a lower weight indicates a higher probability. Thus, pairing up
syndrome bits to find aMinimum-Weight Perfect Matching (MWPM)
corresponds to finding the highest probability error event given 𝑑

syndromes. The MWPM decoder is the state-of-the-art decoder for
surface codes owing to its high accuracy, as computing the MWPM
guarantees the highest probability error event [17, 22]. Ideally, we
want to achieve the accuracy of MWPM in real-time.

Unfortunately, software MWPM decoders [31, 32, 38] are too
slow for real-time decoding because the underlying Blossom algo-
rithm for obtaining the MWPM is quite complex [18, 19]. Note that
in superconducting quantum systems, such as Google Sycamore,
the qubits reside at few milli-Kelvins inside a dilution refrigerator.
Transmitting the syndromes to general-purpose processors outside
the cryogenic setup, running the software MWPM decoder, and
then sending the logical correction back to the control processor is
too constrained to be done within a few microseconds. To meet this
latency constraint, recent works (e.g. AFS [14]) sacrifice accuracy by
using approximate algorithms. However, this increases the logical
error rate compared to MWPM (almost 200× for AFS), especially in
the regime of physical error rates of 10−3 to 10−4, which represents
the target qubit quality in the next few years. LILLIPUT [13] uses
lookup-tables for decoding, but the memory overheads of this de-
sign grow significantly, causing it to be limited to 𝑑 = 5 with only
two rounds of syndromes, thus making it impractical for larger
codes. Other prior decoders, such as Clique and NISQ+, are not
only inaccurate but also rely on emerging technologies, making
them impractical for adoption on near-term FTQCs [33, 48, 58, 60].
As shown in Figure 1(b), the goal of this paper is to enable real-time

and accurate decoding of surface codes in the near term (𝑑 = 7 and
𝑑 = 9) while relying on commodity hardware (e.g. FPGAs). This en-
ables seamless adoption as FPGAs are currently used to design the
control and readout circuitry in most near-term quantum systems.

We develop and design a practical real-time decoder by focusing
on the Hamming weight (HW) or the number of 1s in the syndrome
vector (the concatenation of all syndromes generated across the 𝑑
rounds). The Hamming weight of the syndrome vector determines
the complexity of the MWPM. For example, if the Hamming weight
is four, then we are looking for pairings corresponding to four
nodes, which has only six possibilities and can easily be done via a
brute-force search. Our key insight is that most syndrome vectors
have low Hamming weights. For example, syndrome vectors of
weight greater than 10 occur with a probability lower than the
logical error rate (6 × 10−9) in a 𝑑 = 7 surface code at a physical
error rate of 10−4 (default). Our proposed design, Astrea, focuses
on brute force searching for syndrome vectors of weight up-to
10 and ignores decoding higher Hamming weight syndromes (as
not decoding them is unlikely to impact the logical error rate), as
shown in Figure 1(c). Astrea uses a hardware circuit (HW6) that
can match up-to 6 nodes (15 possible pairings) and uses this to
decode syndromes with Hamming weight of 8 (105 matchings,
resulting in 7 accesses to the HW6 circuit) and Hamming weight
of 10 (945 matchings, resulting in 63 accesses to the HW6 circuit).
Astrea accomplishes the goal of accurate real-time decoding for
𝑑 = 7 surface codes with average and worst-case latencies of 1ns
and 456ns respectively when implemented on standard off-the-shelf
FPGAs from Xilinx. To the best of our knowledge, Astrea is the first
practical decoder that achieves MWPM accuracy while decoding for
up-to 𝑑 = 7 surface codes in real-time.

The Hamming weight of a syndrome depends on the physical
error rate and the distance of a code. At higher error rates or code
distances (e.g. 𝑑 = 9), we observe Hamming weights up-to 20.
Unfortunately, Astrea’s exhaustive search is infeasible for such large
Hamming weights due to an exponential increase in the number of
possible matchings. For example, a syndrome of Hamming weight
20 has 6.5 × 108 possible matchings.

To decode such syndromes, we propose Greedy-Astrea or Astrea-
G which greedily searches for the MWPM by (1) restricting the

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Z X Z X Z

Z X Z X Z

Z X Z X Z

Z X Z X Z

X X

X X

D
D
D
D

P HH M
X Stabilizer Extraction

D
D
D
D

P M
Z Stabilizer Extraction

R

R

(a)

A

B

C

D

E

Data Stabilizers

Chain α

Chain β

Z Decoding Graph

(b)

0 3 7
2 6 10

1 5 9
4 8 11

M

X

X
X

M

12 15 19
14 18 22

17 21
16 20 23

13

Minimum Weight Perfect Matching

0

1

12 16

5

7

Figure 2: (a) A distance 5 surface code and the syndrome extraction circuits for each stabilizer. (b) Example of decoding 𝑍

stabilizer measurements from a distance 5 surface code using MWPM decoding. Two rounds are shown for simplicity (𝑑 rounds
are needed in practice). The corresponding MWPM is also shown on the right.

search space and (2) searching for the MWPM greedily. Astrea-G
leverages the insight that although a syndrome bit has𝑤−1 possible
pairings for a Hamming weight𝑤 , only about two to three of them
have low weights (thus occurring with probability higher than the
logical error rate). These low-weight pairs have the highest proba-
bility of appearing in theMWPM. The remaining pairings have high
weights and have a very low likelihood of appearing in the MWPM
and can be ignored, as shown in Figure 1(d). Astrea-G performs
an efficient search by (1) filtering out high-weight pairs to reduce
the search space and (2) prioritizing low-weight pairs during the
matching step. Our evaluations with Google’s Stim framework [24]
shows that Astrea-G provides a logical error rate similar to the
software-based MWPM (ideal setting), for up-to 𝑑 = 9 codes (with
physical error rates between 10−3 to 10−4), while meeting the real-
time target latency of 1`s (average is 450ns). Similar to Astrea,
Astrea-G also can be implemented using off-the-shelf Xilinx FPGAs,
making it a practical, low-cost solution for near-term FTQCs.

Overall, this paper makes the following contributions:

(1) We show that efficient MWPM is possible by focusing on the
Hamming weight of the syndrome vector – low Hamming weight
syndromes are common and easy to decode.

(2) We propose Astrea, a real-time decoder that uses exhaustive
search to perform MWPM for surface codes up to distance 7. To
the best of our knowledge, this is the first real-time decoder that
achieves the accuracy of MWPM at 𝑑 = 7.

(3) We show that the search can be made even more efficient by ex-
ploiting the non-uniformity in weights and eliminating matchings
that have higher weights (based on the logical error rate).

(4) We propose Astrea-G that performs MWPM greedily by re-
stricting the search and works even at 𝑑 = 9. To the best of our
knowledge, Astrea-G is the first real-time decoder that provides
comparable accuracy as the MWPM decoder at 𝑑 = 9.

2 BACKGROUND AND MOTIVATION
2.1 Quantum Error Correction and Surface Code
Many promising quantum applications require error rates orders of
magnitude lower thanwhat we expect to achieve on future quantum
devices [8, 12, 25, 29, 30, 37, 49, 53]. To close this gap, we expect
to use Quantum Error Correction, which involves encoding logical
qubits from constituent data and parity qubits. Google’s recent
success in demonstrating a distance 5 surface code has established
the surface code as a leading candidate for QEC [1]. In this paper, we
focus on real-time decoding for the surface code in the near-term.

Surface codes encode a logical qubit of distance 𝑑 in a lattice of
𝑑2 data qubits and 𝑑2 − 1 parity qubits, as shown in Figure 2(a) [17,
22, 36, 57]. Table 1 shows the redundancy for surface codes. Any
error on a data qubit can be projected into a combination of Pauli
errors (𝐼 , 𝑋,𝑌 , 𝑍) and are detected by its adjacent parity qubits by
measuring a 4-qubit operator, called a stabilizer. Qubits encounter
bit-flip (𝑋) or phase-flip (𝑍) or a combination of both (𝑌) errors. 𝑋
errors are detected by 𝑍 stabilizers, and 𝑍 errors are detected by
𝑋 stabilizers. The number of errors determines the length of an
error chain. A distance 𝑑 code can correct all error chains of at most
length ⌊𝑑−12 ⌋. For example, in Figure 2(a), 𝑍 errors on data qubits
A and B cause a correctable chain 𝛼 with length 2, whereas the 𝑋
errors on data qubits C , D , and E cause an uncorrectable chain 𝛽

with length 3. Irrespective of its length, an error-chain flips at most
two syndrome bits flip at its endpoints.

Table 1: Resources required for surface code logical qubits

Code Number of Physical Qubits Syndrome Vector
Distance Data Parity (𝑋 + 𝑍) Total Length (𝑋 / 𝑍)

3 9 4 + 4 = 8 17 16 / 16
5 25 12 + 12 = 24 49 72 / 72
7 49 24 + 24 = 48 97 192 / 192
9 81 40 + 40 = 80 161 400 / 400

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

2.2 MinimumWeight Perfect Matching
(MWPM) Decoding

Decodersmust identify (1) errors that accumulate on data qubits and
(2) errors in syndrome extraction operations, namely measurement,
reset, and gate errors [13, 14, 22]. Data qubit errors manifest as failed
parity checks in the same round, whereas errors during syndrome
extraction result in failed parity checks across consecutive rounds.
At distance 𝑑 , a decoder must decode 𝑑 consecutive syndromes
simultaneously to tolerate error chains of up to length ⌊𝑑−12 ⌋ caused
by syndrome extraction in order to preserve the properties of the
code.We refer to the collective syndrome from𝑑 consecutive rounds
as syndrome vector, which is used by a decoder.

Surface code decoding can be reduced to a Minimum Weight
Perfect Matching (MWPM) problem on a fully-connected weighted
graph. Given a syndrome 𝑆 with nonzero bits 𝑠1, ..., 𝑠𝑘 , we construct
a complete graph with 𝑠1, ..., 𝑠𝑘 as vertices. Each edge (𝑠𝑖 , 𝑠 𝑗), 𝑖 ≠ 𝑗

has a weight based on the probability of an error chain causing
both bits, 𝑠𝑖 and 𝑠 𝑗 , to flip; a higher weight indicates lower prob-
ability. Then, to decode the syndrome 𝑆 , we match each 𝑠𝑖 with
a unique 𝑠 𝑗 to create a perfect matching 𝑀 which minimizes the
aggregated weights of the pairings. For each (𝑠𝑖 , 𝑠 𝑗), errors are cor-
rected using the shortest path between the parity qubits for 𝑠𝑖 and
𝑠 𝑗 . Consequently, 𝑀 corresponds to the highest probability error
event that would result in the given syndrome. Finally, to toler-
ate measurement and gate errors, the shortest path travels across
multiple rounds. If 𝑘 is odd, then one syndrome bit 𝑠𝑏 is matched
to the boundary of the surface code lattice. 𝑋 syndromes and 𝑍

syndromes are decoded independently.
We explain the functionality of MWPM decoding using Fig-

ure 2(b). In the 𝑍 decoding graph spanning two rounds of a distance
5 surface code, there are 6 flipped𝑍 stabilizers, so we have 3 pairs in
the matching. The stabilizers are translated into a weighted graph,
where MWPM is performed. Then, the shortest paths between each
matched pair are used to identify any errors that have occurred.

Unfortunately, existing software implementations of MWPM
such as BlossomV and PyMatching are too slow to decodewithin the
worst-case 1`s time constraint [31, 32, 38]. For example, BlossomV
cannot decode about 96% of nonzero syndromes within 1`s for a
𝑑 = 7 code, as shown in Figure 3.

� � 	
 � �
��������������������

�

��

	�

��
��

��
���
��
���

�

96% Uncorrectable in
Real-Time (>1μs)

Figure 3: Decoding latencies of MWPM decoding using Blos-
somV [38], a software implementation (96% of syndromes
cannot be decoded in real-time).

2.3 Prior Works on Hardware-Based Decoding
As existing software MWPM implementations are slow, few prior
works propose hardware approaches. Unfortunately, these designs
do not scale and thus, there has been a paradigm shift towards
building approximate decoders that trade off accuracy for latency.

2.3.1 Theoretical MWPM using ASICs. Fowler suggested MWPM
using ASIC arrays [21] but this design is impractical due to the
complexity of implementing the BlossomV algorithm in hardware.

2.3.2 Lookup-Table MWPM. LILLIPUT uses MWPM to program
lookup tables that can be indexed using a syndrome to identify a
logical correction [13, 57]. However, they are not scalable due to
exponentially increasing memory costs and are not usable beyond
distance 5 decoded with 2 rounds only.

2.3.3 Approximate Decoders. They trade-off accuracy to decode
syndromes in real time [14, 33, 34, 51, 58, 60]. For example, the
AFS decoder uses the fast and simple Union-Find (UF) algorithm to
decode syndromes [16]. However, the UF algorithm is less accurate
than MWPM [18, 19], resulting in 100×-1000× worse logical error
rates as shown in Figure 4. Superconducting decoders like NISQ+,
QECOOL, QULATIS make the same trade-offs but worsen accuracy
even further as they consider fewer than 𝑑 syndrome rounds [33,
58, 60]. Moreover, these designs rely on emerging technologies and
therefore, are impractical for near-term FTQCs.

2.3.4 Hierarchical Decoders. They classify error events into two
types and use a separate decoder for each: small-events with few
non-zero syndrome bits that are easy to decode and large-events
otherwise that are hard to decode [9, 15, 48, 54]. Unfortunately,
although small-event decoders can quickly decode a subset of syn-
dromes, the overall performance is still limited by the large-event
decoder, typically a software MWPM decoder. Also, the logical error
rate worsens due to the inaccuracies of small-event decoders [9, 48].
These glaring issues limit the applicability of hierarchical decoders.

3 5 7 9 11
Code Distance

10−11

10−9

10−7

10−5

Lo
gi

ca
l E

rro
r R

at
e

MWPM
AFS
Clique+MWPM

Figure 4: Logical error rate of MWPM, AFS, and Clique de-
coders for increasing distance at a physical error rate 𝑝 = 10−4.
MWPM and Clique+MWPM are not real-time decoders.

Goal: Real-Time Decoding with Accuracy of MWPM

Our goal is to design a practical decoder that decodes surface codes
of distance 𝑑 using 𝑑 rounds of syndromes in real-time using com-
modity hardware while achieving MWPM accuracy.

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

3 EVALUATION METHODOLOGY
We discuss the evaluation methodology before discussing our in-
sights and proposed design.

3.1 Surface Code Parameters
We consider rotated surface codes up-to distance 9 which indicates
a target regime for the next few years. The largest demonstrated sur-
face code till date corresponds to distance 5 on Google Sycamore [1].

3.2 Noise Model
In this paper, we consider physical error-rates 𝑝 up-to an order of
magnitude lower than the surface code thresholds, which represents
an achievable and target device quality on near-term quantum
computers. Thus, 𝑝 ranges between 10−3 to 10−4. We consider a
circuit-level noise model where depolarizing (𝑋 , 𝑌 , 𝑍) errors are
inserted with a probability 𝑝 (1) on data qubits at the beginning of
every round, (2) on data and parity qubits after syndrome extraction
operations, and (3) on parity qubits after measurement and reset
operations. This enables us to account for errors during syndrome
extraction in addition to errors on data qubits. We also select this
error model as it better reflects real-world devices [22, 24, 27, 40, 41].

3.3 Baseline: Software BlossomV
implementation of MWPM

We use an MWPM decoder implemented using the BlossomV algo-
rithm as our baseline as it is often regarded as the gold-standard
for decoding surface codes [2, 13, 14, 33, 38, 48, 50, 56, 58, 60].

3.4 Simulation Infrastructure
We use a cycle-accurate simulator integrated with Google’s Stim
framework [24], a state-of-the-art Monte Carlo QEC simulator used
in prior works [4, 6, 26, 27, 61], to perform state-preservation, or
memory experiments, which are used to evaluate the logical error
rate of a decoder [2, 11, 13, 14, 33, 50, 56, 58, 60]. In each experiment,
we (1) prepare an initial state, (2) inject errors for 𝑑 syndrome
extraction rounds, (3) measure the 𝑑2 remaining data qubits to
perform a logical measurement. This results in 𝑑 (𝑑2 − 1) syndrome
bits for the 𝑑 syndrome extraction rounds and an additional 𝑑2 −
1 bits to account for any measurement errors during the logical
measurement. Memory experiments can be categorized as 𝑍 and 𝑋
experiments. While both are necessary to evaluate the performance
of a QEC code, they are functionally equivalent because the noise
model is identical for 𝑋 and 𝑍 errors [7, 13, 14, 22, 33, 48, 58, 60].
We consider 𝑍 memory experiments, which involve initializing the
logical qubit in the |0⟩ state, measuring 𝑍 stabilizers for 𝑑 rounds,
and measuring the logical qubit in the computational (𝑍) basis.

During each experiment or trial, Astrea receives a syndrome
every 1`s which is the syndrome extraction latency on Google
Sycamore. After 𝑑 rounds, where 𝑑 is the code distance, Astrea
applies its correction to the logical qubit and measures the logical
state. Decoding is successful if the logical measurement matches
the initial state prepared. Otherwise, a logical error has occurred.

We target a 250MHz FPGA implementation for Astrea on Xilinx’s
Zynq UltraScale+, synthesize our design using Vivado, and verify
its correctness using Verilator.

4 ASTREA: KEY INSIGHTS
In this section, we discuss how errors manifest in surface codes and
our insights to build a practical real-time decoder.

4.1 How do errors manifest in surface codes?
For high accuracy, a decoder must handle errors that accumulate
on data qubits as well as errors that occur during syndrome extrac-
tion. Errors on data qubits cause failed parity checks or non-zero
syndrome bits during syndrome generation in the same round.
These events, shown in Figure 5(a), are known as space events.
Measurement and reset errors during syndrome extraction cause a
parity check failure on a parity qubit in two consecutive rounds,
resulting in a time event, as shown in Figure 5(b). Finally, CNOT
errors during syndrome extraction can manifest in space, time, or
a combination of both: a space-time event, as shown in Figure 5(c).
Errors across 𝑑 rounds lead to either of the following: (1) an isolated
error (an error chain of length 1), (2) a single error chain of length
greater than 1 spanning both space and time, or (3) a combination
of both isolated errors and error chains. However, any error-chain
flips at most two syndrome bits despite their length and thus, the
total number of non-zero bits in a syndrome vector is at most twice
the total number of error-chains observed in a logical cycle.1

Z Z

Z Z

X

(a)
Z Z

Z Z

M

(b)
Z Z

Z Z

X X

(c)
Time

Space

Figure 5: (a) An𝑋 data qubit error (space). (b) Ameasurement
error on a 𝑍 stabilizer (time). (c) A CNOT error causes an 𝑋

data qubit error and an 𝑋 error on a 𝑍 stabilizer (space-time).

4.2 Insight #1: Most syndromes are low weight
We analyze the frequency of syndrome vectors by Hamming weight
by (1) Using an analytical model for upper-bound, and (2) Experi-
mental data using a circuit-level noise model.

4.2.1 Analytical Model for Upper-Bound. In the worst case, every
error causes two syndrome bits to flip. There are five sources of
error during syndrome extraction that causes two syndrome bits to
flip (in space, time, or both). These are: (1) 𝑋,𝑌 depolarizing errors
on the four adjacent data qubits (probability 4 × 𝑝

2 = 2𝑝), (2) a
measurement error on the parity qubit (probability 𝑝), (3) a reset
error on the parity qubit (probability 𝑝), (4)𝑋,𝑌 depolarizing errors
on the adjacent data qubits due to CNOT operations (probability
4 × 𝑝

2 = 2𝑝), and (5) 𝑋,𝑌 depolarizing errors on the parity qubit
due to CNOT operations (probability 4 × 𝑝

2 = 2𝑝). Altogether, the
syndrome extraction of a parity qubit can cause two syndrome bits
1A syndrome is the result of stabilizer measurements from one round. A decoder must
decode syndromes aggregated from 𝑑 consecutive rounds (which constitutes a logical
cycle). We refer to the collection of syndromes from 𝑑 rounds as a syndrome vector.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

to flip with probability 2𝑝+𝑝+𝑝+2𝑝+2𝑝 = 8𝑝 . Wemodel the number
of syndrome extraction errors using a random variable 𝐸 such that
𝐸 ∼ Binomial(𝐷, 8𝑝) where 𝐷 = (𝑑 + 1) × 𝑑2−1

2 is the number of
syndrome bits. Also, as each syndrome extraction error causes two
syndrome bit flips, we model the Hamming weight of a syndrome
vector as a random variable 𝐻 = 2𝐸. Thus, a syndrome vector with
Hamming weight ℎ occurs with the probability in Equation (1).

P(𝐻 = ℎ) =
(
𝐷
ℎ
2

)
(8𝑝)

ℎ
2 (1 − 8𝑝)𝐷− ℎ

2 (1)

Thus, higher Hamming weight syndrome vectors have an exponen-
tially lower probability than lower Hamming weight ones, so most
syndrome vectors have low Hamming weight.

0 2 4 6 8 10 12
Hamming Weight

10−7

10−5

10−3

10−1

Pr
ob

ab
ilit

y

Upper Bound (Model)
Observed (Experimental)

Figure 6: Syndrome-vector probabilities by Hamming weight
according to analytical and circuit-level noise models.

4.2.2 Experimental Data Using Circuit-Level Simulation. In reality,
if multiple errors occur adjacent to each other, they form an error-
chain which only results in two syndrome bits flipping. Moreover,
errors can also cancel each other out. Figure 6 shows the probability
of a given Hamming weight using the analytical model (worst-
case) and the experimental data. While the real frequencies are
significantly lower (as not all errors flip two syndrome bits), the
probabilities follow the exponential decay of the analytical model.

Table 2: Syndrome Vector Probability by Hamming Weight

Hamming Weight Prob. (𝑑 = 3) Prob. (𝑑 = 5) Prob (𝑑 = 7)
0 0.99 0.95 0.86
1, 2 1.1 × 10−2 0.05 0.13
3, 4 4.2 × 10−5 1.26 × 10−5 9.5 × 10−3
5, 6 6.5 × 10−8 1.9 × 10−5 4.4 × 10−4

7 to 10 0 1.9 × 10−7 1.6 × 10−5
> 10 0 0 4 × 10−9

Logical Error Rate 8.1 × 10−6 1.3 × 10−7 6 × 10−9

Table 2 shows the probability of obtaining a syndrome vector of
a given Hamming weight for various distances (at p=10−4). Note
that the probability of a syndrome vector with Hamming weight
greater than 10 is lower than the logical error rate for distances up
to 7. Thus, a decoder that can correct up to Hamming weight 10 is
enough to reliably decode surface codes up-to distance 7.

4.3 Insight #2: Low Hamming weight syndrome
vectors only have limited perfect matchings

A syndrome vector with Hamming weight𝑤 has
𝑤 !

2𝑤/2 × (𝑤/2)!
(2)

perfect matchings. For example, a syndrome vector with𝑤 = 4 has
3 perfect matchings, and a syndrome vector with𝑤 = 10 has 945
perfect matchings. As there are only a few hundred matchings, an
exhaustive search can quickly find the MWPM amongst all perfect
matchings, so they are practical to decode. We propose Astreawhich
leverages this insight.

5 ASTREA: DESIGN
Astrea is designed to target real-time decoding for surface codes
in the near-term, specifically between distances 3 to 7. We assume
a physical error rate 10−4. We first explain the organization of
weights and then our hardware implementation.

5.1 Global Weight Table
To compute the MWPM for a decoding graph, Astrea requires the
collection of weights between every possible pair of syndrome bits.
Each weight is an 8-bit value corresponding to − log10 (probability
of the pair matching). Thus, a match occurring with a 1 in a million
probability will have a weight of 6. These weights are stored in an
on-chip memory and we refer to this data structure as the Global
Weight Table (GWT). For a syndrome vector of length ℓ , the GWT
maintains a ℓ × ℓ matrix of weights corresponding to all possible
pairs. We use the diagonal weight to represent the probability that
the given node matches with the boundary. When Astrea receives
a non-zero syndrome vector for decoding, it retrieves weights cor-
responding to all possible pairings of the non-zero syndrome bits
in the vector and places them into an Active Weight Array. For
example, let𝑊𝑖 𝑗 denote the 8-bit quantized weight for the pair
corresponding to non-zero syndrome bits 𝑖 and 𝑗 in a syndrome
vector. If a syndrome vector has three non-zero bits denoted by 𝑎, 𝑏,
and 𝑐 , the weights𝑊𝑎𝑏 ,𝑊𝑎𝑐 , and𝑊𝑏𝑐 are retrieved from the GWT
and placed in the Weight Array.

5.2 Evaluating Common Case Syndrome Vectors
We discuss the difficulty of decoding the lowest weight syndrome
vectors with Hamming weights between 0 to 6. We divide our
analysis into three parts based on the difficulty.

5.2.1 HammingWeights Until 2 are Trivial. Weobserve thatMWPM
for Hamming weights 0, 1, and 2 is trivial. Syndrome vectors of
Hamming weight 0 correspond to a case of no-errors. On the other
hand, syndrome vectors of Hamming weights 1 and 2 only have a
single possible option for matching.

5.2.2 Decoding Hamming Weights 3 and 4. Syndrome vectors of
Hamming weights 3 and 4 both have only 3 possible perfect match-
ings.2 Consider a syndrome vector with nonzero bits 𝑎, 𝑏, 𝑐 , and 𝑑 .
As shown in Figure 8, there are six possible pairings (= 4𝐶2) of these
four non-zero syndrome bits, resulting in six weights. As a perfect
2The Hamming weight 3 case is the same as the Hamming weight 4 case because one
syndrome bit will be matched to the boundary.

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

+ + +
+ + +

+ + +
+ + +

+ + +
+ + +

+
+

+
+

+ +
+

++
+ + +

HW6DecoderWab
Wac
Wad
Wax
Way
Wbc
Wbd
Wbx
Wby
Wcd
Wcx
Wcy

Wdx
Wdy
Wxy

M1 to M15

MWPM
(b)

Select-Min

Syndrome Nonzero Syndrome Bits:
a, b, c, d, w, x, y, z

…

(a, z)

HW6Decoder

+

b, c, d, w, x, y

… …

Cycle 1 Prematch

(a, b) + MWPM
Register

HW6Decoder
c, d, w, x, y, z

Cycle 2 Prematch HW6Decoder

(a, c) +

b, d, w, x, y, z

Cycle 7 Prematch

(a)

Figure 7: (a) Astrea’s HW6Decoder that decodes syndromes with Hamming weight 6. For 15 possible perfect matchings, each
option requires two 8-bit adders (a total of thirty 8-bit adders) (b) Using HW6Decoder for syndrome vectors of Hamming weight 8.

matching for a Hamming weight 4 syndrome vector has two pairs
of syndrome bits, three perfect matchings are created by combining
two pairs of syndrome bits. Finally, the perfect matching with the
lowest aggregated weight is selected as the MWPM.

Wab

Wcd

Wac

Wbd

Wad

Wbc

Weight Array

+
M1

+
M2

+
M3

Se
le

ct
-M

in

MWPMSyndrome
(a, b, c, d)

Global
Weight Table

Figure 8: Logic to decode syndromes of Hamming weights
3 or 4. There are three possible matchings, each of which
contains two pairs of syndrome bits.

5.2.3 Decoding Hamming Weights 5 and 6. Decoding syndrome
vectors of Hamming weights 5 or 6 uses a similar approach to
the one used for syndrome vectors with Hamming weights 3 or
4. As shown in Figure 7(a), 15 weights (=6𝐶2) are loaded into the
Weight Array. Then, using a network of 30 adders, these 15 weights
are combined into 15 perfect matchings such that each perfect
matching contains three pairs of syndrome bits, similar to how
pairs are combined to create perfect matchings in Figure 8. The
logic unit described in Figure 7(a), the HW6Decoder, is Astrea’s
fundamental building block and is used to decode higher Hamming
weight syndrome vectors.

5.3 Decoding Less Common Cases
Astrea can decode higher Hamming weight syndrome vectors by
pre-matching a few syndrome bits and then using the HW6Decoder
to match the remaining syndrome bits. Figure 7(b) shows how
to build a decoder for syndrome vectors up to Hamming weight
8 using HW6Decoder as a building block. Astrea splits the eight
nonzero syndrome bits into two parts: (1) two syndrome bits that
are pre-matched, and (2) six syndrome bits that are matched using
HW6Decoder. Syndrome bit 𝑎 is paired seven times, once with each
of 𝑏, 𝑐, 𝑑,𝑤, 𝑥,𝑦, 𝑧. For example, in cycle 1, 𝑎 is paired with 𝑏 and
the MWPM for bits 𝑐 through 𝑧 is combined with (𝑎, 𝑏) to form a
new perfect matching𝑀1, and𝑀1 is placed in the MWPM Register.
Every cycle, a new perfect matching𝑀𝑖 (in cycle 𝑖) is created, and
the the MWPM Register is updated if the 𝑀𝑖 has a lower weight
than the matching currently stored in the MWPM register. Thus,
at the end of the seventh cycle, the MWPM Register contains the
MWPM for the Hamming weight 8 syndrome vector because all
possible perfect matchings have been exhausted.

Astrea can decode syndrome vectors up to Hamming weight 10
by scaling up the same strategy. Instead of pre-matching only a pair
of bits, Astrea must pre-match two pairs of bits each cycle. As there
are 9 options for the first pair and 7 options for the second pair,
decoding a Hamming weight 10 syndrome vector takes 63 cycles.

5.4 Astrea Overheads and Latency
We synthesized and implemented Astrea on Xilinx’s Zynq Ultra-
Scale+ FPGA. Table 3 shows the utilization and maximum clock
frequency of Astrea on the FPGA. Astrea requires less than 10%
of the LUTs and BRAM on the FPGA while running at 250MHz
clock frequency. Importantly, Astrea does not require connecting
an additional FPGA to existing quantum control infrastructure, be-
cause its low overheads ensure it can be co-located with the control

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

processor, which is also typically implemented on an FPGA in com-
mercial systems [3, 13, 23, 35, 45, 55]. Thus, Astrea does not require
significant changes to the quantum control infrastructure.

Table 3: FPGA Synthesis and Implementation of Astrea

LUT% FF% BRAM% Max Freq. (MHz)
5.57 0.86 9.60 250

We discuss the latency of our design. Before decoding begins,
Astrea transfers the weights from the Global Weight Table (GWT)
to the weight array. Our design requires HW + 1 cycles to retrieve
all weights from the GWT and transfer them to the weight array,
incurring up-to 11 cycles for a syndrome vector with Hamming
weight 10. Moreover, our design requires 1, 11, 103 cycles to decode
Hamming weights 3-6, 7-8, and 9-10 respectively; note that Ham-
ming weights 0-2 are trivial and need not be decoded. Thus, Astrea’s
worst case latency is 103 + 11 = 114 cycles for a syndrome vector
with Hamming weight 10. Figure 9 shows the mean and maximum
latencies of Astrea for 𝑑 = 3, 5, 7 at 𝑝 = 10−4. The average latency
remains within 1ns, whereas the worst-case latency ranges from
32ns (𝑑 = 3) to 80ns (𝑑 = 5) to 456ns (𝑑 = 7). Thus, Astrea operates
well within the 1`s constraint for real-time decoding.

5.5 Logical Error Rate for Astrea
We evaluate Astrea for code distances of 3, 5, and 7 considering a
physical error rate of 10−4. As shown in Table 4, Astrea achieves
the same logical error rate as MWPM, demonstrating that it does
not compromise accuracy. Also note that there is an exponential
suppression of errors with increasing redundancy or code distance.

Table 4: Logical Error Rate (LER) for different decoders at
𝑝 = 10−4 for a distance 𝑑 decoder using 𝑑 syndrome rounds

𝑑 MWPM Astrea LILLIPUT Clique AFS
3 8.1 × 10−6 8.1 × 10−6 8.1 × 10−6 8.3 × 10−6 9.4 × 10−5
5 1.3 × 10−7 1.3 × 10−7 N/A 1.4 × 10−6 2.3 × 10−5
7 6.0 × 10−9 6.0 × 10−9 N/A 2.3 × 10−8 5.7 × 10−7

Astrea Enables Real-Time MWPM Decoding up-to d=7

To the best of our knowledge, Astrea is the first low-cost, practi-
cal hardware-based solution that can decode surface codes up to
distance 7 in real-time and with the same accuracy as an idealized
MWPM decoding. Thus, Astrea is ideal for adoption in near-term
fault-tolerant systems.

5.6 Comparison With Prior Works

LILLIPUT: It can only decode distance 3, and distance 5 with only
two rounds of syndromes due to exponentially increasing memory
requirements. For example, LILLIPUT requires 2 × 260 bytes to
decode distance 5 codes using 5 syndrome extraction rounds. For
distance 7, it requires 2 × 2168 bytes! In contrast, Astrea is practical
up to 𝑑 = 7.

3 5 7
Code Distance

0

100

200

300

400

500

600

La
te

nc
y

(n
s)

0.
0

0.
0

0.
224

.0

24
.1

24
.5

32

80

45
6Mean

Mean (HW > 2 Only)
Max

Figure 9: Latency of Astrea when decoding syndromes for
distance 3, 5, and 7. Astrea meets real-time decoding require-
ments as it operates within 1`s. Astrea takes 0ns to decode
Hamming weight ≤ 2 as these are trivial syndromes.

AFS: Table 4 shows that AFS has 105× higher logical error rate
compared to MWPM and Astrea.
Clique: Astrea achieves up to 3.8× lower error rate than this de-
coder in real-time, as shown in Table 4. The Clique decoder is unable
to decode all error events in real-time due to its reliance on the
software MWPM decoder for “hard to decode events", which dom-
inates the design’s critical path. Moreover, it relies on emerging
superconducting device technologies, limiting its applicability to
near-term FTQCs.

5.7 Limitations of Astrea
Although Astrea can correct syndrome vectors with Hamming
weights up to 10, it cannot tolerate higher Hamming weights. For
example, a Hamming weight 20 syndrome has 6.5 × 108 possible
perfect matchings, which is impractical for an exhaustive search.
This limits the scalability of Astrea beyond Hamming weights of 10.
Note that (a) higher physical error rates and/or (b) larger distances
cause higher Hamming weight syndromes to appear frequently.

A higher physical error rate causes errors on data qubits and
measurement operations to occur more frequently, resulting in
more independent error chains and thus, more non-zero bits in the
syndrome vector. Table 5 shows that the probability of obtaining
high Hamming weight (> 10) syndrome vectors at physical error
rates of 𝑝 = 10−3 and 𝑝 = 10−4 for distance 𝑑 = 7. At 𝑝 = 10−3,
Hamming weights larger than 10 occur with almost 1000× higher
probability than the logical error rate.

Table 5: Syndrome vector probability by Hamming weight

Hamming Weight Prob. (𝑝 = 10−3) Prob. (𝑝 = 10−4)
0 0.22 0.859

1 to 10 0.777 0.141
> 10 0.003 4 × 10−9

Logical Error Rate 2.4 × 10−7 6 × 10−9

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

� � � � 	
 � � � �� �� �� �� �	
�����������

���

���

���

��
��

��
��
�

28% 27% 45%

Correctable

Do not use.

� � � 	
 �� �� ��
������������

�

�

��

��

��
�
��

���
��

��
��

Exponentially Lower Probability of being in MWPM

Lowest Weight,
Highest Probability

Highest Weight,
Lowest Probability

Search space: 2027025
Matchings

2128
Matchings

Filtering

(a) (b)

15 pairs used normally

HW = 16

Figure 10: (a) Distribution of weights for 𝑑 = 7, 𝑝 = 10−3. The weights can be divided into three regions depending on the
probability they will appear in the MWPM. (b) Number of pairs for each syndrome bit for a Hamming weight 16 syndrome
vector after eliminating all weights above 8. Removing high-weight pairs results in a 58% reduction in the number of syndrome
bit pairs, resulting in a 953× for the MWPM search space.

6 ASTREA-G: KEY INSIGHTS
To extend Astrea to decode larger code distances and higher physi-
cal error rates, we propose Greedy-Astrea or Astrea-G. We discuss
the key insights of Astrea-G which enables it to find the MWPM
for high Hamming weight syndromes.

6.1 Insight #1: Filter Unlikely Weights
For a syndrome vector of length ℓ , there are ℓ×ℓ weights in the GWT.
Figure 10(a) shows the distribution of theweights in the GWT (recall
that weights are − log10 (𝑃), so 14 denotes a likelihood of 10−14).
Weights that correspond to events which occur at a significantly
lower probability than the logical error rate are highly unlikely to
be part of the MWPM pairings as they represent improbable events.
Therefore, we can simply skip the pairings that use weights greater
than a certain threshold (𝑊th). For 𝑑 = 7 (𝑝 = 10−3), the logical
error-rate is approximately 10−5, so weight values of 5 represent
events occurring at similar probability. We pick a 𝑊th that is 2
greater (so occurring with 100× lower probability) than this weight
for filtering. The histogram in Figure 10(a) is colored into green
(weights ≤ 7), orange (weights between 7 and 9) and red (weights
≥ 9). We only use pairings with green weights.

6.2 Insight #2: Search from Low to HighWeights
For the green region, low-value weights are orders of magnitude
more likely than high-value weights. Therefore, when performing
a greedy search, it is useful to first exmaine the low value weights
and only then try the higher value weights. With this strategy, we
are very likely to converge to the MWPM early in the search.

Insights: Not all Matches are Created Equal

Instead of trying all possible pairings, we can make the search
muchmore efficient by (a) filtering out the weights that represent
improbable events as they are unlikely to result in MWPM (b)
order the greedy search of the remaining candidates from low
weights to high weights.

7 ASTREA-G: DESIGN
Figure 11 shows an overview of Astrea-G. Similar to Astrea, Astrea-
G starts by retrieving weights for each pair of non-zero bits in
the syndrome vector from the GWT and puts them into the Local
Weight Table (LWT). However, Astrea-G also filters out any weights
larger than a pre-configured cutoff or Weight Threshold, 𝑊th to
constrain the MWPM search space. For a target logical error-rate
of 𝑃𝐿 , we use𝑊th equal to − log10 (0.01 × 𝑃𝐿), to suppress events
that occur with 100× lower probability than the logical error rate.

7.1 Organization of the Matching Pipeline
Astrea-G attempts to pre-match syndrome bits until six syndrome
bits remain, which are matched exhaustively using the HW6Decoder
logic unit. Astrea-G orders pre-matchings of syndrome bits greedily
by prioritizing low-weight pairs first because there is a very high
probability that the MWPM will contain most of these pairs.

Astrea-G implements the greedy search using aMatching Pipeline
that receives pre-matchings from priority queues. This pipeline has
three stages: Fetch, Sort, and Commit. Our default design fetches one
pre-matching from each of the 𝐹 priority queues. A priority queue
contains up to a maximum of 𝐸 entries. At the initialization step,
the priority queue entries are empty and as the pipeline processes
pre-matchings, the priority queue entries are updated.

In the Fetch stage, Astrea-G fetches syndrome bit pairs for an
unmatched syndrome bit and pops a pre-matching off a priority
queue. In the Sort stage, these syndrome bit pairs are sorted based
on their weight. Finally, in the Commit stage, Astrea-G chooses
the top 𝐹 bit pairs with the lowest weight and combines each of
them with the prior pre-matching from the Fetch stage to create 𝐹
new pre-matchings. If only six syndrome bits are unmatched, then
Astrea-G uses the HW6Decoder unit to exhaustively match the re-
maining six syndrome bits and combines this matching with the
pre-matching to create a perfect matching. This perfect match-
ing is used to update the MWPM Register. Otherwise, the 𝐹 new
pre-matchings are pushed onto the priority queues such that each
priority queue receives a pre-matching.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

Syndromes

MWPM

sj

si

Global Weight
Table

Local Weight
Table

weight(si, sj)
+

Fetch (width M) Sort Commit

Weight
Array

MCurrent
Matching M

Priority Queue 1

Matching Pipeline

of unmatched bits
>6

HW6Decoder
≤6

MWPM
 Register

weight Matching

<

Astrea-G

Priority Queue F

…

weight(si, sj)Data
Fetcher Fi

lte
r

Astrea

LHW

HHW

H
am

m
in

g
w

ei
gh

t

Figure 11: Micro-architecture of Astrea-G for decoding High Hamming-Weight (HHW) syndromes that Astrea cannot decode.
Unlike Astrea, Astrea-G computes perfect matchings iteratively, using priority queues and sorting to prioritize lower weight
pairs. Furthermore, Astrea-G filters out higher-weight pairs from the GWT to constrain the search space of a HHW syndrome.

The priority queues re-orders the pre-matchings based on the
score 𝑠/𝑏, where 𝑠 is the cumulative weight of a pre-matching
and 𝑏 is the number of matched bits in the same pre-matching.
Astrea-G iterates using the pipeline and finishes execution when
either the priority queues are empty or 1`s has elapsed. Once the
priority queues are empty, the MWPM register is guaranteed to
contain the MWPM. On the other hand, if the priority queues are
not empty at the end of 1`s, the MWPM Register is not guaranteed
to contain the MWPM. However, because Astrea-G has prioritized
low-weight syndrome bit pairs, the MWPM is most likely already
in the MWPM Register. Our evaluations show that a fetch width
of 𝐹 = 2 and priority queue sizes of 𝐸 = 8 are sufficient and we
use these parameters for our default design. Larger fetch widths
and priority queues improve accuracy but require more logic to
implement and may have longer access times.

Astrea-G greedily prioritizes low-weight pairs in two places.
First, by sorting syndrome bit pairs and only committing the lowest-
weight pairs into the priority queues in each Commit Stage, Astrea-
G filters out higher weight pairs. Second, as priority queues score
and sort pre-matchings based on their weights and progress rep-
resented by the number of matched syndrome bits, higher weight
pre-matchings with few matched bits are pushed to the end of
the priority queues from where they seldom leave. Furthermore,
because each priority queue has a fixed size, these higher weight
pre-matchings are evicted as a greater number of lower weight
pre-matchings takes precedence and are introduced into the queue.

7.2 Astrea-G’s Performance and Latency
Figure 12 shows the logical error-rate of Astrea-G and idealized
implementation of MWPM for distance 7 surface codes when the
physical error rates is varied from 𝑝 = 10−3 to 𝑝 = 10−4. Astrea-G
remains as accurate as MWPM.

Astrea-G incurs an average decoding latency of about 131ns for
𝑝 = 10−3 and the worst-case latency of 1`s. Astrea-G reduces the
mean latency relative to Astrea by eliminating many high-weight
syndrome bit pairs. Furthermore, Astrea-G may use the entire 1`s

1 2 3 4 5 6 7 8 9 10
Physical Error Rate (10−4)

10−8

10−7

10−6

10−5

Lo
gi

ca
l E

rro
r R

at
e MWPM

Astrea-G

Figure 12: Logical error rates for MWPM and Astrea-G for
physical error rates between 10−4 and 10−3 for 𝑑 = 7. Astrea-G
is as accurate as MWPM.

period for decoding because it continues iterating until the entire
search space is exhausted. However, by prioritizing lower weight
pairs first, Astrea-G converges on the MWPM early into the search.

7.3 Analyzing Impact of the Weight Threshold
Astrea-G’s latency depends on the Weight Threshold (𝑊th), which
is responsible for constraining the search space. We use a default
𝑊th of 7 (representing 100x lower probability than the logical error
rate). Figure 13 shows the logical error-rate of Astrea-G normalized
to an idealized MWPM implementation as𝑊th is varied from 4 to 8.
At𝑊th = 4, Astrea-G’s logical error rate is 3.0 × 10−5 compared to
MWPM’s 1.8×10−5. As𝑊th is increased beyond 4, the performance
of Astrea-G approaches the accuracy of idealized MWPM.

7.4 Extending Astrea-G to Distance 9 Codes
We examine Astrea-G’s performance for larger distances, say 𝑑 = 9.
For this evaluation, we use 100 billion trials for each configuration
(as the logical error rate is quite small). Figure 14 shows the logical
error rate of Astrea-G and idealized MWPM as the physical error

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Weight Threshold

1.0

1.2

1.4

1.6

Re
la

tiv
e

Lo
gi

ca
l

Er
ro

r R
at

e

Figure 13: The impact of different Weight Thresholds for
𝑑 = 7, 𝑝 = 10−3 on the logical error rate of Astrea-G relative
to idealized MWPM decoding.

rate is varied from 10−4 to 10−3. We observe that Astrea remains
within 2.7× of MWPM’s logical error rate, which significantly out-
performs prior work which are 100× or 1000× worse. As the logical
error rate decreases, Astrea-G moves closer to the performance of
MWPM. The average decoding latency is 450ns for 𝑝 = 10−3 with
the worst case being 1`s, thus meeting the real-time constraints.

Astrea-G Enables MWPM up-to Distance 9 in Real-Time

To the best of our knowledge, Astrea-G is the first practical
decoder that can decode surface codes up to distance 9 at a physical
error rate of 10−3 in real time, while maintaining comparable
accuracy to idealized MWPM decoding.

7.5 Storage Overheads of Astrea-G
We analyze the SRAM overheads of Astrea-G for decoding 𝑋 or 𝑍
stabilizers of a distance 7 and distance 9 codes in Table 6. Astrea-G’s
overheads are dominated by the GWT, while other data structures
such as the priority queues only require a few KB. Data structures
such as the LWT, priority queues, and MWPM Register have over-
heads that increase for larger Hamming weight. Consequently, for
lower physical error rates and distance, Astrea-G’s hardware over-
heads decrease.

Table 6: SRAM Overheads for Astrea-G

Component 𝑑 = 7 𝑑 = 9
Global Weight Table (GWT) 36KB 156KB
Local Weight Table (LWT) 512B 512B

Priority Queues 3.4KB 4.1KB
Pipeline Latches 2.3KB 2.9KB
MWPM Register 24B 30B

Total 42 KB 164KB

7.6 Syndrome Bandwidth Requirements
Webriefly discuss the syndrome bandwidth requirements for Astrea-
G for a𝑑 = 9 code at 𝑝 = 10−3. Every round, 92−1 = 80 parity qubits

1 2 3 4 5 6 7 8 9 10
Physical Error Rate (10−4)

10−10

10−8

10−6

Lo
gi

ca
l E

rro
r R

at
e MWPM

Astrea-G

Figure 14: Logical error rates for MWPM and Astrea-G for
10−4 ≤ 𝑝 ≤ 10−3 for 𝑑 = 9. Astrea-G remains within 2.7x of
MWPM’s LER.

are measured, resulting in 80 syndrome bits that must be transmit-
ted to Astrea-G. However, Astrea-G must receive the syndrome and
decode it within 1`s. If the syndrome is transmitted over the entire
1`s, then Astrea-G has no time to decode. Thus, the system must
be provisioned with sufficient bandwidth. Table 7 shows the time
to transmit at a particular bandwidth (MBps) and the impact on
error-rate for Astrea-G. At lower bandwidth, when almost half the
time is allocated for transmission, the relative error rate increases
by 33%. However, having a bandwidth of 50 MBps provides a simi-
lar error rate as unlimited bandwidth. As syndromes are typically
compressible, we can further employ Syndrome Compression to
reduce bandwidth requirement [14].

Table 7: Bandwidth Requirements for Astrea-G

Transmission Time (ns) Bandwidth (MBps) Relative LER
0 Unlimited 1.0×
50 200 1.0×
100 100 1.0×
200 50 1.0×
300 33 1.01×
400 25 1.08×
500 20 1.33×

7.7 FPGA Utilization and Latency
We synthesized and implemented Astrea-G with 𝐹 = 2 and 𝐸 = 8
on Xilinx’s Zynq UltraScale+ FPGA. Table 8 shows the utilization
and maximum clock frequency of Astrea-G on the FPGA. Astrea-G
requires less than half of the resources on the FPGA, making a
practical design for near-term QEC.

Table 8: FPGA Synthesis and Implementation, Astrea-G

LUT% FF% BRAM% Max Freq. (MHz)
20.2 3.92 35.7 250

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

8 RELATEDWORK
In this section, we discuss the related work and compare and con-
trast with Astrea as appropriate.

8.1 Decoders
Although error decoding has been studied for several years, only
recently there has been a paradigm shift towards leveraging ar-
chitectural optimizations to improve the latency of decoders for
enabling real-time decoding [9, 13, 14, 33, 44, 46, 48, 58–60]. Ideally,
theMinimumWeight Perfect Matching (MWPM) decoder is
deemed as the gold standard for decoding surface codes and all
decoders strive to achieve its accuracy [17–19, 21, 22]. Recently,
there have been several fast implementations of MWPM such as
PyMatching [32]. However, we observe that these implementa-
tions are only fast in the average case with worst-case latencies that
make them untenable for real-time decoding. LILLIPUT imple-
ments MWPM decoding using Lookup Tables (LUTs) on FPGAs [13].
Although it uses commodity hardware, the size of the LUTs limit
the scalability of this design to distance 5 with only two syndrome
rounds. Other prior real-time decoders trade-off accuracy by relying
on approximate techniques or specialized hardware to improve the
decoding latency. The NISQ+ decoder is a superconducting based
design that leverages speedup from superconducting devices but
has lower accuracy owing to its inability to tackle errors during syn-
drome extraction (only one syndrome round used for decoding) [33].
QECOOL andQULATISmakes similar trade-offs but only handle a
limited number of measurement errors during syndrome extraction
(uses fewer than 𝑑 rounds for decoding distance 𝑑 codes) [58, 60].
Furthermore, these three decoders rely on emerging technologies
that limit their adoption in the near-term. The AFS decoder uses
custom ASICs to decode using the approximate Union-Find de-
coding algorithm. Although this decoder can decode any arbitrary
distances 𝑑 using 𝑑 syndrome rounds, its accuracy is much lower
than theMWPM decoder [14]. TheClique decoder is an orthogonal
approach that involves hierarchical decoding, which uses combina-
tion of decoders [48]. However, its reliance on software MWPM
for “hard-to-decode" syndromes limits its applicability for real-time
decoding and its inaccuracy negatively impacts the accuracy of the
overall hierarchical decoder. Unlike Clique, NEO-QEC is a hier-
archical decoder that relies on QULATIS instead of MWPM [59].
While its neural network pre-decoder improves the performance of
QULATIS, NEO-QEC’s accuracy still pales in comparison toMWPM.
In contrast to prior work, Astrea enables real-time decoding with
comparable accuracy to MWPM while using commodity hardware,
making it ideal for practical adoption. Astrea scales up to larger
distances than LILLIPUT, and is significantly more accurate than
NISQ+, QECOOL, QULATIS, AFS, and Clique decoders.

8.2 Demonstrations of QEC
Quantum error correction is reaching a regime where there are
demonstrations of small QEC codes on both trapped-ions and su-
perconducting based systems [1, 11, 39, 50, 56]. The largest demon-
strated surface codes so far corresponds to distance 5 on the latest
edition of the Google Sycamore device. However, these experiment
studies focus on demonstrating error suppression and have relied
on offline decoding. To date, there has been no demonstration of

surface codes with real-time decoding. FTQCs require real-time
decoding to perform fault-tolerant gate operations on logical qubits.
Thus, a successful demonstration of real-time decoding would mark
a monumental milestone in the field of quantum computing.

As device error-rates exhibit spatio-temporal variation, a decoder
must be capable of handling non-uniform error rates and error drift
to remain accurate. To the best of our knowledge, prior real-time de-
coders like NISQ+, QECOOL/QULATIS, and AFS lack the flexibility
for handling non-uniform error rates or reprogramming physical
error rates [14, 33, 58]. Astrea and Astrea-G natively handles non-
uniform error rates and error drift by virtue of its GWT because
weights can be adjusted to account for non-uniform error rates and
can further be re-programmed if drift occurs. Thus, Astrea is not
only more accurate, but is also more flexible than prior works.

9 DISCUSSION
If an FTQC’s decoder can decode errors accurately, then the code
distance is determined by the gap between the desired applica-
tion error rate and the physical error rate [22, 25]. However, if the
decoder is inaccurate, then the FTQC must use a larger code dis-
tance, and thus more hardware resources, to compensate for the
decoder’s inaccuracy. Current trends in real-time decoding have
favored approximate decoders which sacrifice accuracy to meet
real-time constraints because MWPM is perceived to be too difficult
to implement in real-time [9, 14, 33, 48, 58, 60]. However, approxi-
mate decoders incur logical error rates 100× or 1000× worse than
MWPM and thus require significantly larger code distances com-
pared to idealized MWPM decoding. Instead of optimizing solely
for decoding speed at the expense of accuracy, decoders should op-
timize achieving the best possible accuracy because this can enable
practical applications at lower code distances.

Astrea and Astrea-G challenge the widespread belief that achiev-
ing real-time MWPM decoding is practically impossible, and they are
the first real-time decoders with comparable accuracy to MWPM,
marking a significant advancement over prior work. Their orders of
magnitude improvement over the state-of-the-art are an important
step towards accurate real-time decoding, which is necessary for
implementing promising applications with minimal resources.

10 CONCLUSION
We propose Astrea, which leverages the insight that the Hamming
weight of most syndromes corresponding to small surface codes
remains low enough for us to be able to exhaustively search for
the MWPM in real-time. For distance 7 codes, Astrea achieves a
logical error-rate virtually identical to the idealized implementation
of MWPM while meeting the real time constraints. However, the
Hamming weight of the syndromes increases with the code dis-
tance and physical error-rates which makes an exhaustive search
infeasible. To tackle this challenge, we propose Greedy Astrea or
Astrea-G that leverages the insight that not all possible matchings
have the same probabilities of appearing in the MWPM. Astrea-G
performs an efficient search that filters out high weight syndrome
bit pairings and prioritizes low weight pairings during matching.
This enables Astrea-G to decode up to distance 9 and an order of
magnitude higher physical error-rate of 10−3 while meeting the
real-time requirements.

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

ACKNOWLEDGMENTS
We thank the reviewers of ISCA-2023 for their suggestions and
feedback. This work was funded in part by EPiQC, an NSF Expedi-
tion in Computing, under grant CCF-1730449. This research was
supported in part through research cyberinfrastructure resources
and services provided by the Partnership for an Advanced Com-
puting Environment (PACE) at the Georgia Institute of Technology,
Atlanta, Georgia, USA.

A APPENDIX
A.1 Evaluating Astrea-G for Larger Distance
We present additional results for Astrea-G evaluated for the 𝑑 = 11
surface code at 𝑝 = 1 × 10−4 to understand how Astrea-G will
scale to surface codes beyond the near-term. Because the logical
error rate is quite small (less than one in a trillion) and is thus
practically impossible to estimate through Monte Carlo sampling,
we estimate the logical error rate as follows. For 1 ≤ 𝑘 ≤ 20, we
generate syndromes corresponding to error events with 𝑘 errors
using several millions of trials. Then, we estimate the probability
of failure for 𝑘 errors (𝑃𝑓 (𝑘)) using the millions of trials, and we
estimate the probability of occurrence for 𝑘 errors (𝑃𝑜 (𝑘)) using
our error model. Then, the logical error rate is approximated as in
Equation (3).

𝐿𝐸𝑅 =
∑︁
𝑘

𝑃𝑓 (𝑘) × 𝑃𝑜 (𝑘) (3)

Using this methodology, we evaluate both MWPM and Astrea-G
for 𝑑 = 7, 9, 11 at 𝑝 = 1 × 10−4 as shown in Table 9. Although
Astrea-G is able to suppress errors at 𝑑 = 11, it is about 17× worse
than idealized MWPM in terms of logical error rate. While this is
better than results observed in prior work, we note that having
an order of magnitude worse LER is undesirable. Thus, accurate
real-time decoding still remains an open problem for 𝑑 = 11 and
beyond, and closing the accuracy gap in this regime is necessary for
implementingmany promising applications and achieving quantum
fault-tolerance at scale.

Table 9: Logical error rates at 𝑝 = 1 × 10−4

𝑑 MWPM LER Astrea-G LER
7 4.6 × 10−10 4.6 × 10−10
9 1.2 × 10−11 1.2 × 10−11
11 1.7 × 10−14 2.9 × 10−13

B ARTIFACT APPENDIX
B.1 Abstract
The artifact contains the source code used to simulate and evaluate
the designs proposed in this paper. We note that because Astrea is
a limited version of MWPM, there is no explicit implementation of
it provided. We have provided a cycle-level simulator for Astrea-G.
The artifact provides information how to reproduce key results
from the paper, namely the data presented in Section IV, Table 2
(Astrea’s critical insight); Section VII, Figures 12 and 14 (MWPM
and Astrea-G logical error rates); and Section VII, Table 7 (analysis
of bandwidth requirements for Astrea-G).

B.2 Artifact check-list (meta-information)
• Program: astrea
• Compilation: cmake, g++-17, gcc-8
• Hardware: Multiple Intel Xeon Gold 6226 CPUs (2.7GHz)
• Execution: via Terminal
• Metrics: Logical Error Rate, Probability/Frequency
• Output: Text Files
• Experiments: Memory experiments with architectural simulation.
• How much disk space required (approximately)?: 16 MB
• How much time is needed to prepare workflow (approxi-
mately)?: A minute or so for compilation.

• How much time is needed to complete experiments (approx-
imately)?: 48 hours with 1024+ cores for running experiments.
About 5 minutes for plotting the data.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache 2.0
• Archived (provide DOI)?: 10.5281/zenodo.7755625

B.3 Description
B.3.1 How to access. The code is available on Zenodo at https:
//doi.org/10.5281/zenodo.7755625.

B.3.2 Hardware dependencies. Any computing cluster should be
sufficient for to execute the relevant experiments. In our evalua-
tions, we used 1024 cores (in total) to run the experiments within a
reasonable amount of time. We recommend using 1GB of memory
per core.

B.3.3 Software dependencies. The code is compiled using CMake
v3.20.3, though slightly older versions should be fine and can be en-
abled by modifying CMakeLists.txt. The target compiler is g++-17,
and the program requires OpenMPI v4.x.x. All other dependen-
cies have been packaged with the code and are referenced through
CMake. The code provided works on MacOS and Linux (Red Hat
Enterprise v7.9).

The provided plotting script has been tested using Python v3.10.6,
and the following packages are dependencies: matplotlib v3.6.1,
numpy v1.23.4, scipy v1.9.2.

B.4 Installation
The following commands should create the astrea executable for
running experiments.

$ cd build

$ cmake .. -DCMAKE_BUILD_TYPE=Release

$ make -j8

https://doi.org/10.5281/zenodo.7755625
https://doi.org/10.5281/zenodo.7755625

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

B.5 Experiment workflow
An experiment can be run using the following syntax:

$ mpirun -np <X> ./astrea <output-file> <experiment-no> <arg1>

<arg2>

Where 𝑋 is the number of processors available, and the arguments
after experiment-no depend on the experiment. More details can
be found in the following section. The data will be appended to
the provided output file (this file will be made if it does not exist),
which is saved in the directory astrea/data.

Plots can be generated using the astrea_plot.py script in the
astrea/python folder. Explanation on how to use the script is dis-
cussed in the next section.

B.6 Evaluation and expected results
We explain how to reproduce the key results of our paper. For
Section IV, Table 2 which shows the probabilities of different
Hamming weights, run the following for 𝑑 = 3, 5, 7:

$ mpirun -np <X> ./astrea <output-file> 6 <d> 1e-4

This should generate a text file with entries HW, 𝑘 where HW
is the Hamming weight and 𝑘 is the number of occurrences (out of
1B). We expect that the results should match the results in Table 2
within 2x (some deviation may occur due to randomness). We note
that this command does not require multiprocessing because syn-
drome generation is typically fast, so running with one processor
should return results within 10 minutes.

For Section VII, Figure 12 and Figure 14 which show results
for the logical error rate of Astrea-G, run the following command

$ mpirun -np <X> ./astrea <output-file> 1 <d>

For 𝑑 = 7, 1B trials is run for each configuration from 𝑝 = 10−4
to 𝑝 = 10−3 at a step of 10−4; 64 or 128 cores should be sufficient
to finish the experiment within 12 hours. For 𝑑 = 9, 100B trials
is run for each configuration; 1024 cores should finish the experi-
ment within 48 hours. We note that because the logical error rate
increases for larger physical error rate, less trials can be run for
the higher physical error rates. For example, 𝑑 = 9, 𝑝 = 10−3 has a
logical error rate in the regime of 10−6, so 107 trials (10M) would
suffice. To make this change, modify the code within the experiment
== 1 block in astrea/src/main.cpp. The output file should contain
10 lines (one per physical error rate). The first entry in the line is
the code distance, the second is the physical error rate, the sixth
entry is the logical error rate of idealized MWPM, and the seventh
entry is the logical error rate for Astrea-G. The other entries are
supplementary information for which more information can be
found in src/experiments.cpp.

To plot the data, run the plot_ler function in astrea_plot.py:
first argument is the experiment output file (should only have 10
entries), and the second argument is an output file for the plot. The
results should be similar to Figure 12 and Figure 14 (with possible
varation due to randomness).

For Section VII, Table 7 which shows results for Astrea-G’s
error rate with respect to different bandwidth requirements, run
the following command

$ mpirun -np <X> ./astrea <output-file> 12 9 500 1000 100

which runs Astrea-G with decoding time constraints of 500ns to
1000ns at a step size of 100ns for 𝑑 = 9, 𝑝 = 10−3. The file should
return six lines. For each line, the first entry is the code distance,
the second entry is the physical error rate, the seventh entry is the
logical error rate of Astrea-G, and the thirteenth entry is the time
alloted for decoding (𝑡). The transmission time for each entry is
1000 − 𝑡 , and the bandwidth (in MBps) is 80/(8 × (1000 − 𝑡)). The
relative error rates reported in Table 7 are relative to the scenario
with 𝑡 = 1000 (ideal scenario with unlimited bandwidth/instant
transmission). This experiment should be able to finish within 12
hours with 256 cores.

The data used in this paper has been provided for all experiments
in the folder astrea/data/examples.

B.7 Experiment customization
The experiments provided have a reasonable amount of customiz-
ability, which can be explored by providing different inputs (i.e. dif-
ferent code distances). If further customization is needed to the ex-
periments, see the code provided in astrea/src/experiments.cpp. If
one seeks tomodify Astrea-G, see quarch/src/astrea/simulator.cpp.

B.8 Notes
The version of Stim [24] provided in the artifact has been heavily
modified for this paper. The official version of Stim is: https://github.
com/quantumlib/Stim.

B.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] 2023. Suppressing quantum errors by scaling a surface code logical qubit. Nature

614, 7949 (2023), 676–681.
[2] RajeevAcharya, Igor Aleiner, RichardAllen, Trond I. Andersen,Markus Ansmann,

Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave
Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Sergio Boixo, Gina
Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B.
Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Yu Chen,
Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Paul Conner, William
Courtney, Alexander L. Crook, Ben Curtin, Dripto M. Debroy, Alexander Del Toro
Barba, Sean Demura, Andrew Dunsworth, Daniel Eppens, Catherine Erickson,
Lara Faoro, Edward Farhi, Reza Fatemi, Leslie Flores Burgos, Ebrahim Forati,
Austin G. Fowler, Brooks Foxen,WilliamGiang, Craig Gidney, Dar Gilboa,Marissa
Giustina, Alejandro Grajales Dau, Jonathan A. Gross, Steve Habegger, Michael C.
Hamilton, Matthew P. Harrigan, Sean D. Harrington, Oscar Higgott, Jeremy
Hilton, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, William J.
Huggins, Lev B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang,
Cody Jones, Pavol Juhas, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Tanuj
Khattar, Mostafa Khezri, Mária Kieferová, Seon Kim, Alexei Kitaev, Paul V. Klimov,
Andrey R. Klots, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum,
David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee,
Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Fionn D.
Malone, Jeffrey Marshall, Orion Martin, Jarrod R. McClean, Trevor Mccourt, Matt
McEwen, Anthony Megrant, Bernardo Meurer Costa, Xiao Mi, Kevin C. Miao,

https://github.com/quantumlib/Stim
https://github.com/quantumlib/Stim
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

Astrea: AccurateQuantum Error-Decoding
via Practical Minimum-Weight Perfect-Matching ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Masoud Mohseni, Shirin Montazeri, Alexis Morvan, Emily Mount, Wojciech
Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Ani Nersisyan,
Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray
Nguyen, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, John Platt,
Andre Petukhov, Rebecca Potter, Leonid P. Pryadko, Chris Quintana, Pedram
Roushan, Nicholas C. Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi,
Kevin J. Satzinger, Henry F. Schurkus, Christopher Schuster, Michael J. Shearn,
Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, Vadim Smelyanskiy, W. Clarke
Smith, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre Vidal,
Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Cheng
Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing
Zhang, and Ningfeng Zhu. 2022. Suppressing quantum errors by scaling a surface
code logical qubit. https://doi.org/10.48550/ARXIV.2207.06431

[3] Google Quantum AI. Accessed: June 19, 2021. Quantum Computer Datasheet.
https://quantumai.google/hardware/datasheet/weber.pdf.

[4] Lucas Berent, Lukas Burgholzer, and Robert Wille. 2022. Software Tools for
Decoding Quantum Low-Density Parity Check Codes. https://doi.org/10.48550/
ARXIV.2209.01180

[5] Nikolas P Breuckmann, Christophe Vuillot, Earl Campbell, Anirudh Krishna,
and Barbara M Terhal. 2017. Hyperbolic and semi-hyperbolic surface codes
for quantum storage. Quantum Science and Technology 2, 3 (aug 2017), 035007.
https://doi.org/10.1088/2058-9565/aa7d3b

[6] Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu,
Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim.
2022. XQsim: Modeling Cross-Technology Control Processors for 10+K Qubit
Quantum Computers. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA ’22). Association for
Computing Machinery, New York, NY, USA, 366–382. https://doi.org/10.1145/
3470496.3527417

[7] A Robert Calderbank and Peter W Shor. 1996. Good quantum error-correcting
codes exist. Physical Review A 54, 2 (1996), 1098.

[8] Earl Campbell, Ankur Khurana, and Ashley Montanaro. 2019. Applying quantum
algorithms to constraint satisfaction problems. Quantum 3 (jul 2019), 167. https:
//doi.org/10.22331/q-2019-07-18-167

[9] Christopher Chamberland, Luis Goncalves, Prasahnt Sivarajah, Eric Peterson,
and Sebastian Grimberg. 2022. Techniques for combining fast local decoders
with global decoders under circuit-level noise. https://doi.org/10.48550/ARXIV.
2208.01178

[10] Christopher Chamberland, Guanyu Zhu, Theodore J. Yoder, Jared B. Hertzberg,
and Andrew W. Cross. 2020. Topological and Subsystem Codes on Low-Degree
Graphs with Flag Qubits. Phys. Rev. X 10 (Jan 2020), 011022. Issue 1. https:
//doi.org/10.1103/PhysRevX.10.011022

[11] Zijun Chen, Kevin J Satzinger, Juan Atalaya, Alexander N Korotkov, Andrew
Dunsworth, Daniel Sank, Chris Quintana, Matt McEwen, Rami Barends, Paul V
Klimov, et al. 2021. Exponential suppression of bit or phase flip errors with
repetitive error correction. arXiv preprint arXiv:2102.06132 (2021).

[12] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su.
2018. Toward the first quantum simulation with quantum speedup. Proceedings
of the National Academy of Sciences 115, 38 (sep 2018), 9456–9461. https://doi.
org/10.1073/pnas.1801723115

[13] Poulami Das, Aditya Locharla, and Cody Jones. 2022. LILLIPUT: A Lightweight
Low-Latency Lookup-Table Decoder for near-Term Quantum Error Correction. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’22). Association for Computing Machinery, New York, NY, USA, 541–553. https:
//doi.org/10.1145/3503222.3507707

[14] Poulami Das, Christopher A. Pattison, Srilatha Manne, Douglas M. Carmean,
Krysta M. Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. AFS: Accurate,
Fast, and Scalable Error-Decoding for Fault-Tolerant Quantum Computers. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 259–273. https://doi.org/10.1109/HPCA53966.2022.00027

[15] Nicolas Delfosse. 2020. Hierarchical decoding to reduce hardware requirements
for quantum computing. https://doi.org/10.48550/ARXIV.2001.11427

[16] Nicolas Delfosse, Vivien Londe, and Michael E. Beverland. 2022. Toward a Union-
Find decoder for quantum LDPC codes. IEEE Transactions on Information Theory
(2022), 1–1. https://doi.org/10.1109/TIT.2022.3143452

[17] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (Sep 2002), 4452–4505. https://doi.org/10.
1063/1.1499754

[18] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards Section B Mathematics
and Mathematical Physics (1965), 125.

[19] Jack Edmonds. 1965. Paths, trees, and flowers. Canadian Journal of mathematics
17 (1965), 449–467.

[20] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[21] Austin G. Fowler. 2014. Minimum weight perfect matching of fault-
tolerant topological quantum error correction in average 𝑂 (1) parallel time.

arXiv:1307.1740 [quant-ph]
[22] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.

2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

[23] Jay Gambetta. 2022. Quantum-centric supercomputing: The Next Wave
of computing. https://research.ibm.com/blog/next-wave-quantum-centric-
supercomputing

[24] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (July
2021), 497. https://doi.org/10.22331/q-2021-07-06-497

[25] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers
in 8 hours using 20 million noisy qubits. Quantum 5 (apr 2021), 433. https:
//doi.org/10.22331/q-2021-04-15-433

[26] Craig Gidney, Michael Newman, Austin Fowler, and Michael Broughton. 2021.
A Fault-Tolerant Honeycomb Memory. Quantum 5 (Dec. 2021), 605. https:
//doi.org/10.22331/q-2021-12-20-605

[27] Craig Gidney, Michael Newman, and Matt McEwen. 2022. Benchmarking the
PlanarHoneycombCode. Quantum 6 (Sept. 2022), 813. https://doi.org/10.22331/q-
2022-09-21-813

[28] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. arXiv
preprint quant-ph/9705052 (1997).

[29] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search.
arXiv preprint quant-ph/9605043 (1996).

[30] AramW. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm
for Linear Systems of Equations. Physical Review Letters 103, 15 (oct 2009).
https://doi.org/10.1103/physrevlett.103.150502

[31] Oscar Higgott. 2021. PyMatching: A Python package for decoding quantum
codes with minimum-weight perfect matching. arXiv:2105.13082 [quant-ph]

[32] Oscar Higgott and Craig Gidney. 2023. Sparse Blossom: correcting a million errors
per core second with minimum-weight matching. arXiv preprint arXiv:2303.15933
(2023).

[33] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Mas-
soud Pedram, and Frederic T. Chong. 2020. NISQ+: Boosting quantum com-
puting power by approximating quantum error correction. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). 556–569.
https://doi.org/10.1109/ISCA45697.2020.00053

[34] Shilin Huang, Michael Newman, and Kenneth R. Brown. 2020. Fault-tolerant
weighted union-find decoding on the toric code. Phys. Rev. A 102 (Jul 2020),
012419. Issue 1. https://doi.org/10.1103/PhysRevA.102.012419

[35] IBM. 2021. IBM Quantum breaks the 100-qubit processor barrier. https://research.
ibm.com/blog/127-qubit-quantum-processor-eagle.

[36] A Yu Kitaev. 1997. Quantum computations: algorithms and error correction.
Russian Mathematical Surveys 52, 6 (dec 1997), 1191. https://doi.org/10.1070/
RM1997v052n06ABEH002155

[37] Ian D. Kivlichan, Craig Gidney, DominicW. Berry, NathanWiebe, JarrodMcClean,
Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alá n Aspuru-Guzik,
Hartmut Neven, and Ryan Babbush. 2020. Improved Fault-Tolerant Quantum
Simulation of Condensed-Phase Correlated Electrons via Trotterization. Quantum
4 (jul 2020), 296. https://doi.org/10.22331/q-2020-07-16-296

[38] Vladimir Kolmogorov. 2009. Blossom V: a new implementation of a minimum
cost perfect matching algorithm. Mathematical Programming Computation 1, 1
(2009), 43–67.

[39] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois,
Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes
Herrmann, et al. 2022. Realizing repeated quantum error correction in a distance-
three surface code. Nature 605, 7911 (2022), 669–674.

[40] Argonne National Laboratory. 2018. INTRODUCTION TO QUANTUM ERROR
CORRECTION. https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/0/
2327/files/2019/11/QECIntro.pdf.

[41] Andrew J. Landahl, Jonas T. Anderson, and Patrick R. Rice. 2011. Fault-tolerant
quantum computing with color codes. https://doi.org/10.48550/ARXIV.1108.5738

[42] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R.
McClean, Nathan Wiebe, and Ryan Babbush. 2021. Even More Efficient Quantum
Computations of Chemistry Through Tensor Hypercontraction. PRX Quantum 2,
3 (jul 2021). https://doi.org/10.1103/prxquantum.2.030305

[43] Jessica Lemieux, Guillaume Duclos-Cianci, David Sé néchal, and David Poulin.
2021. Resource estimate for quantum many-body ground-state preparation on
a quantum computer. Physical Review A 103, 5 (may 2021). https://doi.org/10.
1103/physreva.103.052408

[44] Wang Liao, Yasunari Suzuki, Teruo Tanimoto, Yosuke Ueno, and Yuuki Tokunaga.
2023. WIT-Greedy: Hardware System Design of Weighted ITerative Greedy
Decoder for Surface Code. In Proceedings of the 28th Asia and South Pacific
Design Automation Conference (Tokyo, Japan) (ASPDAC ’23). Association for
Computing Machinery, New York, NY, USA, 209–215. https://doi.org/10.1145/
3566097.3567933

[45] Satvik Maurya, Chaithanya Naik Mude, William D. Oliver, Benjamin Lienhard,
and Swamit Tannu. 2022. Hardware Efficient Neural Network Assisted Qubit
Readout. arXiv:2212.03895 [quant-ph]

https://doi.org/10.48550/ARXIV.2207.06431
https://quantumai.google/hardware/datasheet/weber.pdf
https://doi.org/10.48550/ARXIV.2209.01180
https://doi.org/10.48550/ARXIV.2209.01180
https://doi.org/10.1088/2058-9565/aa7d3b
https://doi.org/10.1145/3470496.3527417
https://doi.org/10.1145/3470496.3527417
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.48550/ARXIV.2208.01178
https://doi.org/10.48550/ARXIV.2208.01178
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1145/3503222.3507707
https://doi.org/10.1145/3503222.3507707
https://doi.org/10.1109/HPCA53966.2022.00027
https://doi.org/10.48550/ARXIV.2001.11427
https://doi.org/10.1109/TIT.2022.3143452
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://arxiv.org/abs/1307.1740
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-12-20-605
https://doi.org/10.22331/q-2021-12-20-605
https://doi.org/10.22331/q-2022-09-21-813
https://doi.org/10.22331/q-2022-09-21-813
https://doi.org/10.1103/physrevlett.103.150502
https://arxiv.org/abs/2105.13082
https://doi.org/10.1109/ISCA45697.2020.00053
https://doi.org/10.1103/PhysRevA.102.012419
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.22331/q-2020-07-16-296
https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/0/2327/files/2019/11/QECIntro.pdf
https://cpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/0/2327/files/2019/11/QECIntro.pdf
https://doi.org/10.48550/ARXIV.1108.5738
https://doi.org/10.1103/prxquantum.2.030305
https://doi.org/10.1103/physreva.103.052408
https://doi.org/10.1103/physreva.103.052408
https://doi.org/10.1145/3566097.3567933
https://doi.org/10.1145/3566097.3567933
https://arxiv.org/abs/2212.03895

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Vittal, Das, andQureshi

[46] Ramon Overwater, Masoud Babaie, and Fabio Sebastiano. 2022. Neural-Network
Decoders for Quantum Error Correction using Surface Codes:A Space Exploration
of the Hardware Cost-Performance Trade-Offs. arXiv:2202.05741 [quant-ph]

[47] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature communications 5
(2014), 4213.

[48] Gokul Subramanian Ravi, Jonathan M. Baker, Arash Fayyazi, Sophia Fuhui Lin,
Ali Javadi-Abhari, Massoud Pedram, and Frederic T. Chong. 2022. Have your
QEC and Bandwidth too!: A lightweight cryogenic decoder for common / trivial
errors, and efficient bandwidth + execution management otherwise. https:
//doi.org/10.48550/ARXIV.2208.08547

[49] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and
Matthias Troyer. 2017. Elucidating reaction mechanisms on quan-
tum computers. Proceedings of the National Academy of Sciences
114, 29 (2017), 7555–7560. https://doi.org/10.1073/pnas.1619152114
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1619152114

[50] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D.
Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit,
K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz. 2021. Realization
of Real-Time Fault-Tolerant Quantum Error Correction. Phys. Rev. X 11 (Dec
2021), 041058. Issue 4. https://doi.org/10.1103/PhysRevX.11.041058

[51] T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer. 2022. Numerical
Implementation of Just-In-Time Decoding in Novel Lattice Slices Through
the Three-Dimensional Surface Code. Quantum 6 (May 2022), 721. https:
//doi.org/10.22331/q-2022-05-24-721

[52] Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer
memory. Physical review A 52, 4 (1995), R2493.

[53] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review (1999).

[54] Samuel C. Smith, Benjamin J. Brown, and Stephen D. Bartlett. 2022. A local
pre-decoder to reduce the bandwidth and latency of quantum error correction.
https://doi.org/10.48550/ARXIV.2208.04660

[55] Matthias Steffen, Jerry Chow, Sarah Sheldon, and Doug McClure. 2022. IBM
Quantum’s highest performant system, yet. https://research.ibm.com/blog/eagle-
quantum-error-mitigation

[56] Neereja Sundaresan, Theodore J. Yoder, Youngseok Kim, Muyuan Li, Edward H.
Chen, Grace Harper, Ted Thorbeck, Andrew W. Cross, Antonio D. Córcoles, and
Maika Takita. 2022. Matching and maximum likelihood decoding of a multi-
round subsystem quantum error correction experiment. https://doi.org/10.48550/
ARXIV.2203.07205

[57] Yu Tomita and Krysta M. Svore. 2014. Low-distance surface codes under realistic
quantum noise. Physical Review A 90, 6 (Dec 2014). https://doi.org/10.1103/
physreva.90.062320

[58] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2021. QECOOL: On-Line Quantum Error Correction with a Supercon-
ducting Decoder for Surface Code. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). 451–456. https://doi.org/10.1109/DAC18074.2021.9586326

[59] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2022. NEO-QEC: Neural Network Enhanced Online Superconducting
Decoder for Surface Codes. https://doi.org/10.48550/ARXIV.2208.05758

[60] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2022. QULATIS: A Quantum Error Correction Methodology toward Lat-
tice Surgery. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 274–287. https://doi.org/10.1109/HPCA53966.2022.00028

[61] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding,
and Yuan Xie. 2022. A Synthesis Framework for Stitching Surface Code with
Superconducting Quantum Devices. In Proceedings of the 49th Annual Inter-
national Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 337–350.
https://doi.org/10.1145/3470496.3527381

https://arxiv.org/abs/2202.05741
https://doi.org/10.48550/ARXIV.2208.08547
https://doi.org/10.48550/ARXIV.2208.08547
https://doi.org/10.1073/pnas.1619152114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1619152114
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.22331/q-2022-05-24-721
https://doi.org/10.22331/q-2022-05-24-721
https://doi.org/10.48550/ARXIV.2208.04660
https://research.ibm.com/blog/eagle-quantum-error-mitigation
https://research.ibm.com/blog/eagle-quantum-error-mitigation
https://doi.org/10.48550/ARXIV.2203.07205
https://doi.org/10.48550/ARXIV.2203.07205
https://doi.org/10.1103/physreva.90.062320
https://doi.org/10.1103/physreva.90.062320
https://doi.org/10.1109/DAC18074.2021.9586326
https://doi.org/10.48550/ARXIV.2208.05758
https://doi.org/10.1109/HPCA53966.2022.00028
https://doi.org/10.1145/3470496.3527381

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Quantum Error Correction and Surface Code
	2.2 Minimum Weight Perfect Matching (MWPM) Decoding
	2.3 Prior Works on Hardware-Based Decoding

	3 Evaluation Methodology
	3.1 Surface Code Parameters
	3.2 Noise Model
	3.3 Baseline: Software BlossomV implementation of MWPM
	3.4 Simulation Infrastructure

	4 Astrea: Key Insights
	4.1 How do errors manifest in surface codes?
	4.2 Insight #1: Most syndromes are low weight
	4.3 Insight #2: Low Hamming weight syndrome vectors only have limited perfect matchings

	5 Astrea: Design
	5.1 Global Weight Table
	5.2 Evaluating Common Case Syndrome Vectors
	5.3 Decoding Less Common Cases
	5.4 Astrea Overheads and Latency
	5.5 Logical Error Rate for Astrea
	5.6 Comparison With Prior Works
	5.7 Limitations of Astrea

	6 Astrea-G: Key Insights
	6.1 Insight #1: Filter Unlikely Weights
	6.2 Insight #2: Search from Low to High Weights

	7 Astrea-G: Design
	7.1 Organization of the Matching Pipeline
	7.2 Astrea-G's Performance and Latency
	7.3 Analyzing Impact of the Weight Threshold
	7.4 Extending Astrea-G to Distance 9 Codes
	7.5 Storage Overheads of Astrea-G
	7.6 Syndrome Bandwidth Requirements
	7.7 FPGA Utilization and Latency

	8 Related Work
	8.1 Decoders
	8.2 Demonstrations of QEC

	9 Discussion
	10 Conclusion
	Acknowledgments
	A Appendix
	A.1 Evaluating Astrea-G for Larger Distance

	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Experiment workflow
	B.6 Evaluation and expected results
	B.7 Experiment customization
	B.8 Notes
	B.9 Methodology

	References

