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ABSTRACT
Near-term quantum computers do not have the ability to perform
error correction. Such Noisy Intermediate Scale Quantum (NISQ)
computers can produce incorrect output as the computation is
subjected to errors. The applications on a NISQ machine try to infer
the correct output by running the same program thousands of times
and logging the output. If the error rates are low and the errors
are not correlated, then the correct answer can be inferred as the
one appearing with the highest frequency. Unfortunately, quantum
computers are subjected to correlated errors, which can cause an
incorrect answer to appear more frequently than the correct answer.

We observe that recent work on qubit mapping (including the
recent work on variation-aware mapping) tries to obtain the best
possible qubit allocation and uses it for all the trials. This approach
significantly increases the vulnerability to correlated errors – if the
mapping becomes susceptible to a particular form of error, then
all the trials will get subjected to the same error, which can cause
the same wrong answer to appear as the output for a significant
fraction of the trials. To mitigate the vulnerability to such correlated
errors, this paper leverages the concept of diversity and proposes
an Ensemble of Diverse Mappings (EDM). EDM uses diversity in
qubit allocation to run copies of an input program with a diverse
set of mappings, thus steering the trials towards making different
mistakes. By combining the output probability distributions of the
diverse ensemble, EDM amplifies the correct answer by suppressing
the incorrect answers. Our experiments with ibmq-melbourne (14-
qubit) machine shows that EDM improves the inference quality by
2.3x compared to the current state-of-the-art mapping algorithms.

CCS CONCEPTS
• Hardware: Quantum technologies;

KEYWORDS
Quantum Compilers, Correlated Errors, NISQ
ACM Reference Format:
Swamit S. Tannu and Moinuddin Qureshi. 2019. "Ensemble of Diverse Map-
pings:Improving Reliability of Quantum Computers by Orchestrating Dis-
similar Mistakes" . In The 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3352460.3358257

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358257

1 INTRODUCTION
Near-term quantum computers face significant reliability chal-
lenges as the qubits are extremely fickle and error-prone. Further-
more, with a limited number of qubits, implementing quantum error
correction (QEC) may not be possible as QEC require 20 to 50 phys-
ical qubit devices to build a single fault-tolerant qubit. Therefore,
fault-tolerant quantum computing is likely to become viable only
when we have a system with thousands of qubits. In the meanwhile,
the near-term quantum computes with several dozens of qubits are
expected to operate in a noisy environment without any error cor-
rection using a model of computation called as Noisy Intermediate
Scale Quantum (NISQ) Computing [35].
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Figure 1: Output of Bernstein-Vazirani with 2-bit key on (a)
Ideal machine (b) NISQ machine providing a correct answer
(c) NISQ machine providing a wrong answer

The NISQ machines can produce an incorrect output as the
computation is subjected to errors. Therefore, to infer the correct
answer, the program is run thousands of the times on the NISQ
machine to produce a probability distribution of the possible output
states. This distribution is analyzed to infer the correct answer,
for example, by selecting the most frequently occurring output.
Consider the Bernstein-Vazirani (BV) algorithm that allows the
program to infer the hidden key in a single shot. On an idealized
machine, this program will provide the correct answer with a prob-
ability of 1, as shown in Figure 1(a). However, if we execute BV
on a NISQ machine, then we will get the correct answer for some
trials and wrong answer for others. Figure 1(b) shows the output
distribution for BV, where the correct answer occurs with 30% prob-
ability and the most dominant incorrect answer occurs with 25%
probability. The correct answer can be inferred by selecting the
most frequent output. Unfortunately, the NISQ machine can have
correlated errors that cause the same incorrect answer to appear
with a high frequency. Inferring the correct answer can become
challenging in such scenarios. For example, consider Figure 1(c),
where the correct answer still occurs with 30% probability, but one
of the incorrect answers occurs with 35% probability. We observe
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Figure 2: Bernstein-Vazirani using (a) Single best mapping (b) Ensemble of Diverse Mappings (EDM), running two allocations
and merging the outputs (EDM infers correct answer even if both mappings have a dominant incorrect answer).

that the task of inferring the correct answer can be achieved via
two means: increasing the probability of the correct answer or by
reducing the probability of the dominant wrong answer. Recent
work on qubit allocation policies (swap minimizing or variation-
aware) have focused on the former, whereas, in this paper, we focus
on the latter.

Qubit allocation policies deal with the problem of assigning the
program qubits to the physical qubits (qubit assignment) and mov-
ing the qubit from source to destination for performing two-qubit
operations (qubit routing). Qubit allocation policies have a signifi-
cant impact on the reliability of the NISQ machine as these policies
can determine the number of operations required to execute a given
program. Routing of the qubit from source to destination is typically
accomplished by inserting additional SWAP instruction that can
swap two neighboring qubits. Recently proposed qubit mapping
policies try to minimize the number of SWAP instructions. Recent
studies have also investigated variation-aware qubit mapping poli-
cies that try to use the strongest qubits and links (the ones with
lowest error rates) to perform the computation. All of the prior
proposals on intelligent qubit mapping (both SWAP minimizing
and variation-aware) try to determine the best mapping and use
that mapping for running all of the trials on the NISQ machine.
Unfortunately, such an approach also makes the application vul-
nerable to correlated errors – if the computation is subjected to a
particular error, the computation for all of the trials will continue
to be performed on the same set of qubits and links, causing the
same erroneous output to occur for a large number of trials.

To mitigate the vulnerability to such correlated errors, this pa-
per leverages the concept of diversity,1 and proposes Ensemble of
Diverse Mappings (EDM). EDM is based on the insight that rather
1We note that when a team is formed with members of very similar skills and back-
grounds, then all the members may share the same blind-spot and the team overall
becomes vulnerable to that blind-spot. Whereas, when teams are formed with members
of a diverse set of skills and backgrounds, then each member may have a different
blind-spot, which may not be present in the other team members, making the overall
group more resilient to such blind-spots.

than having all the trials be subjected to the same sources of errors,
split the trials into multiple groups, and have a different mapping
for each group so that the trials in each group get subjected to
different sources or errors and hence different incorrect outputs.
For example, consider the scenario is shown in Figure 2(a) where
the baseline performs N trials using the best mapping and still ob-
tains an incorrect output. EDM splits the N trials into two groups
and uses a different mapping (best and the second-best) for these
groups. Even though both of these groups individually produce
an incorrect answer with the highest probability, these incorrect
answers are different – so when we merge the output distributions,
the incorrect outputs end up getting attenuated, and the correct
answer ends up getting accentuated. Even though the two groups
individually failed to produce the correct answer, the diversity in
EDM allows the ensemble to infer the correct answer. While we
explain EDM with two mappings, EDM can be implemented with
more than two mappings. For our studies, we use EDM with four
mappings, with each mapping used for one-quarter of the trials.

We note that while EDM increases the likelihood that the system
is able to infer the correct answer, it does so by reducing the am-
plitude of the dominant incorrect answers and not by proactively
increasing the amplitude of the correct answer. To analyze the im-
pact of our solution on the ability of the NISQ machine to infer
the correct answer, we introduce a metric termed as the Inference
Strength (IST), which is the ratio of the frequency of the correct
answer to the frequency of the most frequently occurring wrong
answer. When IST exceeds 1, the system can infer the correct an-
swer but not otherwise, and this is true regardless of the probability
of the correct output. Thus, IST is an intuitive metric to reason
about inference. Our evaluations on ibmq-melbourne, show that
IEDM improves the IST by up to 1.6x.

Our EDM implementation gives equal weights to the output
produced by each of the mappings. We observe that further robust-
ness against correlated errors can be obtained by weighing each of
the output distribution differently, depending on the measure of
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divergence (diversity) of the output that it produces compared to
the other outputs in EDM. We proposeWeighted EDM (WEDM) that
is based on this insight of non-uniform weights. Our evaluations
on ibmq-melbourne show that WEDM increase the IST by up to
2.3x. Overall, our paper makes the following contributions:

(1) We observe that current quantum machines can have cor-
related errors and mitigating correlated errors can improve
the ability of the NISQ machine to infer the correct answer.

(2) We propose Ensemble of Diverse Mappings (EDM) to tolerate
correlated errors. Rather than using a single mapping for
all the trials, EDM splits the trials into groups and applies a
diverse mapping to each group.

(3) We proposeWeighted Ensemble of Diverse Mappings (WEDM)
that places different weights to the output produced by each
mapping, depending on the divergence. WEDM further im-
proves reliability compared to EDM.

2 BACKGROUND
The last five years represent a significant milestone in the his-
tory of quantum computing, where the field has moved from the-
oretical ideas and single-qubit demonstrations to having several
systems with dozen or more qubits. Several industry labs have
announced blueprints for quantum computers with few dozens
of qubits [2, 20, 21]. The available quantum computers provide a
unique opportunity to understand the exact types of errors and
behaviors that happen on a real quantum device and enable effi-
cient solutions that are based on exploiting this understanding of
errors. Quantum computation is based on two key principles: su-
perposition and entanglement. Quantum algorithms leverage these
principles to perform operations and can solve problems that are
intractable on conventional machines. Unfortunately, qubits are
susceptible to errors.

2.1 Errors in Quantum Computers
Qubits can encounter Coherence-errors, Gate-errors, and State
Preparation and Measurement (SPAM) errors.
Coherence Errors: Coherence errors result from a natural ten-
dency of qubit devices to attain the lowest possible energy state.
Coherence errors are analogous to retention errors in conventional
systems. However, conventional computers are only subjected to
bit-flip errors, whereas, quantum computers can experience both bit-
flip and phase flip errors [8]. Coherence times for current quantum
computers is quite small. For example, on IBM quantum computers,
T1 coherence time (that affects the probability of bit-flips) is about
50µS. Whereas, T2 coherence time (that affects the probability of
phase-flip error) is about 30µS.
Gate Errors:Quantum operations or gatesmanipulate the state of a
qubit. Unfortunately, quantum gates are not perfect as performing
operations on qubits can result in undesired state changes. For
example on an IBM quantum-computer, single qubit gate that is
used to manipulate the state of an individual qubit can encounter
an error with a probability of 0.1% such that there is about one in
thousand chance that single qubit gate operation would produce an
undesired state change. Whereas, a two-qubit gate that entangles
the state of two quantum bits, show an average error rate of 4%

on IBM quantum computers. The two-qubit operational errors are
one of the most dominant forms of errors on quantum computers
as they limit the number of operations we can perform before a
program encounters an error.
SPAMErrors: Current quantum computers are susceptible to State
Preparation and Measurement (SPAM) Errors. For instance, on IBM
machine, all qubits are initialized to "|0⟩" state at the beginning of
the program. Unfortunately, there is small chance that a qubit may
not be correctly initialized. This is known as state preparation error.
Similarly reading the state of a qubit can be erroneous. Qubit is a
superposition of two basis states:|0⟩ and |1⟩. When measured, qubit
produces a binary output: either 1 or 0 depending on the degree
of superposition. Unfortunately, the process of measurement is
erroneous as sensing the state of the qubit is challenging due to the
extremely low energy associated with the qubit. On IBM machines,
average qubit measurement error rate is 8%, whereas the worst case
measurement error rate can be up to 30%.

2.2 NISQ Model for Quantum Computing
Near-term quantum computers with few hundreds of qubits can
not leverage error correction even for an application requiring
few dozens of logical qubits. However, there is hope that some
important class of applications (such as discrete optimization and
quantum chemistry simulations) can still be viable with Noisy and
Intermediate-Scale Quantum (NISQ) [27] model of computing.

In NISQ model, a program can produce incorrect output as there
are no formal guarantees of fault-tolerance. To produce correct
output, a program must be executed for multiple trials, and the
output for each trial is logged. The output log for a NISQ program
is a collection of both correct and incorrect answers. We can infer
the correct results by analyzing the output log. If errors on NISQ
computers are independent and occur with a low error rate, then
the correct answer will appear with the highest frequency. Un-
fortunately, existing NISQ machines are susceptible to correlated
errors that produce few incorrect answers more frequently than
the correct answer.

2.3 Qubit Allocation Problem
The computational power of quantum computers (QC) stem from
the ability to produce entangled qubit states. Qubits can be en-
tangled using a two-qubit gate such as CNOT. However, for su-
perconducting qubits, such as IBM quantum computers, we can
perform two-qubit gate if the qubits are physically connected via
a coupling resonator. Unfortunately, due to complex design and
large area required for coupling resonators, we can not build a
solid-state quantum computer with all to all connectivity. Existing
QC uses limited connectivity such that only neighboring qubits are
connected using coupling resonators.

It is possible to entangle physical qubits without a direct connec-
tion by moving qubit data from one device to another. For example,
we can use SWAP-gate that move qubit state from one physical
qubit to another physical qubit. By using the sequence of SWAP
gates, we can facilitate an entanglement between any two qubits
on a quantum computer with limited connectivity. Unfortunately,
SWAP operations are unreliable (with average error rate of 8% to
11% on IBM machines) and inserting extra SWAP operations can



MICRO-52, October 12–16, 2019, Columbus, OH, USA Tannu andQureshi

degrade the reliability of an application. To mitigate this problem,
prior works [38, 48, 49] have developed qubit allocation algorithms
that search for program qubit to physical qubit mapping that reduce
the number of SWAP operations.

2.4 Variation-Aware Qubit Mapping
The different qubits and links of a NISQ machines can have widely
varying error rates as not all qubits have the same level of vul-
nerability to errors, and this variation in error rates has a large
impact on the reliability of NISQ applications [13, 28, 31, 40]. For
example, if we can map a program on the most reliable qubit, then
the probability of errors can be reduced significantly (up to 10x).
Especially for a class of NISQ programs that use less than available
physical qubits, a programmer can choose the most reliable qubits
to improve the reliability. Moreover, we can extend the idea of
variation-aware allocation to qubit movement. For example, SWAP
operations are unreliable and show significant variation in relia-
bility (up to 20x on IBM-Q14), by using quantum links with high
reliability and avoiding links with low reliability the system can
reduce the impact of noise on NISQ machines. This makes the over-
all system reliability be dictated less by the worst-case qubits and
links, and more by the average-case qubits and links.

To enable variation-aware techniques, we need error characteri-
zation data that describe the error rates for all the qubits and the
links on a quantum computer. Fortunately, the error rates can be
evaluated using randomized bench-marking and gate tomography.
For IBM machines the error rates are evaluated after every calibra-
tion cycle, and the error characterization data is available to the
programmer using IBM’s qiskit API. However, the estimated error
rates are not constant as qubit are non-linear devices that can have
time-varying deviations due to drift and changing operating condi-
tions. Our experimental evaluations show the relative reliability of
collection of qubits and quantum links to largely have repeatable be-
havior. To estimate the reliability of the circuit in a variation-aware
manner, prior works have used the Estimated Probability of Success
(ESP) metric [31]. ESP for an executable can be computed by taking
a product of all the gate success rates (дs ) and measurement success
rates (ms ). The gate success rate is the probability of performing a
gate without any error, which is calculated using the gate error rate
(дe ). The measurement success rate (ms ) captures the probability
of performing all measurements without any error. ESP is given by
the equation below. Variation-aware mapping scheme tries to find
the mapping that has the highest ESP. We use a variation-aware
mapping policy as our baseline.

ESP =

Nдates∏
i=1

дsi ∗

Nmeas∏
j=0

ms
i

дsi = (1 − дei ) ms
i = (1 −me

i )

2.5 The Inference Problem for NISQ
A NISQ machine is subjected to errors. Therefore, to infer the right
answer, the given program is run for thousands of trials, and the
output of each trial is logged. In the end, we get an output proba-
bility distribution that is influenced by both correct and incorrect

answers. The task of inferring the correct answer becomes challeng-
ing at high error rates. For example, if the error rate is small, then
the correct answer would appear with the highest frequency. As
qubit error rate increases the likelihood of correct answer decreases
significantly such that the incorrect answers may be produced as
frequently as correct answers.

We can improve the inference quality of the NISQ machine by
either increasing the frequency of the correct answer or by reducing
the occurrence of the most common wrong answer. Existing map-
ping policies focus only on the first option and try to perform the
computation using the strongest qubits and links. Therefore, they
run all the trials using the mapping that maximizes the probability
of getting the correct answer.

2.6 The Challenge: Correlated Errors
We observe that even with the mapping that maximizes the ESP,
NISQ machines can fail to provide the correct answer as the most
frequently occurring outcome. In such cases, a particular incorrect
answer dominates the correct answer. The wrong answer occurring
with a high frequency happens because the computation gets sub-
jected to similar types of error repeatedly leading the same wrong
outcome. Thus, quantum computers can have correlated errors.
Current approach to performing all the trials with a single mapping
policy makes the application vulnerable to correlated errors – if
the computation is subjected to a particular error, the computation
for all of the trials will continue to be performed on the same set
of qubits and links, causing the same erroneous output to occur
for large number of the trials. Correlated errors is a real problem
on IBM quantum machines, for example, recent study reports the
correlated nature of SPAM errors [39]. In this paper we develop
solutions for addressing the correlation in the incorrect answer. We
provide the characterization for correlated errors next.

3 CORRELATED ERRORS ON NISQ
In this section, we analyze the correlation in errors on IBM’s four-
teen qubit machine (IBMQ-14) and study how the correlated errors
produce incorrect answers such that the frequency of some incor-
rect answers is more than the correct answers.

3.1 Impact of Noise on Application Reliability
IBMQ-14 suffers from high measurement and gate error-rates. To
understand the nature of errors and the impact on the system re-
liability, we execute the Bernstein-Vazirani (BV) benchmark with
a 6-bit secret key. We perform each experiment for 16 thousand
trials. Figure 3 shows the probability distribution for the different
outcomes, with the outcomes arranged from the highest frequency
of occurrence to the lowest. Notice that due to high error rates, the
probability of getting the correct answer is fairly low (2.8%) and the
output log consists all 64 possible outcomes (63 incorrect answers
plus one correct answer). Furthermore, some of the incorrect out-
puts occur with almost 1.5x the frequency of the correct answer. We
observe that the relative strength of the correct answer (probability
normalized to the most frequent incorrect answer) is only 68%, and
therefore, inferring the correct answer is not straightforward. In
the Appendix-A, we describe how correlated errors can degrade
quality of inference in NISQ model.



Ensemble of Diverse Mappings MICRO-52, October 12–16, 2019, Columbus, OH, USA

0 10 20 30 40 50 60
Rank of the of BV-6 output string 

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y 
of

 O
cc

ur
re

nc
e

Correct Answer
 Incorrect answers with 
 higher probability of 
 occurance than correct answer

Figure 3: Output probability distribution forBernstein-Vazirani (BV-6)with 6-bit hiddenkey executed on the IBM-Q14machine
(note that the states are sorted by the frequency of occurrence, from the highest to the lowest).

3.2 Correlation in Errors
To test if using the same set of qubits cause correlated errors, we
execute two sets of experiments. The first set containing eight runs
using the best mapping and the second set contains eight runs with
different mappings (top-8 mappings).
BV-6 with Single Best Mapping: We run eight copies of BV-6
with single best mapping that maximizes the reliability. To un-
derstand if the trials with single mapping produce similar incor-
rect answers, we measure the divergence or dissimilarity between
the output probability distribution using the KL-divergence. KL-
divergence estimates the distance between the pair of probability
distributions. If KL-divergence is close to zero, then the output dis-
tributions are similar. Figure 4 shows the heat map (darker shades
are close to zero, indicating similarity) that illustrates the pairwise
divergence between output probability distribution of BV-6 runs.
All non-diagonal elements (di j ) represent the divergence between
the output of ith and jth run when BV-6 is executed with the single
best mapping. Note that the pairwise KL-divergence between all the
runs are close to zero. Thus with identical mapping, NISQ programs
tend to produce similar incorrect outputs.
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Figure 4: (a) Divergence between output of eight BV-6 runs
with the strongest mapping. Dark squares indicate a value
close to zero (indicating that the distributions are close to
identical). (b) Pairwise divergence for the output of eight
copies of BV-6 that are run with eight different mappings
(light colors indicate divergent distributions).

BV-6 with Diverse Mappings: In the second experiment, we run
BV-6 benchmark with eight completely different mappings and
estimate the divergence between output probability distributions.

Figure 4 shows a heat-map corresponding to the pairwise KL di-
vergence for the eight copies of BV-6. We observe significant dis-
similarity between all the eight copies of BV-6 such that average
KL-divergence between two copies is 0.5, which is significantly
higher as compared to eight runs of single best copy with average
KL-divergence of 0.03. Furthermore, the most frequently occurring
incorrect answers show a large variation across eight copies of
BV-6. Thus by introducing diversity in the qubit mapping, we can
enable diversity in the output probability distribution. Note that
all the mappings used were within 10% of the ESP of best mapping
and the executed identical number of gates.

4 EXPERIMENTAL METHODOLOGY
In this section, we briefly describe the benchmarks, system config-
uration, and the metrics used in our work.

4.1 Benchmarks
Existing quantum computers such as publicly available IBM four-
teen qubit machine are severely limited due to noise. Due to low
coherence and high gate error rates it can execute circuits with
small number of qubits for short duration (low depth). Table 1 de-
scribe benchmarks and total number of single qubit gate operations
(SG), CNOT operations (CX), and measurement operations (M) for
the respective benchmarks.
GreycodeDecoder:Grey code decoder decodes a binary string to a
grey code string using a reversible circuit. For this benchmark, num-
ber of two qubit and measurement operations scale linearly with
number of qubits. We use six bit circuit described in Rev-Lib [34].
The greycode benchmark is used to understand the effects of cor-
related errors on shallow circuit that measure qubits in standard
basis. Moreover, greycode has identical number of measurement
and two-qubit gates, which is useful to understand if the correlation
in errors stem from measurement or two qubit operations.
Bernstein-Vazirani (BV): BV finds a n-bit binary secret encoded
in the quantum oracle by querying the oracle once. On execution,
BV outputs a binary string corresponding to the secret key. For BV,
number of two qubit and single qubit gates scale linearly with num-
ber of qubits. BV is sensitive to phase and T2 errors as it measure
qubits in Hadamard basis.We use two instances of BV to understand
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if SWAPs can cause correlated errors as BV-7 has one additional
SWAP operation compered to BV-6.
Quantum Approximate Optimization Algorithm: QAOA is a
generalized algorithm that can be used to solve combinatorial opti-
mization problems. We use QAOA to solve the max-cut problem,
which tries to partition an input graph into two subsets (S1,S2) of
nodes to maximize the number of edges between the first (S1) and
the second(S2) subset. Note that QAOA-5, QAOA-6, QAOA-7 do
not require any SWAP operations. For QAOA, number of two qubit
gates scale super linearly with number of qubits. Whereas number
of single qubit operations scale quadratically. QAOA is believed to
be robust against certain class of two and single qubit errors.
Reversible circuits:We use three reversible circuits (Fredkin gate,
two bit adder, and 2:4 decoder) to understand how correlated errors
would affect the reliability of short width circuits. For instance, all
reversible circuits use three to four qubits, but it contains more
than 10 two-qubit gates. For these circuits, T1 decoherence might
be the dominant error mechanism and such workloads can provide
insights into how decoherence can cause correlated errors.

Table 1 shows the characteristics of the benchmarks used in
our study. The terms "SG", "CX" and "M" respectively denote the
number of single-qubit, two-qubit, and measurement operations in
the workload. Workload evaluation on existing quantum computers
is severely limited due to high error rates, which limits the length
of the programs that can be run reliably on the current machines.
Therefore, similar to prior studies [28, 29, 31, 40] we perform our
experiments on small benchmarks.

Table 1: Benchmark Characteristics

Benchmark Benchmark Output Number
Name Description of Gates

Greycode Greycode decoder output: 001000 SG: 13, CX: 5, M: 6
bv-6 Bernstein-Vazirani key: 110011 SG: 13, CX: 7, M: 5
bv-7 Bernstein-Vazirani key: 1101011 SG: 13, CX: 11, M: 6
qaoa-5 max-cut 5 node graph cut: 10101 SG: 24, CX: 8, M: 5
qaoa-6 max-cut 6 node graph cut: 101010 SG: 30, CX: 10, M: 6
qaoa-7 max-cut 8 node graph cut: 10101010 SG: 36, CX: 12, M:7
Fredkin Fredkin gate output:110 SG: 26, CX: 13, M:3
adder 1bit adder output:011 SG: 12, CX: 15, M:3

Decode-24 2:4 Decoder output: 100000 SG:119, CX:71, M:6

4.2 System Configuration
For all our evaluations, we use publicly available IBM quantum
computer with fourteen qubits ibmq-16-melbourne [6]. For clarity
we refer ibmq-16-melbourne as IBMQ-14. Moreover, for all the eval-
uations, we use a variation-aware mapping policy [40] as the base-
line. As the error-characteristics of the NISQ machine can change
dramatically between two calibrations, to guarantee statistical sig-
nificance, we always execute baseline and the proposed policy for
16 thousand trials within a short succession of each other in each
round. We repeat 10 such rounds and report the improvement for
the median round.

4.3 Figure-of-Merit for Reliability
The goal of running the workload on a NISQ machine is to be
able to infer the correct answer. This can be achieved by either
increasing the probability of the correct answer or by suppressing
the strongest sets of wrong answer or both. We need reliability
metrics that account for both effects and has an intuitive implication
on what it would mean to the ability to infer the correct answer on
the NISQ machine.

The metric commonly used to indicate the reliability of a NISQ
machine is the Probability of Successful Trial (PST). PST is calculated
by computing the ratio of a number of error-free trials to the total
number of trials. PST is a good metric to compare two design points,
for example comparing an ion-trap machine with a superconduct-
ing machine [23]. Moreover, recent papers on noise adaptive and
variation-aware qubit mapping polices also use similar metrics to
capture the reliability of applications [28, 31, 40].

PST =
Number of Error Free Trials

Total Number of Trials

Unfortunately, PST does not always indicate the ability to infer
the output of a NISQ machine correctly. For example, with PST=0.2
we can have reliable inference if all incorrect answers occur with
less than 0.2 probability. However, another systemwith PST=0.2 will
be unable to infer the correct output if one of the wrong answers
is more dominant, say, for example, it occurs with 30% probability.
To account for the magnitude of both the correct and the incorrect
answers, we define a metric, Inference Strength (IST). IST is a ratio
of the frequency of correct output to the frequency of the most
commonly occurring erroneous output.

IST =
Pr (Error free output)

Pr (Erroneous output with highest frequency)

If IST exceeds 1, the system will be able to correctly infer the
output, whereas if IST is significantly lower than 1, then the wrong
answer(s) would mask out the correct answer. As our objective is to
improve the ability to infer the correct answer on a NISQ machine,
we use IST as the primary figure of merit in our evaluations.

4.4 Need for Real System Evaluations
As we perform our evaluations on a real-system, we are limited in
our evaluations to workloads that have a non-negligible probability
of being successfully executed on current machines. Alternatively,
some studies have also used simulation-based models of quantum
machines for for estimating the PST for their proposed technique.
Unfortunately, existing simulators are based on independent-and-
identically distributed (IID) model of errors and do not take into
account the correlation of errors, therefore they may be useful
for tracking PST but are unable to give reliable estimates for IST.
To understand the gap between simulation and real devices, we
executed all the workloads on IBM simulator and IBMQ-14 (real
device) and observed significant difference in the Inference Strength
(IST) of the simulator and the real system. Therefore, we do all our
evaluations on a real machine instead of using a simulator.
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each executable (4) merge the output probability distributions to create the combined output for the ensemble.

5 ENSEMBLE OF DIVERSE MAPPINGS
To mitigate the correlated errors on NISQ machines, we propose
Ensemble of Diverse Mapping (EDM). In this section, we will discuss
design and reliability improvement provided by the EDM.

5.1 Motivation
Variation-aware qubit allocation improves the reliability of NISQ
machines [28, 31, 40, 42]. However, running a NISQ application
with just one mapping can increase its vulnerability to correlated
errors. Running the program with single mapping multiple times
produces incorrect outcomes with correlated errors. To mitigate the
correlation, we need to introduce diversity in the program. One way
to introduce variety in the program is by running the input program
using a diverse set of qubit devices rather than being restricted to
always using the same program assignment for all of the trials.

To test if the diverse mappings provide better reliability, we use
BV-6 benchmark. Similar to the previous experiment, we use eight
different logical to physical mappings (A,B,C,D,E,F,G,H) to run
BV-6 on IBMQ-14 each for 16,384 trials. Figure 6 shows the IST for
BV-6 with different mappings. IST captures the relative strength
of the correct answer compared to the incorrect answer. When we
use different mappings, we can expect variation in the reliability of
individual qubit assignments. For example, Mapping C produces
the output probability distribution with highest IST as compared
to the other mappings. However, no single mapping has the IST
exceeding 1. IST greater than one means the correct answer occurs
with the highest frequency. To test if an ensemble of mapping can
improve the IST, We execute the BV-6 for 4096 trials with mappings
A, B, C, and D and merge the output probability distributions to
generate EDM. We use 4096 trials each to match the number of
trials in the baseline that runs with the single best solution.
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Figure 6: IST for BV-6 executed with the eight different map-
pings (A-H) on IBMQ-14 and the Ensemble of Mappings
(EDM: A+B+C+D). Note that, none of the individual map-
pings have an IST ≥ 1, but the EDM has IST of 1.2.

Figure 6 shows the IST of 1.2 for BV-6 when executed with an
ensemble of qubit assignments. The Ensemble of mapping improves
the IST as incorrect answers get average out when we merge output
probability distributions that are not similar. Use of Ensembles is
one of the proven machine learning techniques that can improve
the accuracy and robustness of classification tasks [9].

EDM is inspired by the principle of maximum entropy that sug-
gests the probability distribution, which best represents the current
state of knowledge is the one with largest entropy [17]. By using di-
verse mappings, EDM tries to avoid the repeated incorrect answers
such that the incorrect results are spread across multiple outcomes.

5.2 EDM: Overview and Design
Our proposed Ensemble of Diverse Mapping (EDM) enables diversity
in the output distributions by using an ensemble of qubit mappings.
Figure 5 provides an overview of EDM. EDM contains four steps.
In the first step, a compiler generates the best initial mapping and
SWAP schedule for a given input program using coupling map
(network topology) of a quantum computer and the error rate char-
acterization data. In the second step, we use the initial mapping, and
find all the isomorphic sub-graphs for the given quantum computer,
and rank the sub-graphs as per the Estimated Success Probability
(ESP). EDM picks the top "k" sub-graphs based on the ESP. In the
third step, we re-compile the program by using the ensemble of
initial mappings (M1,M2, ...,Mn ) to produce an ensemble of exe-
cutable (E1,E2, ...,En ), and run all executable on a NISQ machine as
shown in the Figure 5, to produce set of output probability distribu-
tions (O1,O2, ...On ). Finally, we merge the probability distributions
of all the members in the Ensemble to generate the final result.

For the first step, EDM can use any variation-aware quantum
compiler. In this paper, we use variation-aware qubit mapper that
uses A* search with reliability-aware heuristics proposed by [40, 48].
Furthermore, we use ESP as a cost function to select the strongest
mapping on IBMQ-14 [31]. ESP incorporates measurement and
single qubit gate errors. We also use benchmark specific heuristics
to ensure optimal mapping. For example, a path graph satisfies the
CNOT constraints for QAOA such that no SWAPs are required to
perform QAOA. We verify the cost of all the mappings by using a
brute force search to check the optimally of the mapping. For BV
and QAOA, our compiler produces an optimal mapping.

To generate the Ensemble of initial qubit assignments, we need
to ensure that the selected mapping has high reliability. When
assigning program qubits to physical qubits, two major factors
impact the output reliability: measurement errors and two-qubit
gate errors. To leverage the mapping produced by the variation-
aware mapper, we use graph isomerism to transfer the mapping
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Figure 7: Improvement in IST with EDM, compared to single-best mapping. EDM has significantly higher IST compared to the
best single mapping (both: that is estimated at compile time and the one that is observed at runtime)

from one set of qubits to another set of qubits. We search for all
isomorphic sub-graphs, on the IBMQ-14 coupling graph using VF2
algorithm [5]. Once we have the list of all isomorphic graphs, we
compute ESP and select the sub-graphs with highest ESP.

For the final step of producing the combined probability distribu-
tion, we use a simple average to merge the probability distributions
of all of the members in the Ensemble.

5.3 Why Select the Top-K Mappings?
Variation aware allocation policies use compile-time information to
estimate reliability (ESP). However, maximizing the ESP at compile
time may not always result in maximizing the PST at runtime, as
the behavior of the devices can change unpredictably at runtime.
similar. Figure 8 shows ESP and the corresponding PST after eval-
uation for eight maps used for BV-6. There is a good correlation
between ESP and PST. However, this correlation is not perfect. For
example, Map-A is estimated to be the best mapping at compile-
time; yet, at runtime, Map-C has the highest PST. Moreover, picking
mapping with highest ESP cannot guarantee the highest IST. As
error calibration data used to estimate ESP is not perfect due to
temporal variations in qubit reliability and error-rates can change
substantially due to cross-talk. Nonetheless, there is a good corre-
lation between mappings that are good at compile time with the
mappings that produce the highest PST at the runtime. Hence, we
use the top K mappings to generate our Ensemble for EDM.
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Figure 8: Comparing estimated reliability (ESP) at compile-
time and observed reliability (PST) at run-time for BV-6with
eight different qubit mappings.

Our evaluations also show a weak correlation between PST and
IST. For example, a slight improvement in PST for a given mapping
does not result in increase in IST as the probability of the wrong
answer can increase as well. Our analysis encountered several cases
where a mapping with the highest ESP had lower IST compared to
other mappings. We could form an ensemble of mappings that is
estimated to produce the highest IST, however, to keep the design
simple, we select the top K mappings that are deemed to have the
highest PST for forming EDM. 2

5.4 Impact of EDM on Inference Strength
EDM is designed to mitigate the correlation in errors and improve
the IST such that the frequency of individual incorrect answer re-
duces by spreading the mistakes. Figure 7 shows the improvement
in IST for QAOA and BV. We compare EDM against two different
mappings: single best mapping at compile time that is estimated us-
ing ESP and single best mapping post-execution which is evaluated
after running an ensemble of mappings. For example, as shown in
the Figure 8, we estimated Map-A as the most reliable mapping
based on its ESP. However, after running BV-6 with other mappings,
we may realize that Map-C has the highest PST. To understand if the
benefits of using Ensemble are due to diversity in the mappings or
because of uncertainty in ESP, we also compare EDM with another
baseline, single best mapping post execution, which represents the
best mapping encountered at runtime. For example, this would be
Map-C, as shown in the Figure 8.

The ensemble ofmappings not only outperforms the best-estimated
mapping at the compile time but also beats the best-single mapping
encountered at runtime. This suggests that uncertainty in ESP is
not a key reason behind the success of EDM. As for QAOA-5, the
estimated best mapping at compile time is identical to the mapping
at runtime, and even then EDM outperforms the baselines. EDM
increases the entropy of output distribution such that, for the re-
sulting output probability distributions, errors are spread across
multiple possible incorrect answers.

2In extreme cases, the noise profile of the machine can change quickly, and cause the
output distribution to be close to uniform. We can identify such cases by computing
the relative standard deviation (σ /µ ) of the probability distribution, comparing it with
that of the uniform distribution, and discarding the results if the distance is quite small.
We found such a strategy to be quite useful under such cases of extreme noise.
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5.5 Impact of Ensemble Size
There is an inherent trade-off in ensembles selection. By increasing
the size of Ensemble, we can introduce more diversity, but at the
same time, we expose the program to relatively unreliable qubits.
Finding the right size of an ensemble is especially crucial for the
IBM machine, as it shows high variability in error rates. Our default
implementation of EDM uses four mappings in the Ensemble. The
number of ensembles is dictated by our ability to find the initial
mapping that has similar SWAP cost and the ESP. EDM finds the
graphs that are isomorphic to the initial mapping produced by the
baseline. For IBMQ-14 due to limited connectivity, and high vari-
ability3 in error rate, we observe that number of strong ensembles
are limited two to four.
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Figure 9: Sensitivity of EDM to the number of members in
the Ensemble. With increasing ensemble, computation gets
mapped to weaker qubits. Hence the benefit of EDM with
larger ensemble size starts to reduce.

We evaluate the sensitivity of EDM to the number of members in
the Ensemble. We form Ensemble with two mappings (EDM-2), four
mappings (EDM-4, default), and six mappings (EDM-6) and run the
workloads with the differently sized ensembles. Figure 9 shows the
IST of the EDM with varying ensemble sizes. We observe that with
only two members in the Ensemble, we do not add enough diversity,
and in fact, the other copy can reduce the overall PST slightly for
some cases and reduce the IST compared to even the baseline (BV-7
and QAOA-5). When the Ensemble contains four members, there
is a good balance between the increase in diversity and the loss
of PST. Overall we see significant improvement in IST. When the
Ensemble contains six members, the mapping is forced to choose
qubits that may have significantly lower reliability than the best
qubits, and the overall degradation of PST is significantly greater
than the gain from combining the diverse outputs. Therefore, in our
experiments, we use a default size of 4 members in the Ensemble to
balance both the increase is diversity and the pitfall of being forced
to use more unreliable qubits for computation.

Note that the best number of ensembles will depend on the
machine and the correlation in errors on that machine. So, there is
no single best number of members in EDM that will always work
well across variety of machines. We would recommend that users
of EDM perform sensitivity while deciding the ensemble size.

3IBM-Q14 machine has two significantly noisy qubits Q12 and Q11 with readout
error-rates up to 30%, we avoid using these qubits, which puts more constraints on
finding a right isomorphic subgraph

6 WEIGHTED EDM
One of the limitations of our proposed implementation of EDM
is that the members of the ensemble are based on prioritizing the
maximization of ESP rather than maximizing the diversity in form-
ing the ensemble. Therefore, outputs of some of the mappings can
have a similar output probability distribution if mappings in an
ensemble have a common set of qubits. Unfortunately, on existing
IBM machine, due to a large variation in error rates, and a small
number of qubits finding two sub-graphs that use a completely
different set of qubits but have comparable ESPs is challenging. The
effectiveness of EDM stems from the diverse set of outputs, and
even a few unique qubit mappings can produce diverse incorrect
answers. For example, in the case of BV-6, all the eight mappings
had two to three common qubits. However, the diversity of the
output was significant as illustrated by the Figure 4(b). Moreover,
for all eight mappings, the common qubits are the strongest qubits
that are less likely to produce errors. It might be possible to have
enough diversity with few common qubits between two mappings
in an ensemble.

6.1 Design of Weighted EDM
To maximize the diversity without deteriorating the reliability, we
proposeWeighted Ensemble of Diverse Mappings (WEDM). Weighted
EDM uses runtime information to maximize the diversity in the out-
put probability distributions. In essence, it is risky to improve diver-
sity at compile time by picking mapping with lower ESP. Whereas,
we can solve this problem more efficiently at runtime. For instance,
we can evaluate the diversity in the probability distributions and
then perform scaling operation to increase the diversity. In contrast
to EDM where we merge output probability distributions with iden-
tical weights, WEDM uses weighted average such that the weight
is proportional to the cumulative mutual entropy of the output as
shown in the Figure 10.
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Figure 10: Design of Weighted EDM (WEDM)

The cumulative entropy of the output represents the uniqueness
of the output probability distribution. For example, if we have four
member ensemble with A, B, C, and D, we would calculate the
KL-divergence of A with B, C, and D respectively and average these
three values. The output of A will receive this weight before getting
merged with the aggregated output distribution. A similar process
will be repeated for B, C, and D. In the Appendix-B, we describe
how to calculate weights in WEDM.
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6.2 Impact of WEDM on Inference Strength
Figure 11 shows the improvements in IST with EDM and WEDM.
WEDM improves the IST by up to 2.3x over the estimated single best
mapping such that the correct answer has 1.73x higher likelihood
compared to the incorrect answer. Both WEDM and EDM not only
outperformed the estimated best mapping at compile time, but
also showed improvements even over the single best mapping that
we would have picked if we knew the behavior at runtime. With
WEDM, all the workloads enter a regime where the correct answer
has the highest frequency of occurrence. Thus achieving our goal
of having higher confidence in the inference for NISQ.
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Figure 11: IST improvement with EDM and Weighted EDM
(WEDM) over the baseline which uses the single best alloca-
tion for all of the trials. EDM andWEDMprovide significant
improvement in system reliability.

Using ensembles, we improve the IST but we can degrade the
PST slightly as we use mappings that are not the most optimal
when running EDM and WEDM. In both EDM and WEDM, at the
end of the execution, we combine output probability distributions
such that each entry in the distribution is averaged. The PST of
an ensemble is bounded by the best and worst mapping in an
ensemble. As we scale the workload, small improvements in PST or
degradation does not change the effectiveness of NISQ applications.
Whereas, improving the IST can correlate with the ability of the
NISQ machine to infer the correct answer.

7 RELATEDWORK
Early papers on qubit allocation focused on compilation techniques
that eliminate redundant gates and minimize the number of SWAPs
on solid state quantum computers [1, 14, 22, 25, 32, 33, 36, 38, 45,
48]. In recent papers, however, the focus has shifted to machine
specific challenges such as variations in gate and coherence error
rate [13, 28, 31, 40]. The philosophy behind the variation-aware
and noise adaptive qubit allocation is that the distribution of errors
across qubits is unequal with some qubits being more susceptible
to errors than others, so application reliability can be improved by
performing computation on the strongest set of qubits and links.

To tolerate noise, researchers are developing and benchmarking
algorithms that are inherently resilient to noise, and require less
number of resources [7, 12, 47]. Theorists have proposed applica-
tion specific techniques [11, 16, 18, 19, 43, 44] for error mitigation.
Another promising area to mitigate errors is by the use of low cost
detection codes [15]. Prior works study the characteristics of the
IBM machines to understand the fault-mechanisms [37].

In our concurrent work [41], we highlight the problem of data
dependent bias in measurement errors. Our evaluations on IBM

hardware show directional bias in measurement errors such that
when measuring a qubit that is in state "1" we are more likely to
encounter an error as opposed to measuring a qubit in state "0".
Unfortunately, the bias can significantly degrade both the PST and
IST. In particular, IST is affected because the incorrect answers with
lower Hamming weight can occur more frequently than correct
answer. To mitigate the measurement bias, we propose Invert-and-
Measure: that transforms the weak state ("111...1") to strong state
("000...0") by performing qubit inversion right before performing
measurement operation. Similar to EDM, the trails are split into
groups that perform measruement on a diverse set of basis states.

In near future, we can expect an experimental evidence of quan-
tum advantage [46]. However, developing practical applications
using quantum computers is still an open problem [30]. Access
to NISQ hardware via commercial cloud services has invigorated
the development of practical applications [3, 10, 26]. This gives us
a perfect opportunity to build compiler solutions, programming
languages, and systems tools to enhance reliability, performance
and usability of quantum computers [4, 24].

8 CONCLUSION
The arrival of quantum computers with dozens of qubits will enable
a better understanding of the impact of qubit errors on applications.
This can help us in developing efficient solutions to mitigate errors.
In NISQ computing model, the program is run thousands of times,
and the output log is used to infer the outcome. The ability to infer
the correct outcome depends on both the probability of the correct
outcome and the probability of the most-frequently occurring in-
correct outcome. In this paper, we focus on the latter to improve
the ability to infer the correct answer on NISQ machines.

Existing qubit allocation schemes search for one best mapping,
and this mapping is used for all the trials. Unfortunately, such
a method is vulnerable to correlated errors. The correlation in
errors causes a few wrong answers to repeat for a large number
of trials. To mitigate correlated errors, we leverage the principle
of diversity, and propose an Ensemble of Diverse Mappings (EDM).
With EDM, the total number of trials are divided into multiple
groups and a different mapping is applied to each group. To keep
the implementation of EDM simple, we use the top-4 mappings
produced by the underlying mapping policy. We show that with
EDM, the magnitude of the dominant wrong answer decreases and
the reliability of the NISQ system increases by up to 1.6x.

EDM merges the probability distributions generated by each of
the mappings using an equal weight. We make an observation that
the runs that have similar output have less information than the
runs that have different outputs. Based on this insight, we propose
Weighted Ensemble of Diverse Mappings (WEDM) that scales the
output distributions generated by each of the mappings with a
diversity score. WEDM improves reliability by up to 2.3x.

The key idea in our paper is to have multiple versions of the
same quantum program, each tailored for a diverse set of mistakes.
In this paper, we specifically use mapping policies to create such
diverse programs. However, there are other sources of program
transformations that can provide diversity as well. Exploring such
diversification of quantum programs using alternative program
transformations is a part of our future work.
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APPENDIX-A: ANALYZING CORRELATION IN
ERRORS VIA BUCKETS-AND-BALLS ANALYSIS
To understand the impact of correlated errors on the inference
quality of a NISQ machine, we use buckets and balls analysis.

A.1 Execution on NISQ as Buckets-and-Balls
The output of NISQ programs can be analyzed as buckets and ball
problem. On NISQ machines, running a program that outputs m-bit
string for N trials is equivalent to throwing N balls at the M buckets
whereM = 2m . In this experiment, we have two types of buckets:
green bucket that represents the correct answer and red buckets
that represent all possible incorrect answers. We don’t know the
green bucket, but we can guess it by throwing a large number of
balls and tracking the bucket with the most number of balls.

Ball is 
thrown

Ball lands in 
green bucket

Ball lands in 
any of (M-1) 
red buckets

Ps 1-Ps

(a)

Ball is 
thrown

Ball lands in 
green bucket

Ball lands in 
any K purple 

buckets 

Ps

1-Ps

(b)

Ball lands in 
any (M-K-1) 
red buckets 

Demon
intercepts

Qcor1-Qcor

Figure 12: Buckets and Ball Model for NISQ (a) uncorrelated
errors (b) correlated errors

A.2 Analytical Model for Uncorrelated Errors
For N balls andM buckets, if Ps is the probability of the ball landing
in a green bucket then (1 − Ps ) is the probability of the ball landing
in the any of theM − 1 red buckets as shown in Figure 12(a). With
no correlation, the likelihood of ball landing in any of the M −

1 red buckets would be identical. For large N, number of balls
in the green bucket (correct answer) would approach expected
value of a Bernoulli trial: NPs whereas number of balls in red
bucket that has highest occupancy would be at the most NPe + 2 ∗√
(N ∗ Pe ∗ (1 − Pe )) (with 95% confidence), where Pe = 1−Ps

M−1 .
We use an analytical model (confirmed with Monte Carlo simu-

lator) to understand how IST changes with Ps andM . For instance,
Figure 13 describes the relationship between IST and Ps for M=64
buckets. The uncorrelated error model suggests that even with
Ps=2%, we can distinguish the green bucket from rest as IST>1. Un-
fortunately, on real quantum computers, this model does not hold.
Figure 13 show experimental Ps and IST data (blue dots) for three
6-bit applications (QAOA-6, BV-7, Grey-code) for 120 experiments
executed on IBM-Q14 quantum computer. The experimental data
show significantly smaller IST compared to the uncorrelated model
for an identical Ps . To understand the mismatch, let’s change our
model and account for correlated errors.

A.3 Analytical Model for Correlated Errors
Correlated errors break the assumption that all incorrect answers
are equally likely. To account for correlated errors, let’s introduce
a Demon in our model. This Demon biases errors such that k out-
comes out of 2m − 1 incorrect outputs are more likely than the rest
of the 2m − k − 1 outputs. These k more likely incorrect answers
can be represented as purple buckets.

As shown in Figure 12(b) correlation-factor (Qcor ) determines
what fraction of balls land in the k purple buckets after demon
intercepts. The probability of balls hitting in the purple buckets is
(1−Ps )∗(Qcor ) and probability of ball hitting in any of the k purple
bucket is (1−Ps )∗(Qcor )

k . Figure 13 shows the result of the Monte
Carlo simulation displaying the relationship between IST and Ps
forM = 64, and k = loд(M) = 6 and range of Qcor . For simplicity,
we assume that k scales with O(loд(M)) as the correlation among
errors tend to be local.
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Figure 13: Inference Strength (IST) vs Probability of Success-
ful Trial (PST) for Buckets and ball model and experimental
data for 120 runs (each runwas evaluatedwith 8192 trials) of
QAOA-6, BV-6, and greycode-decoder on IBMQ-14 machine.

To understand the impact of correlated errors on reliability, we
compute PST frontier Using Monte Carlo simulations. PST Frontier
is the minimum PST required to infer the correct answer from given
output distribution (PST at which IST=1). For the model with no
correlation, PST frontier is at 1.8%, that means for 6-bit application
with PST>1.8%, we can always deduce the correct answer. The PST
Frontier shifts right to 3.6% with correlated errors that have weak
correlation (Qcor=10%). Moreover, it shifts even further at 8% for
strong correlation model (Qcor=50%).

Unfortunately, there is no simpleway of deducing the correlation-
factor on the real machine as it depends on the device characteristics
and the type of application that we are running. High PST frontier
degrades the effectiveness of NISQ applications like QAOA. For
example, our experiments show that QAOA-6 with baseline policy
consistently fails to meet PST Frontier criteria as it has a median
PST of 2.5% and IST of 0.78 on IBMQ-14 for 30 experimental runs.

With EDM, we reduce the correlation in the incorrect answers.
Therefore, the likelihood of the same wrong answer occurring with
a high frequency gets reduced (by a factor based on the size of the
ensemble) which can allow the machine to infer the right answer
even at a lower PST than the baseline.
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APPENDIX-B: A PRIMER ON KL-DIVERGENCE
NISQ machines can produce a probability distribution over all the
possible outputs. For our study, we are interested in measuring the
similarity (or dissimilarity) of two probability distributions. The
Kullback-Leibler divergence (or KL-divergence) is a measure of how
one probability distribution is different from another probability
distribution. We use the KL-divergence to analyze the diversity
in output distributions generated by different mappings. We also
used symmetric KL-divergence to estimate the weights for merging
the outputs of different mappings in the WEDM design. In this
Appendix, we will discuss a few illustrative examples. For example,
if we have two discrete probability distributions P and Q defined
over a state of N values, the KL divergence between P andQ, denoted
as DKL(P | |Q), is shown by Equation 1.

DKL(P | |Q) =
N∑
i=1

Pi log
Pi
Qi

(1)

For example, consider the two distributions P and Q over four
values (0-3), as shown in Table 2.

Table 2: Example Probability Distributions

Distribution 0 1 2 3

P(x) 0.2 0.3 0.4 0.1
Q(x) 0.25 0.25 0.25 0.25

Then, DKL(P | |Q) and DKL(Q | |P) can be calculated as follows:

DKL(P | |Q) = 0.2 · ln(
0.2
0.25

) + 0.3 · ln(
0.3
0.25

)

+0.4 · ln(
0.4
0.25

) + 0.1 · ln(
0.1
0.25

) = 0.046
(2)

DKL(Q | |P) = 0.25 · ln(
0.25
0.2

) + 0.25 · ln(
0.25
0.3

)

+0.25 · ln(
0.25
0.4

) + 0.25 · ln(
0.25
0.1

) = 0.052
(3)

Thus, KL divergence may not be symmetric and can not qualify
as a distance metric. However, it can be symmetrised to enable sym-
metric KL divergence (SDKL ) such that SDKL(P ,Q) = SDKL(Q, P).

SDKL(P ,Q) = DKL(Q | |P) + DKL(P | |Q) (4)

For weighted EDM (WEDM), we use symmetric KL divergence
(SDKL ) to compute resultant output probability distribution (OWEDM )
that is a weighted sum of ensemble output probability distributions
(Oi ). For N ensembles, the output probability distribution (OWEDM )
and normalized ensemble weights (W ) are evaluated as follows:

OWEDM =

i=N∑
i=0

Wi ∗Oi (5)

Wi =

j=N∑
j=0

SDKL(Oi ,O j ) & Wi =
Wi∑i=N
i=0 Wi

(6)
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