
CleanupSpec: An “Undo” Approach to Safe Speculation
Gururaj Saileshwar
gururaj.s@gatech.edu

Georgia Institute of Technology

Moinuddin K. Qureshi
moin@gatech.edu

Georgia Institute of Technology

ABSTRACT
Speculation-based attacks affect hundreds of millions of comput-
ers. These attacks typically exploit caches to leak information, us-
ing speculative instructions to cause changes to the cache state.
Hardware-based solutions that protect against such forms of attacks
try to prevent any speculative changes to the cache sub-system by
delaying them. For example, InvisiSpec, a recent work, splits the
load into two operations: the first operation is speculative and obtains
the value and the second operation is non-speculative and changes
the state of the cache. Unfortunately, such a “Redo” based approach
typically incurs slowdown due to the requirement of extra operations
for correctly speculated loads, that form the large majority of loads.

In this work, we propose CleanupSpec, an “Undo”-based ap-
proach to safe speculation. CleanupSpec is a hardware-based solu-
tion that mitigates these attacks by undoing the changes to the cache
sub-system caused by speculative instructions, in the event they are
squashed on a mis-speculation. As a result, CleanupSpec prevents
information leakage on the correct path of execution due to any
mis-speculated load and is secure against speculation-based attacks
exploiting caches (we demonstrate a proof-of-concept defense on
Spectre Variant-1 PoC). Unlike a Redo-based approach which incurs
overheads for correct-path loads, CleanupSpec incurs overheads
only for the wrong-path loads that are less frequent. As a result,
CleanupSpec only incurs an average slowdown of 5.1% compared
to a non-secure baseline. Moreover, CleanupSpec incurs a modest
storage overhead of less than 1 kilobyte per core, for tracking and
undoing the speculative changes to the caches.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • Computer systems organization → Architectures.

KEYWORDS
Transient-Execution Attacks, Side-channel Attacks, Caches

ACM Reference Format:
Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An
“Undo” Approach to Safe Speculation. In The 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), October 12–16,
2019, Columbus, OH, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3352460.3358314

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358314

1 INTRODUCTION
Speculation-based attacks like Spectre [28], Meltdown [32], Fore-
shadow [46], etc., have caused considerable concern in the com-
puting industry given that they affect practically every processor-
manufacturer and allow a software-based adversary to arbitrarily
bypass software and hardware-enforced isolation without detection.
These attacks are hard to detect or mitigate in software as they ex-
ploit micro-architectural vulnerabilities that are invisible to software.
Therefore, commercially deployed software and micro-code patches
are limited in being able to mitigate only specific attack variants (e.g.
KAISER [16], Retpoline [45], IBRS [23]). As new attack variants
continue to be discovered [7, 29, 53], there is a pressing need for
broader hardware solutions [33].

Unfortunately, mitigating these attacks in hardware alone with
minimal overheads is challenging, as these attacks leverage proces-
sor speculation and its side-effects on caches to obtain and leak
secrets. Both speculation and caching being the cornerstones of high
performance processors, naively disabling them to mitigate the at-
tacks would cause intolerable slowdown. While recent hardware
designs [31, 43] have emerged that mitigate Spectre attacks with low
overheads by identifying potentially “unsafe” load patterns in the
attacks and delaying them, they may not protect against other attacks
that do not exhibit such patterns. In this context, there is a need
for low-overhead mitigation of current and future speculation-based
attacks exploiting caches, in particular data-caches1.

These attacks can be generalized as having three key components,
as observed by recent works [26, 58]: (a) getting access to a secret
during speculative execution, (b) speculatively transmitting the se-
cret, by making a secret dependent modification to the cache state
(preserved even after a mis-speculation), and (c) inferring the secret
on the correct path of execution, using side-channel attacks like
Flush+Reload [63]. Stopping any of these three components is suffi-
cient to defeat these attacks. In this paper, we focus on preventing
the third component, i.e. the secret inference on the correct path.

When a mis-speculation is detected on a modern processor, the
processor invokes a pipeline flush to ensure that all of the data in
the pipeline stages gets invalidated. However, a pipeline flush does
not affect the content of the cache and any state change caused by
the speculative instructions to the cache is retained. It is possible
to close this cache side-channel by ensuring that either (a) no state
change to the cache is caused by a speculative instruction or (b) the
changes caused by the speculative instructions are undone when the
mis-speculation is detected. We call the former approach a Redo
approach to safe speculation (as the data may be read twice, once
speculatively and a second time to change the cache state). The latter
is an Undo approach (as the state change is performed and later
undone on mis-speculation).

1I-Cache, TLB or Branch Predictor can also be used to leak information, but delay-
ing [40] or buffering [25, 58] transient changes to these structures can prevent this.
Port-contention [1] is out-of-scope due to its orthogonal nature, like prior works [26, 58].

https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358314

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

Encode secret through cache access

Array[Secret]

Core

Cache

Cache State Retained

Core

Cache

Cache State Cleaned-Up

Infer Array[Secret]

(with Timing-Attack)

No Information

Leakage

Non-Secure

Cache State Modified

Core

Cache

+
Leak Secret

Speculative Execution Mis-Speculation Detected Correct Path

CleanupSpec

Non-Secure

Figure 1: Speculation-based attacks leak secrets using transient instructions, by modifying state of a cache line whose address is based
on the secret value. Currently, modifications are retained on the correct path and inferred using timing attacks, to leak the secret.
CleanupSpec rolls back changes or ensures changes that remain are randomized, preventing information leakage on the correct path.

A recent proposal, InvisiSpec [58], represents a Redo-based ap-
proach to safe speculation. To prevent speculatively executed (tran-
sient) instructions from making cache changes, for each data load,
InvisiSpec first performs a load that fetches the data without making
any changes to the cache state and then a second load that changes
cache state (once it is deemed safe). Given that most loads are
correctly speculated, InvisiSpec incurs the cost of double accesses
to the cache hierarchy for most loads. Additionally, InvisiSpec re-
quires the second access to be performed on the critical path before
load-retirement, to verify that no memory consistency violations
occurred during the invisible phase of the load, when the directory
did not know the core had the data. As a result, InvisiSpec causes
considerable slowdown (initial estimates show 67% on average)2.

In this paper, we observe that an Undo-based approach is better
suited to mitigate these attacks with lower overheads. Just as the
processor state is flushed when a mis-speculation is detected and
any illegal instructions are removed, if the illegal changes to the
cache made by transient instructions were also rolled-back at the
same time, then any information leakage can be prevented. Such an
approach would satisfy correctly speculated loads (which are the
common case) with a single cache access. Additionally, overheads to
roll-back cache state would only be incurred in the uncommon-case
of a mis-speculation. With this insight, we propose CleanupSpec,
a low-overhead hardware mechanism to prevent speculation-based
attacks leaking information through the data caches.

As shown in Figure 1, these attacks use transient instructions to
extract a secret value to the correct-path. By encoding the secret
value as the address of an array access (Array[secret]), these attacks
install a secret-dependent array line in the cache. This line is retained
in the cache even after a mis-speculation is detected. As a result, the
secret is accessible on the correct-path with cache timing attacks [63]
that infer which line was installed by the transient instruction.

To roll back the cache changes made by transient instructions on
a mis-speculation, the first step is to invalidate the cache line installs
by the transient instructions. Unfortunately, invalidation alone is not
sufficient [30] as information is leaked even through the cache lines
evicted when these lines were installed. For example, an adversary
could use an attack like Prime+Probe [34] to pre-load sets with its
lines and observe which set experienced evictions during line installs
by the transient instructions. Thus, the rollback of cache changes

2While our estimates are close to InvisiSpec results in [58], its authors reached out to
intimate us about an updated implementation with lower overheads (refer Section 6.5).

by transient instructions is feasible only if we prevent information
leakage through evictions, and we need to do so without incurring
overheads to buffer all the evictions.

Recent works on cache randomization (e.g. CEASER [38] or
Skewed Caches [39, 54]) make evictions benign for larger caches (L2
or LLC) with low overheads. By randomizing the cache-indexing,
such proposals remove any discernible relation between co-resident
lines in a set. Thus, observing an eviction leaks no information
about the installed line causing it. Leveraging this, CleanupSpec
uses randomization for L2/LLC (and for the directory [61]), and
consequently only needs to rollback evictions from L1 data caches
(as existing proposals [50, 51] for randomizing the L1 cache have
pitfalls due to its VIPT design - see Section 2.4.2).

To enable L1 data cache rollback, CleanupSpec executes transient
loads while tracking their cache side-effects (L1/ L2/ LLC installs
and L1 eviction-victim line address). On a mis-speculation, to roll-
back the changes due to squashed loads, CleanupSpec invalidates the
line in the L1 cache if it was installed speculatively and fetches the
evicted line from L2 cache to restore the original line. For changes to
the L2/LLC, CleanupSpec merely invalidates the copy there if it was
installed speculatively (as L2/LLC evictions leak no information).

Rollbacks and invalidations are enabled with the help of side-
effect tracking metadata in the load-store queue and L1/L2 MSHR
(requiring <1KB of extra storage per core). These cleanup operations
are only needed when a mis-speculation occurs and has squashed
transient loads that missed in the L1 data cache and installed new
lines. Given the high branch-prediction and L1-cache hit rates in
typical applications, these operations are uncommon and cause lim-
ited slowdown. Additionally, the perceived cache state after these
operations is as if the transient loads did not access the cache, so no
information leaks on the correct path. Additionally, the transiently
installed lines are also protected from access by other threads within
the transient window, so no information leaks even in this window.

In addition to installs and evictions, CleanupSpec also prevents
transient changes to replacement state and coherence state from
leaking information. To protect the replacement state, it uses Random
Replacement policy for the L1 data cache (any replacement policy
can be safely used for a randomized L2 or LLC). For coherence state
changes, CleanupSpec delays loads that cause such changes (M/E to
S) until they are unsquashable on the correct path. As such transitions
are infrequent compared to regular loads (<3% of loads cause such
transitions – see Section 3.5), this adds negligible slowdown.

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

Overall, this paper makes the following contributions:

(1) We propose CleanupSpec, an Undo-based Approach to mit-
igate speculation-based cache attacks, with lower overheads
compared to prior approaches.

(2) Mechanisms for Safe Speculative Cache Accesses:
(a) Rollback changes to L1 efficiently.

(b) Invalidate changes to the Randomized L2/LLC.

(c) Randomize replacement policy for L1.

(d) Delay changes to coherence state in remote cache.

We model CleanupSpec in Gem5 [5], under a threat model where
any mis-speculated load could leak information (like prior work [58]).
As a proof-of-concept, we demonstrate that it mitigates the Spectre
Variant-1 PoC. We also evaluate the performance of CleanupSpec
over 19 SPEC-CPU2006 workloads. Compared to a non-secure base-
line, CleanupSpec incurs an average slowdown of 5.1%, that is much
less than Redo-based approaches like InvisiSpec for a similar threat
model. Moreover, CleanupSpec only requires <1KB of storage per
core and simple logic, for tracking and restoring cache state changes
by transient loads.

2 BACKGROUND AND MOTIVATION
2.1 Threat Model
Modern processors speculatively execute instructions out-of-order
to avoid stalls due to control and data dependencies and achieve high
performance. This can result in execution of transient instructions,
i.e. speculatively executed instructions on wrong execution paths. We
deem all transient instructions potentially “unsafe” until they retire,
to protect against current and future attacks like InvisiSpec [58],
unlike others [31, 43] that only focus on Spectre variants.

Adversarial Capability: We assume attacker-executed transient
instructions have arbitrary access to secrets. The secret may be ac-
cessed from the memory or from a register, or computed, transiently.
We assume the secret is transmitted to the correct path only using
cache side-channels, as a majority of attacks [7, 28, 32, 46] use them
given their high bandwidth. We only consider attacks exploiting
the data-cache hierarchy, including private data caches (e.g. L1-D
cache) and shared caches (L2/LLC), as other structures like instruc-
tion caches, TLB, etc. can be protected with a low overhead with
prior works [40, 58]. The adversary may transiently access the cache
and modify its state through installs [63], evictions [34], updates to
replacement [26] and coherence [62] state and infer changes on the
correct path through timing difference on cache accesses.

Out of Scope: We do not consider speculation-attacks using
AVX side-channels [42], since they are easily mitigated by disabling
the speculative power-up of AVX-units. We also assume specula-
tive hardware prefetching is disabled for caches (similar to [58]),
preventing information leakage through training of the prefetcher
on transient loads. Similarly, we assume a close-page row-buffer
policy for the memory controller, to prevent covert-channels like
DRAMA [36]. We further consider out-of-scope side-channels due
to SMT port-contention [1], network [49] or DRAM [56] contention,
EM radiation or power, given their orthogonal nature.

2.2 Speculation-Based Attacks

Access Secret

Core

Cache

Cache Hit on Array[Secret] Install Array[Secret]

Infer Secret

Speculative Execution

(Transient Instructions)
Correct Path

Cache State

Retained

Mis-Speculation

Detected

Core

Cache

Figure 2: Recipe for speculation based attacks, using the cache
as a transmission channel for leaking secrets.

Attacks like Spectre [28], Meltdown [32], etc., leverage tran-
sient instructions to access secrets, bypassing any software checks.
When a mis-speculation is detected by the processor, these tran-
sient instructions are squashed. Hence, these attacks attempt to ex-
filtrate the secret to the instructions on the correct path of execu-
tion before mis-speculation is detected – most commonly using the
Flush+Reload [63] attack on the cache. As shown in Figure 2, these
attacks transiently access an array entry, whose index is computed
using the secret value (the array is completely evicted from the cache
previously, using clflush). This installs array entry Array[Secret]
into the cache. As the cache state is preserved even after a mis-
speculation, the attacker infers the secret on the correct path by
accessing each array entry and observing which one has a cache hit.

Meltdown and Spectre (and other variants [7, 29, 46, 53]) use this
recipe to leak secrets transiently accessed from memory illegally.
Future attacks could use this recipe to leak secrets stored in registers,
or results of malicious computations performed transiently. In fact, a
recent malware called exSpectre [47] computes some of its malicious
payload speculatively, to evade reverse engineering attempts, and
extracts the results of these computations through the cache-channel.

While software [16, 45] and microcode patches [22] mitigate the
original attacks, their adoption is hindered [64] due to high slow-
down [37]. Recent hardware mitigations [31, 43] limit the slowdown
by detecting and delaying only certain unsafe load patterns in Spec-
tre, arising from transient access to secrets in memory; but they
fail against attacks without such patterns (e.g. leaking secrets from
registers or computations). Thus, there is a need to prevent any tran-
sient load from leaking information through cache state changes
(preferably without OS/SW support unlike other proposals [6, 26]).

2.3 InvisiSpec: Redo-Based Mitigation
A recent design InvisiSpec [58] developed a way to tolerate all such
attacks in hardware. As transient instructions modify the cache state
to transmit secrets, InvisiSpec disallows any changes to the cache
state during speculative execution. For speculatively issued loads,
InvisiSpec executes an Invisible load that makes no changes to the
cache hierarchy and only brings the data to the core, as shown in
Figure 3. Once the speculation is determined as correct and the load
is ready for commit at the head of the ROB, it Redoes the load
– executing a second load to update the cache. Thus, a transient
instruction squashed on a mis-speculation leaves no trace in the
cache, preventing information leakage on the correct path.

While this approach prevents mis-speculated loads modifying the
cache, most loads are issued speculatively and correctly speculated in

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

Load-1 (Invisible)

Core

Cache

No change in Cache State No Information
Leakage

Correct-Speculation

(common)
Core

Cache

Speculative Execution
Load-2 (Update Cache)

1

2

Correct Path

Mis-Speculation

Figure 3: InvisiSpec adopts a redo-based approach to prevent
mis-speculated loads from modifying the cache – speculative
loads are invisible to the cache; On the correct path, the load
is repeated to update the cache.

the common-case – requiring a second Update load for cache update.
This increase in loads impacts performance, causing slowdown.

2.3.1 Performance Problem in InvisiSpec. For common-case cor-
rectly speculated loads, InvisiSpec requires the second load to be
performed on the critical path at commit-time, before retiring the
instruction. This is because of the need to ensure no memory con-
sistency violations occurred in the period between the invisible load
and commit, due to a modification of the data by a different core. As
the invisible load does not update the ownership of the line in the
directory, the core is unable to receive invalidation updates until the
second load updates the cache and directory state.

Non-Secure InvisiSpec Non-Secure InvisiSpec
0.0

 0.5

 1.0

 1.5

 2.0

N
o
rm

a
li

z
e
d
 N

e
tw

o
rk

 T
ra

ff
ic

0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

 2.00

N
o
rm

a
li

z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e Update Load

Invisible Load
Regular Access

(a) Execution Time (b) Network Traffic

Figure 4: (a) Execution Time and (b) Network Traffic for Invi-
siSpec normalized to Non-Secure Baseline (initial estimates)

Figure 4 illustrates the performance and network traffic for In-
visiSpec normalized to a Non-Secure baseline, using 19 SPEC-
CPU2006 workloads. As per initial estimates3, InvisiSpec suffers
an average slowdown of 67.5% compared to Non-Secure, that is ac-
companied by a 51% increase in network traffic. Approximately half
of the additional traffic is driven by the extra accesses to update the
cache at commit-time (Update-Loads in Figure 4(b)) and check for
potential consistency violations. As these accesses fall on the critical
path, the resulting stalls cause slowdown. Additionally, close to half
of the total network traffic is due to speculative loads, indicating a
large majority of loads are issued speculatively.

3We report our results using the InvisiSpec public code-base (commit: 39cfb85) [57] as
initial estimates, as the authors intimated us shortly before the camera-ready deadline
that they have an updated implementation with lower overheads (refer Section 6.5).

2.4 Undo Approach: Benefits and Challenges
Given the high branch prediction accuracy in modern processors, a
large fraction of the loads issued would typically be correctly spec-
ulated. Therefore, rather than adopting a redo-based approach that
requires performing a load twice for correctly-speculated loads, an
undo-based approach is preferable from a performance perspective.

An undo-based approach would allow all loads to modify the
cache speculatively, as shown in Figure 5. In case a mis-speculation
is detected, then corrective action could be activated that cleans-
up the cache state changes made by the illegal transient loads to
ensure that no information is leaked on the correct path. Such an
undo-based approach would be beneficial for performance, as any
overhead would be incurred only in the uncommon case of a mis-
speculation, while the correctly speculated loads execute without any
change. Moreover, some of the cleanup overhead would be hidden
by the pipeline drain latency that is incurred in any case.

Load-1 (Normal)

Core

Cache

Possible Install & Eviction

No Extra
Loads

Correct-Speculation

(common)

Core

Cache

Speculative Execution

Mis-Speculation
(uncommon)

1

Correct Path

Need to Restore Line
To Prevent Information Leakage

Figure 5: A low-overhead Undo-approach is viable as long as
cache state cleanup on mis-speculation prevents information
leakage on the correct-path.
2.4.1 Naive Invalidation - Vulnerable to Prime+Probe. A naive de-
sign to undo cache changes by transient instructions could track lines
installed in each level of the cache hierarchy by such instructions
and invalidate them on a mis-speculation. This prevents an adversary
from using Flush+Reload attack to infer transiently installed lines.

Unfortunately, lines installed transiently can evict other lines from
the same set. Leveraging this, an adversary can use Prime+Probe [34]
attack – pre-load sets with its lines and observe which lines get
evicted due to installs. Thus, an adversary can infer cache sets that
had a transient line install. To prevent such attacks, we need to not
just remove the installed line, but restore the evicted line in its place.

2.4.2 Mitigating Prime+Probe for L2/LLC. Recently, CEASER [38]
and Skewed-CEASER [39] proposed randomizing last-level caches
with address-encryption, to mitigate eviction-based attacks like
Prime+Probe. With randomized cache-indexing, these solutions map
random lines to the same set. As a cache install evicts an unrelated
line, evictions stop leaking information about installed lines.

Large caches like L2/LLC or Directories [61] can adopt such
randomization without any changes to OS/SW. However, random-
ization is challenging for performance-sensitive L1 caches. Address-
encryption is not feasible as it would add 1-2 cycles of encryption
latency to every access, doubling the L1-access latency, that would
be detrimental to performance. Additionally, other proposals like
NewCache [51] or RPCache [50] face challenges due to the preferred
VIPT operation of L1 caches – they either need VIVT operation
of the cache that has the problem of synonyms [9], or need PIPT

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

Core 0

L1 $

Hit

Shared L2 $

Core 1

L1 $Install

Install on Miss

Change by Transient Load CleanupSpec Mitigation

Remove on Squash

Replacement State

Update on Hit

Randomize L2 LineAddr

Eviction on Miss
Restore on Squash

Coherence Downgrade (E/M -> S)

L1

L2

L2

L1

EvictMiss

1

1

2

3

4

2

3

4

L1/L2

Random Replacement

Delay Until Correct Path

Remote Hit

on E/M Line

Changes to Cache Hierarchy by Transient Load

Figure 6: Overview of CleanupSpec Design. To ensure changes made by Transient Loads do not leak any information on the correct
path, CleanupSpec Removes, Restores, Randomizes or Delays these changes, as appropriate.

operation that has slower access (TLB look-up is on the critical path).
Given these pitfalls, L1 caches are hard to randomize, and remain
vulnerable to eviction based attacks, making our Undo-approach for
safe speculation challenging.

2.5 Goal of this Paper
Our goal is to enable a secure and low-overhead implementation
of an undo-based approach to safe speculation, by reusing existing
structures, avoiding overheads of buffering evicted lines, and without
OS or software support. We develop our solution as a combination
of different strategies: restoration of evictions from L1 caches, inval-
idation and randomization for L2/LLC, random-replacement for L1
cache to avoid state changes of replacement metadata, and delaying
the state change due to coherence for speculative instructions.

3 DESIGN
Our design philosophy with CleanupSpec is to optimize the design
for the common-case where loads are correctly speculated. To this
end, CleanupSpec allows transient loads to speculatively access the
cache and make changes as required. To enable security on a mis-
speculation, we study the changes a transient load could make to the
data-caches, and delay, reverse or randomize these changes.

We study the transient cache changes using a configuration shown
in Figure 6, with two cores having private L1 data-caches and sharing
a common L2 cache. A load can incur a miss in the L1 or L2 cache,
that evicts a victim and installs a new cache line in its place, which
is retained on the correct path. Furthermore, if a dirty line is evicted
from L1 cache as result of the install, it would cause a write-back
to L2, that could, in turn, cause an eviction from L2. A load hit
can update the replacement state that can also leak information [26],
as it affects victim selection and can be used to engineer evictions.
Similarly, a load to line in Exclusive (E) or Modified (M) state owned
by a different core would cause a coherence state downgrade for
the line to Shared (S) – even this can leak information [62] on the
correct path due to difference in access latencies to E/M and S lines.
To prevent such changes by transient loads from leaking information,
CleanupSpec needs to track, protect and reverse these changes on a
mis-speculation, so that they are imperceptible to an adversary.

3.1 Overview of CleanupSpec Design
There are six main components to CleanupSpec that make the tran-
sient changes to the cache hierarchy benign.

(1) Address Randomization for L2 Cache – Prevent leaks
from L2 Evictions and Replacement Policy: Buffering evic-
tions from L2 cache can be expensive in terms of both storage
and complexity. Moreover, tracking recursive evictions in the
cache hierarchy due to writebacks causes further complica-
tions. Address randomization (e.g. CEASER [38]) random-
izes the sets that spatially contiguous lines map to, making
co-residents of a line in a set unpredictable. As a result, an
eviction leaks no information about the address of the Install
or L1-Writeback that caused it. Similarly, the replacement
state of L2 becomes benign, as it can only be exploited to
induce evictions of random-lines. We analyze the overheads
of L2-Randomization in Section 3.2.

(2) Removing L1 or L2 Installs from the Cache: To prevent a
transiently installed line from causing hits on the correct path
after a mis-speculation, we remove the line from the levels of
the cache it got installed in by issuing an invalidation to only
those cache levels. We enable this by tracking which levels a
load caused an install, propagating this information with the
load-data through its lifetime in the L1/L2-MSHR and the
Load-Queue, till it is retired (more details in Section 3.3).

(3) Restoring L1-Evictions: Without randomizing the L1-cache,
we need to prevent evictions from leaking information. So,
on a mis-speculation, while removing the installed line, we
also restore the original line that was evicted. We achieve
this by tracking the line address of the evicted line in the L1-
MSHR on an install and propagating it with the load-data to
the Load-Queue. After restoring the evicted lines, we achieve
a L1-cache state such that the unsafe L1-installs and evictions
never occurred (more details in Section 3.4).

(4) Random Replacement Policy for L1: To prevent replace-
ment state updates on L1-hits from leaking information, we
use random replacement policy for the L1 cache. We find that
this has a negligible impact on the overall system performance
(see Section 3.2).

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

(5) Delaying Coherence Downgrades from M/E to S, till cor-
rect path: Changes in coherence state are not only percepti-
ble from the same core on the correct path, but also have a
non-reversible impact on other cores. Thankfully, only tran-
sitions from M/E to S are perceptible due to difference in
access-latency (and relatively infrequent), hence we delay
them till the correct path. We describe the changes required
to the coherence protocol to achieve this in Section 3.5.

(6) Protecting lines in the window of speculation: In the small
window of time between a speculative line install and a load-
squash, an access from another thread/core that has a hit on
this speculatively installed line can leak information. Our
design can detect such hits and service them with cache-
miss latency (using dummy requests) to prevent information
leakage. We describe this mechanism in Section 3.6.

3.2 Randomizing L2 Lines & L1 Replacement
We use address randomization for L2 cache, using an encrypted line
address to index the cache (like CEASER [38]). As the encryptor
only adds 2-cycles to access latency, this incurs minimal overhead.
While this prevents L2-evictions from leaking information, we ob-
serve it also prevents the L2 replacement state from being exploited.
Prior work [26] exploited transient replacement state updates to influ-
ence victim selection and engineer evictions. However, as evictions
are benign with randomized caches, even replacement state updates
cannot be exploited and intelligent replacement policies can be freely
used for the L2 cache. As randomizing L1 data caches is challenging,
we use a random-replacement policy for L1.4 Thus, replacement
state updates for both L1 and L2 caches leak no information.

Table 1 quantifies the performance impact of randomization, com-
paring L2-Randomization and Random Replacement for L1-D cache
versus a baseline non-secure design, using 19 SPEC CPU2006 bench-
marks. While random replacement for L1 causes a minor increase in
L1 miss-rate, the extra misses are serviced from the L2 with minimal
overhead. While L2-randomization further incurs a minor increase
in L2 misses, together they still have negligible slowdown (<1%).

Table 1: Impact of Randomization for L2 (2MB) and Random
Replacement for L1-DCache (64KB) vs LRU-Baseline.

Configuration Slowdown
L1-Rand Replacement 0.1%
L2-Randomization 0.4%
Both Together 0.8%

3.3 Removing L1 and L2 Installs
On a transient cache miss, data is speculatively installed in the cache.
On a mis-speculation, to remove any trace of such installs, the line is
removed by issuing an invalidation for it in those levels. To identify
which levels of the cache had an install, we track the side-effects
of every load on L1 and L2 cache in a Side-Effect Entry (SEFE,
pronounced safe), by augmenting entries in the L1/L2-MSHR and
Load Queue (LQ). As shown in Figure 7, the SEFE includes 1-bit

4Using a less intelligent Random-Replacement Policy with some performance cost, is
better than paying the cost of security vulnerability.

(isSpec) indicating a speculative load and 1-bit per cache level (L1-
Fill, L2-Fill) to indicate that the load caused an install at this cache
level. The fields L1-Fill and L2-Fill are updated in L1/L2-MSHR
entry when the load causes cache changes during miss-handling, and
the LoadID tracks the order in which these changes occur. Whereas,
the shaded SEFE fields – EpochID (that uniquely identifies the phase
of execution between 2 cleanups) and isSpec, are updated by the
Load/Store unit when the load is issued. The SEFE is returned with
the load-data to the core and retained in LQ, until the load is retired.

On a load squash, the LQ-Entry SEFE is referred to decide
whether to send invalidation message to L1/L2 based on L1-Fill/L2-
Fill values, or if it can be skipped – if the load was not issued or if
there was a L1-Hit (L1-Fill=0 and L2-Fill=0).

SEFE

MSHR

Entry

LQ

Entry

SEFE - Side Effect Entry

Load

ID

L1-

Fill

L2-

Fill

L1-Evict

Lineaddr

8-bit 1-bit 1-bit 40-bits

MSHR Table Load Queue

isSpec

1-bit

Epoch

ID

5-bit

Figure 7: Side-Effect Entry (SEFE) tracks side effects of a load,
in Load Queue and L1/L2-MSHR. Shaded SEFE fields are filled
by Load/Store unit, unshaded by L1/L2.

If a load is yet to return to the LQ, and is in flight, then a cleanup
request is sent to L1/L2-MSHR to squash pending loads and in-
crement the current active EpochID. The core is stalled only till
an acknowledgment is received from L1/L2-MSHR. Subsequently,
loads are safely issued with an incremented EpochID, which re-
ceive a new MHSR entry and issue a fresh memory request safely.
Squashed MSHR entries (with an outdated EpochID) waiting for in-
flight memory requests are preserved until the data is returned from
memory, upon which both the data and the MSHR entry are safely
dropped (any cache changes like install and victim replacement are
made only when a load returns and is for the current EpochID).
EpochID has sufficient bits so that the incremented value does not
match that of an inflight load.

3.4 Restoring Lines Evicted due to L1 Installs
Squashed loads that install a line in the L1 cache also leak informa-
tion through evictions. To prevent this, in addition to invalidating
the line, we restore the original line evicted from the L1 cache. We
enable this by recording the line address of the evicted victim in the
L1-MSHR SEFE (L1-Evict Lineaddr in Figure 7). When the load is
squashed, the evicted line is restored from the L2 by issuing a normal
demand access for this address to L2, and installing it in place of the
invalidated line. To ensure no illegal changes are introduced due to
the restoration, we need to consider the following cases:

Avoiding Recursive Squash During Cleanup: Before operations
like invalidate and restore begin, we wait for the retirement of all in-
flight loads before the squashed loads in program order (potentially
correct-path loads), reordered due to out-of-order execution. Thus,
any squash at an earlier point in program order is detected before
a cleanup begins. Moreover, no new loads are issued while the
cleanup requests are being issued and an acknowledgement is yet to
be received, avoiding restoration of an incorrect transient state.

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

Load Issued
from LQ

Load Request
in L1/L2 MSHR

Load Accesses
L1/L2 Cache

Executed Load
returns to LQ

SEFE created in LQ
(with isSpec, Epoch ID)

SEFE created
in L1/L2 MSHR

L1 Fill, L2 Fill,
L1 EvictAddr updated

Load ID
updated in SEFE

(a) SEFE population for Transient Loads

Wait for
Correct Path

Reordered Loads
to Execute

Inflight Load Squashed
Increment Curr EpocID at
L1/L2 MSHR & Drop Load

Cleanup Executed Loads
in reverse order of

Load ID

Non issued Load Squashed
Skip Cleanup

Invalidate L2
(if L2 Fill is True)

(b) Using SEFE to execute Cleanup operations

Invalidate & Restore L1
(if L1 Fill is True)

Figure 8: Flowchart for Two Phases of Execution. (a) Regular Operation where Side-Effect Entries (SEFE) are updated. (b) Cleanup
on Squash – state in SEFE is used for determining and executing Cleanup operations.

Squashing Re-ordered Loads: We ensure cleanup operations for
loads are issued in the reverse of the order in which they executed,
with cleanup of independent sets proceeding in parallel. Moreover,
we squash in flight loads before the invalidation and restoration of ex-
ecuted loads. Ensuring that cleanup operations are correctly ordered
is possible using the Load-ID field in the SEFE that tracks the order
of loads returning from the L1 cache. As a result, removal/restoration
effectively reverses time for the cache and no illegal state is retained.

Squashing Loads Re-ordered with Correct-Path Loads: Changes
made to the cache by older non-squashed loads that execute after
squashed loads due to re-ordering, need to be preserved and not
reversed, as they would have occurred irrespective of the squashed
load. Such execution patterns can be detected by the LQ-SEFE, and
corresponding invalidations / restorations are skipped.

3.5 Delaying Coherence State Downgrades
Prior work [62] showed that the coherence state of a line can be
used to leak information. This is due to access latency difference
between E/M and S lines: accesses to S lines in L2 can be satisfied
directly from the L2, whereas E/M lines typically require servicing
the line from a remote-L1. As allowing the change from E/M -> S
transiently can be a vulnerability, CleanupSpec delays such changes
until the correct path. Note that transient changes like I -> E or
adding S-sharers (even in remote directories), that do not affect the
state of a line cached by a remote core, are allowed and reversed.

Table 2: Coherence state transitions in a remote core, caused
due to actions initiated by transient instruction.

Old New Transient Mitigation
State State Instruction
M,E S Load Shared Data Retry on correct-path
M,E,S I clflush Delay till correct-path

A transient load to shared data can cause change from E/M state
to S in a remote cache. To selectively delay such transition-causing
loads till they are unsquashable, we add a new transaction called
GetS-Safe that is used by default instead of GetS. GetS-Safe only
succeeds in getting the data if a E/M->S transition is not required.
In case it fails, the core delays the load till it is unsquashable, and
repeats the load with GetS only once it is safe to force the transition.

We expect these transitions to be infrequent as they usually occur
on transfers of lock ownership in multi-threaded workloads. Such
transfers are relatively uncommon, compared to accesses for actual
work. We characterized this in 23 multi-threaded PARSEC [4] and
SPLASH-2 [55] benchmarks using simlarge data-set on a 4-core sys-
tem with Snipersim [8]. As shown in Figure 9, loads to Remote-E/M
lines make up just 2.4% of total loads on average. Thus, delaying
such loads would have negligible slowdown, with 96.8% of loads to
local lines in M/E/S state or Remote-S lines proceeding as is.

P
e
rc

 o
f

T
o

ta
l

L
o

a
d

s

Unsafe Cache Loads (Remote-E/M)
Safe DRAM Loads
Safe Cache Loads (Local-* + Remote-S)

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

de
du

p

flu
id

an
im

at
e

ca
nn

ea
l

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
nsvi

ps

ba
rn

es
fm

m

oc
ea

n.
co

nt

oc
ea

n.
nc

on
t

ra
di

os
ity

w
at

er
.n

sq

w
at

er
.s
p

ch
ol

es
kyff

t

lu
.c
on

t

lu
.n

co
nt
ra

di
x

A
V

G

0%

20%

40%

60%

80%

100%

Figure 9: Breakup of Loads based on State of Line for multi-
threaded PARSEC and SPLASH2 benchmarks.

A transiently executed clflush can also be used to leak informa-
tion, as it can invalidate all copies of a cacheline, even in adversary-
controlled remote caches. We delay such instructions, until they are
unsquashable on the correct path. As such instructions are ordered
with respect to stores, and normally used after stores, they typically
execute on the correct path anyway and see no added delays.

3.6 Protecting Installs in Speculation Window
In the small window of time between the speculative install of a line
into L1/L2 cache, and removal of the load from the pipeline through
a squash, a cross-core or cross-thread SMT adversary might access
the line, hoping to infer the speculative install with a cache hit. To
prevent such information leakage within this speculation window, we
ensure the first access to a line within this window from a different
thread/core than the one installing it, incurs a dummy cache-miss.
In this case, the cache issues an explicit request to the backing store
(L2/main-memory), waits till it completes and only then returns the
data, thus leaking no information.

We characterized the speculation window for SPEC workloads
and observed that >98% loads commit/squash within 200 cycles

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

of being issued, with >99.5% finishing within 600 cycles. Within
this speculation window, detecting cross-thread L1-cache accesses
for a line is possible with SEFE metadata in LQ/L1-MSHR. To
detect cross-core accesses to L2-cache within this window, we keep
the SEFE in L2-MSHR active for 200 cycles after a line install
(MSHR entries are accordingly provisioned). For loads that continue
to be speculated beyond 200 cycles, the core sends a message to the
cache to extend the window for such a load every 200 cycles. These
messages constitute <2% cache traffic.

Once detected, these accesses from a different thread to specula-
tively installed data can be serviced as cache misses. This protection
is only activated in uncommon scenarios in benign programs and
incurs negligible slowdown – repeated cross-program accesses to re-
cently installed lines within the small window are unlikely. In multi-
threaded programs, such behavior triggers coherence-downgrades
that we showed to be uncommon (<3% loads in Figure 9).

An adversary may also attempt to infer speculative evictions
within this window. For cross-core adversary, our L2-cache random-
ization prevents L2-evictions from leaking information (Section 3.2).
For SMT adversary, a mitigation like way-partitioned L1 cache (e.g.
NoMo [14]), that is anyway required for preventing non-speculative
L1 cache side-channel attacks, also prevents speculative L1 evictions
being observed. Our evaluations show that partitioning L1-ways be-
tween 2 threads incurs <2% slowdown (concurring with [14]).

4 SECURITY ANALYSIS
We study three adversary models: SameThread - where a transient
cache access is initiated and observed from the same thread, Cross-
Core - where the initiator and observer are on different cores and
SMT - where they are in different threads running simultaneously on
the same core. In each scenario, we assume the transient change is
initiated with a speculative read and observed by the adversary using:
speculative reads, or non-speculative reads or writes. We assume the
transient change (or lack thereof) is inferred based on latency differ-
ence of a cache hit or miss, or a latency difference on a coherence
upgrade or downgrade operation on cached lines.

Speculative

Install

Mis-Speculation

Detected

Cleanup

Completed

time (t)

(t = t1) (t = t2) (t = t3)

All changes reversed

or randomized

Cleanup operations start

& pipeline stalled

Protected from

cross-core/thread access

(triggers cache-miss)

Figure 10: High level idea of security with CleanupSpec.

For security, we argue that CleanupSpec satisfies three properties:

(a) Before detection of mis-speculation (t1 to t2), transient
cache changes are protected and not observable.

(b) During cleanup operations (t2 to t3), the process of restora-
tion of cache state does not practically leak information.

(c) After cleanup (t3 onwards), all transient changes are restored
or made imperceptible, so no changes are observable later.

(a) Security until detection of mis-speculation: CrossCore and
SMT adversaries are prevented from observing a hit on a line tran-
siently installed in L1 or L2 cache by the SEFE entries in MSHR,
which trigger a dummy cache miss in such scenarios (refer Sec-
tion 3.6). Similarly, a CrossCore adversary cannot infer any informa-
tion from L2 evictions due to L2-randomization. SMT adversaries
are prevented from observing transient L1-evictions, with L1-cache
way partitioning across threads (required anyway for preventing
non-speculative L1 cache side-channel attacks under SMT). These
hit/miss attacks are impractical with SameThread adversary, as ob-
serving a hit or miss on a transiently installed/evicted L1-cacheline
requires hoisting wrong-path loads over older correct-path loads.
But, measuring their timing with any fidelity requires using timers
with serializing instructions (like cpuid or memory fences) [35] that
would prevent any such hoisting, precluding this attack.

To leak information, CrossCore adversary may also initiate coher-
ence upgrades (using writes) or downgrades (using non-speculative
reads) on transiently installed/evicted addresses. To prevent latency
differences in such scenarios, CleanupSpec imposes two constraints:
(1) writes need to be constant-time and equal to worst-case of down-
grading S lines in every core. (2) reads that trigger downgrades on a
transiently installed line in a remote L1-cache, need to be serviced
directly from the L2-cache if the transient install did not cause a L2-
Fill (otherwise from the main-memory) and not from the remote-L1
cache. Note that this is possible because the L2 copy never becomes
stale transiently as RFOs are issued non-speculatively to prevent
Spectre-Prime[44] attacks. If the adversary attempts downgrade on
a line transiently evicted from remote L1 cache, a dummy delay
can be added to the adversary’s read, to emulate service from the
remote cache. These constraints can prevent latency differences for
coherence operations while incurring negligible performance loss
– as write-latency is not on the critical path of program execution,
and read-caused-downgrades are infrequent in typical programs (as
shown in Figure 9). Note that CleanupSpec prevents speculative ini-
tiation of a coherence downgrade (E->S), as it is naively observable
by a CrossCore adversary (as described in Section 3.5).

(b) Security during cleanup operations: On detection of mis-
speculation, all non-squashed loads that are inflight are completed
before cleanup operations begin and no new instructions are fetched
until cleanup finishes. This prevents SameThread adversary from
observing any contention during cleanup operations. While this in-
creases the stall-time after a mis-speculation, this causes the actual
time taken for cleanup operations to make up only a small portion
of the stall (as shown in Figure 14) and hence hard to exploit for
the SameThread adversary. This is also because the corresponding
restoration cache accesses are pipelined and serviced from the inclu-
sive L2 (which is the common configuration in modern processors
like Intel Skylake-X or AMD Ryzen-2). Moreover, the adversary can-
not transiently evict the line to be restored from L2-cache to increase
the time for cleanup operations, as that would need thousands of ac-
cesses due to the randomized-mapping (that is impractical to perform
transiently). Future work can explore making the cleanup-operations
incur a constant-time stall to make this theoretically impossible to
exploit. For CrossCore or SMT adversary, ensuring security during
cleanup operations is along the same lines as Section 4(a).

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

(c) Security after cleanup on mis-speculation: After cleanup,
all lines are invalidated from the cache levels where they were tran-
siently installed into, and the evicted lines are restored for L1 and
randomized for L2. So no new cache hits or misses are observable
due to the transient changes, in any adversary model. Moreover, at-
tempting to even infer if a single L2 eviction occurred is impractical,
as filling the randomized L2 deterministically (required to initialize
this attack) is not feasible – the randomized and changing mapping
would result in self-evictions during the attempt to fill the cache. Fi-
nally, the coherence state of the restored/invalidated lines is updated
based on presence in other private caches, such that it is independent
of the transient access by the victim, so that it leaks no information.

5 EXPERIMENTAL METHODOLOGY
5.1 Simulation Framework
We evaluate our design using Gem5 [5], a cycle accurate simulator
that models the out-of-order processor including the wrong-path
execution effects in the core and the caches. We simulate a single-
core system in System-call Emulation (SE) mode in Gem5. For
the multi-core characterization in Section 3.5, we used Sniper [8]
that simulates multi-threaded binaries using a Pin front-end (due to
errors with multi-threaded workloads on InvisiSpec’s infrastructure).
For InvisiSpec evaluation, we use their public code-base (commit:
39cfb85 [57]) and evaluate the InvisiSpec-Future mode that treats
all speculative loads as "unsafe" (same as our threat model).

5.2 Workloads
We use 19 workloads from SPEC-CPU2006 [20] with the refer-
ence data-set. We forward the execution by 10 billion instructions
and simulate 500 million instructions. Table 3 shows the important
characteristics of these workloads. For the multi-threaded work-
load characterization in Section 3.5, we used 23 workloads from
PARSEC [4] and SPLASH2 [55] benchmarks using the sim-large
data-set, and collect statistics for the entire region of interest.

Table 3: Workload Characteristics

Workload Branch L1-Data Cache
Mis-Prediction Rate Miss Rate

astar 12.4% 1.8%
gobmk 11.9% 1.0%
sjeng 11.3% 0.2%
bzip2 9.7% 2.0%
perl 7.7% 0.5%
povray 7.5% 0.2%
gromacs 6.8% 1.1%
h264 5.4% 0.5%
namd 4.2% 0.3%
sphinx3 4.1% 4.0%
wrf 2.2% 0.5%
hmmer 1.9% 0.2%
mcf 1.6% 2.5%
soplex 1.5% 5.9%
gcc 1.3% 0.1%
lbm 0.3% 11.0%
cactus 0.1% 0.9%
milc 0.0% 4.6%
libq 0.0% 10.4%

5.3 Configuration
We evaluate a system configured as in Table 4. A minor difference
compared to prior work InvisiSpec, is that we use a Close-Page pol-
icy in the memory controller to prevent information leakage through
DRAM row-buffer hits and misses. Additionally, we increase the
L2 cache access latency by 2 cycles (from 8 cycles to 10 cycles) to
incorporate the overheads of address randomization [38]. We evalu-
ate a 2-level inclusive cache-hierarchy for simplicity, but our design
philosophy is equally applicable to other configurations.

Table 4: System configuration (similar to InvisiSpec [58])

Architecture 1-core OOO, no SMT, 2GHz

Core

ROB-192 Entry, LQ / SQ-32 Entry
Tournament Branch-Pred,

BTB-4096 entry, RAS-16 entry
L1 I-Cache 32KB, 4-Way, 64B line

1-cycle RT Latency
L1 D-Cache 64KB, 8-Way, 64B line

1-cycle RT Latency
Shared L2-Cache 2MB/core, 16-Way,

(inclusive) 64B line, 10-cycle RT
(incl. 2-cycle addr-encryption latency)

Coherence Directory-based MESI
DRAM 50ns RT after L2

6 RESULTS
6.1 Proof-of-concept Defense
We test our Gem5-based design with Spectre Variant-1 PoC [2], that
exploits branch prediction in victim code – if(x < array1_bound)
{array2[array1[x] * 512]}. The attack attempts to bypass the
array bounds-check by using benign values of x to prime the branch-
predictor. Subsequently, using a malicious_x causes a speculative
access to a secret memory location array1[malicious_x], which
is used to generate the array-index for an access to array2. On the
correct path, the secret is inferred by testing which line of the array2
gets a low-latency cache hit. Figure 11 shows the access latency for
different array2 indices during this secret-inference phase, averaged
across 100 attack iterations.

0 10 20 30 40 50 60

Array Index (in multiples of 512)

A
v

g
.

A
c
c
e

s
s
 L

a
te

n
c
y

 (
c
y

c
le

s
)

Secret

(50)

Benign

(1 - 5)

250

225

200

175

150

125

100

75

NonSecure

CleanupSpec

Figure 11: Average array access time for secret-inference phase
of Spectre Variant-1. CleanupSpec has no latency difference for
the secret index (50) installed on the wrong-path, while having
identical behavior as non-secure for (benign) lines installed on
the correct-path.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

astar gobmk sjeng bzip2 perl povraygromacs h264 namd sphinx3 wrf hmmer mcf soplex gcc lbm cactus milc libq . Avg

S
lo

w
d

o
w

n

Figure 12: Execution time of CleanupSpec normalized to Non-Secure baseline. On average, CleanupSpec causes a slowdown of 5.1%.

In the baseline (NonSecure), the attacker perceives lower la-
tency for array2 entries installed during the benign training phase
(corresponding to array1[x] values 1–5). For these locations, the
observed latency average lies between the raw cache and mem-
ory access latency, because the attack fails to detect cache hits in
some attack iterations. A similar low latency is also observed for
array2[50 * 512], that leaks the secret value of 50 stored in
array1[malicious_x]. On the other hand, CleanupSpec only has
low-latency for the benign accesses (installed on the correct path),
and has no latency difference for the secret index (accessed on the
wrong-path). This is because, when a mis-speculation is detected
after the wrong-path access, the cleanup operations restore the cache
state and make the wrong-path accesses imperceptible. As a result,
CleanupSpec prevents any leakage of information.

6.2 Performance
Figure 12 shows the execution time of CleanupSpec, normalized to
that of the Non-Secure baseline. The bar labeled Avg denotes the
geometric mean over all the 19 workloads. On average, CleanupSpec
incurs a slowdown of 5.1%. This is because CleanupSpec allows the
loads to speculatively modify the cache, and incurs no additional
overheads for correctly speculated loads. As most workloads in
Table 3 have branch mis-prediction rates of <10% and a majority of
the loads are correctly speculated, CleanupSpec only incurs minimal
slowdown. In Figure 12, we order the workloads in terms of branch
mis-prediction rates (from highest to lowest) and observe that the
workloads on the left-hand side with higher mis-prediction rates have
the highest slowdowns (e.g. astar (24%), bzip2 (11%)). Whereas,
workloads on the right side with the lowest mis-predictions have
negligible slowdown (e.g lbm, milc, libq).

Additionally, CleanupSpec incurs low overheads for workloads
with high L1 data-cache hit rates. This is because CleanupSpec
issues Restore or Invalidate requests only for squashed loads that
install a new line on incurring a cache miss. The randomization-
based approach (L1 rand replacement and L2 cache randomization)
of CleanupSpec makes the hits benign, so no overhead is incurred
for them. As the L1 data cache hit-rate is typically high (>95% for
our workloads as shown in Table 3), many of the workloads on the
left side of Figure 12 incur limited slowdowns (e.g. gobmk, sjeng),
and the only workloads on the right of Figure 12 with slowdown
(e.g. sphinx3 (10%), soplex (7%)) have higher data cache miss-rates.

Thus, CleanupSpec provides low overheads in the common-case
operation (high cache hit rate and accurate branch prediction) for
most workloads. In the next section, we analyze the time required

for the cleanup operations, to better understand the root cause of the
overheads in the workloads with the maximum slowdown.

6.3 Main Cause of Slowdown - Cleanup Stalls
The slowdown in CleanupSpec is due to a core stall (no new instruc-
tions fetched), while a cleanup is in progress on a mis-prediction.
This stall time depends on the frequency of squashes (Figure 13)
and the stall-time per squash (Figure 14). Note that it is necessary
to first wait for inflight correct-path loads to complete, before start-
ing cleanup operations (invalidation and restoration). This prevents
interference of cleanup operations with inflight correct-path loads,
that could leak information about locations undergoing cleanup, and
even prevents nested mis-predictions. On average, workloads have
20 squashes per 1000 instructions, with most of the stall-time per
squash (20 out of 25 cycles on avg.) spent waiting for inflight correct-
path loads to retire. Only a small fraction (5 cycles) is needed for
invalidation and restoration operations, on average.

S
q
u
as

h
es

 p
er

 k
il

o
 i

n
st

.

0

20

40

60

80

as
ta

r

go
bm

k

sj
en

g

bz
ip

2
pe

rl

po
vr

ay

gr
om

ac
s

h2
64

na
m

d

sp
hi

nx
3

w
rf

hm
m

er
m

cf

so
pl

ex gc
c
lb

m

ca
ct

us
m

ilclib
q

A
vg

Figure 13: Squash frequency (per 1000 instructions). As squash
frequency decreases (from left to right), the slowdown due to
CleanupSpec also typically decreases.

as
ta

r

go
bm

k

sj
en

g

bz
ip

2
pe

rl

po
vr

ay

gr
om

ac
s

h2
64

na
m

d

sp
hi

nx
3

w
rf

hm
m

er
m

cf

so
pl

ex gc
c
lb

m

ca
ct

us
m

ilclib
q

A
vg

Actual Cleanup Time
Inflight Correct Path Exec

T
im

e
P

er
 S

q
u
as

h
 (

C
y
cl

es
)

80

70

60

50

40

30

20

10

0

Figure 14: Stall time due to cleanup, per squash. Large fraction
of the time is spent waiting for inflight correct-path instructions
to complete, on every squash.

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

Workloads on the left (e.g. astar) have a short stall time per
squash, but a high frequency of squashes due to high branch mis-
prediction rates, and incur higher overheads. Workloads on the right
have infrequent squashes, but those with high L1 data cache miss-
rates (e.g. mcf, sphinx3, soplex) still have high stall time per squash
while waiting for the correct path loads to execute, and consequently
incur modest slowdowns (5%–10%). Outliers like lbm and milc need
20-25 cycles per squash to execute cleanup operations as they have
a larger number of loads per squash that need cleanup (see Table 5),
but they have no slowdown as squashes are uncommon.

Table 5: Cleanup statistics – Squash per kilo instruction (PKI),
Loads/Squash, State of the load when squashed – Not issued
(NI), L1-Hit (L1H), L2-Hit (L2H) or L2-Miss (L2M). Cleanup
is needed only for Squashed Loads that are L2H or L2M.

Workload Squash Loads/ Squashed Loads (%)
PKI Squash NI L1H L2H L2M

astar 89.02 11.20 40 57 1.72 0.36
gobmk 69.10 4.27 52 45 0.57 0.43
sjeng 79.06 4.09 49 49 0.33 0.23
bzip2 30.37 8.01 48 50 1.00 0.11
perl 30.44 4.09 51 46 0.97 0.52

povray 20.20 5.71 50 48 0.13 0.07
gromacs 1.38 8.36 38 59 1.30 0.23

h264 6.53 6.46 57 41 0.36 0.18
namd 2.92 9.77 28 71 0.29 0.05

sphinx3 5.56 8.33 45 51 0.86 0.43
wrf 3.07 4.64 30 59 0.31 0.71

hmmer 4.68 15.09 41 58 0.33 0.07
mcf 1.68 17.51 68 28 0.22 0.87

soplex 2.42 11.49 29 67 0.57 0.75
gcc 2.90 4.59 60 38 0.16 0.12
lbm 0.08 24.51 52 39 0.36 3.63

cactus 0.10 13.26 37 60 0.36 0.42
milc 0.01 29.88 12 78 0.26 0.30
libq 0.00 1.37 70 23 0.00 0.36

6.4 Analysis of Loads Requiring Cleanup
Cleanup operations are only required for loads that were issued and
had an L1-Miss. However, close to 50% of these loads on average
are still in flight when a cleanup request is issued to the cache
hierarchy, as shown in Figure 15. For such loads, it is sufficient to
drop the pending request without any invalidation or restoration,
as any changes to the cache like install or eviction of victim are
only done when the request returns. We observe such low-overhead
cleanups commonly for L2-misses, where branch mis-prediction is
often detected before a memory request issues or before it completes.

6.5 Comparison with InvisiSpec
Table 6 compares the performance of CleanupSpec with InvisiSpec,
all normalized to a non-secure baseline. Our initial estimates using
the public InvisiSpec code-base showed that it incurs an average
slowdown of 67.5% across 19 SPEC benchmarks we used (close

Inflight Loads
Executed Loads

as
ta

r

go
bm

k

sj
en

g

bz
ip

2
pe

rl

po
vr

ay

gr
om

ac
s

h2
64

na
m

d

sp
hi

nx
3

w
rf

hm
m

er
m

cf

so
pl

ex gc
c
lb

m

ca
ct

us
m

ilclib
q

A
vg

100%

80%

60%

40%

20%

0%

P
er

c.
 S

q
u
as

h
ed

 L
1
 M

is
s

Figure 15: Breakup of Loads Cleaned-up (L1-Misses). For
squashing Inflight Loads (50% L1-Misses), it is sufficient to
drop these pending requests without invalidation or restoration.

to the slowdown reported in [58]). Subsequently, the authors of
InvisiSpec intimated us through an email (M. Yan, Personal Commu-
nication, August 19, 2019) that they had an updated implementation
incurring only 15% slowdown. According to the authors, the dif-
ference was due to “a simulation bug that incorrectly delayed the
propagation of speculatively accessed data to dependent instruc-
tions”. The initial estimate incorrectly delayed the propagation till
the visibility point of the speculative load, whereas the revised results
propagate the data to dependents as soon it is received by the spec-
ulative load. Nevertheless, both InvisiSpec implementations incur
extra accesses to update the cache for correctly speculated loads.

In comparison, CleanupSpec only incurs 5.1% slowdown, because
it incurs no extra accesses for correctly speculated loads, which make
up the common-case. Even on a mis-speculation, no extra accesses
are required for loads that were not issued, or loads that were issued
and had L1-Hit – these make up >98% of squashed loads, as shown
in Table 5. Only on squashed L1-misses, the overhead of extra
cleanup accesses is incurred. Additionally, messages to extend the
preservation of SEFE entries in the speculation window are only
required for loads that do not commit/squash within 200 cycles
(which is uncommon). This allows CleanupSpec to incur <2% extra
accesses to the cache hierarchy and incur lower overheads.

Table 6: Overheads for CleanupSpec vs InvisiSpec, all normal-
ized to a Non-Secure baseline.

Configuration Slowdown
InvisiSpec (initial estimates close to [58]) 67.5%
InvisiSpec (revised results as per its authors) 15%
CleanupSpec 5.1%

6.6 Storage Overhead
We require extra storage for the Side-Effect Entries (SEFE), associ-
ated with each LQ entry at the core-side and with each L1/L2-MSHR
entry at the cache-side, that track the side-effects of the loads as
they execute. Each SEFE in L2-MSHR occupies 2-bytes (3 status
bits, a 5-bit Load-ID, a 8-bit Epoch-ID), while each SEFE in L1-
MSHR/LQ occupies 7-bytes (with an extra 40-bit L1 evicted line
address), as shown in Figure 7. For a configuration with 32 LQ and
64 L1/L2-MSHR entries per core, our design incurs a overhead of
<1KB per core, scaling linearly with LQ and L1/L2-MSHR entries.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

7 RELATED WORK
7.1 Types of Speculation-Based Attacks
Numerous speculation-attacks have been demonstrated that break
intra-process, inter-process and trust-domain isolation in software.
These differ based on the speculation-mechanism exploited: exception-
based attacks (e.g. Meltdown [32], Foreshadow [46]) exploit race-
condition between illegal data access and permission-check, whereas
control/data speculation-based attacks (e.g. Spectre [28], SSB [21])
exploit speculation to bypass permission checks. Many variants of
these attacks [7, 10, 12, 13, 27, 29, 44] have emerged over the past
year. Recently, exSpectre [47] showed that even malware can exploit
speculation to evade reverse engineering, by decrypting malicious
payloads during transient execution. CleanupSpec mitigates these
attacks by breaking the cache channel used to transmit information.
We invalidate transient installs after mis-speculation, preventing
flush-based attacks [18, 63] and randomize the L2/Directory and
restore L1 state to prevent eviction-based attacks [17, 19, 34, 61].

7.2 Software and Microcode Based Defenses
Software mitigations prevent speculative access to secrets by un-
mapping them (e.g. KAISER [16]) or by disabling speculation in
unsafe contexts (e.g. Retpoline [45], Memory Fences [11], Intel’s
microcode patches [23]). Unfortunately, many of these mitigations
require rewriting SW or OS-changes [15] and are incompatible with
legacy code. Recent studies [37] also show that commercially de-
ployed SW mitigations have up to 50% slowdown. In contrast, our
hardware defense has low overheads and requires no SW changes.

7.3 Hardware Based Defenses
7.3.1 Redo-based Mitigations. InvisiSpec [58] represents a Redo-
based approach to safe speculation, whereby the load instruction is
done twice: first time to get the value and second time to change
the cache state. Safespec [25] is a similar mitigation for single-core
systems that buffers transient changes to caches, until speculation
is resolved. In contrast, we propose a Undo-based approach to safe
speculation that incurs minimal overheads and does not require
buffering data, making it more practical for adoption.

7.3.2 Delay-based Mitigations. Context Sensitive Fencing [43]
(CSF) and Conditional Speculation [31] (CS) mitigate Spectre
variants in hardware by delaying potentially unsafe loads, until spec-
ulation is resolved and they are deemed safe. However, these mitiga-
tions are limited to attacks exploiting control/data speculation that
leak secrets stored in memory. For example, CSF uses taint-tracking
to identify and delay kernel loads dependent on user-space data, that
might potentially access secrets. CS uses heuristics to filter a subset
of L1-cache misses that could potentially leak data, and delays them.
In comparison, CleanupSpec prevents information leakage through
any speculative load, while incurring two-third of the slowdown of
CS and CSF. A contemporary work Context [41] leverages taint-
tracking to determine the secret-dependent instructions in a program
and modifies the processor to avoid speculation on such instructions,
delaying their execution until they are non-speculative. CleanupSpec
can be combined with CS, CSF, or Context, to selectively perform
clean-up operations only when unsafe or secret-dependent loads
execute, to achieve even lower slowdown.

Another contemporary work leverages Value Prediction [40] to
continue performing computations, despite delayed cache accesses.
However, such a proposal only benefits workloads with significant
value locality and still incurs close to 10% slowdown on average.
Other contemporary works like NDA [52] and SpecShield [3] delay
any usage of speculatively accessed data until speculation resolves,
resulting in slowdown upwards of 20%. In comparison, CleanupSpec
incurs lesser slowdown since it allows speculative usage of data and
only penalizes mis-speculated loads that are uncommon.

7.3.3 Partitioning-based Mitigations. DAWG [26] proposed a hard-
ware software co-design to prevent information leakage through
cache hits or misses on lines shared between a victim and spy, by
way-partitioning the cache and duplicating such shared cache lines
in each partition. However, this requires all software to be rewritten
utilizing protection-domains, so that they may be mapped to separate
cache partitions. Additionally, it hinders inter-process communica-
tion. In contrast, we provide a software transparent solution that also
protects legacy applications. MI6 [6] proposed a hardware-software
co-design providing strong isolation guarantees for code inside en-
claves. It leverages mechanisms like spatial isolation (set partitioned
L2/LLC) and temporal isolation (flushing L1 on enclave entry/exit)
to prevent speculation-based attacks using caches. However, it is
limited by its requirement for a HW/SW infrastructure supporting
enclaves, and faces scalability challenges due to its requirement of
static LLC-set partitioning between enclaves. In comparison, our de-
sign is a scalable mitigation that allows efficient sharing of LLC (no
partitioning), requires no software support, and has lesser slowdown.

7.3.4 Defenses against non-speculative side-channel attacks. Other
proposals mitigate cache side channels [14, 24, 38, 39, 48, 50, 51,
54, 59, 60] in a non-speculative setting – we build on some of these
to prevent speculation-attacks exploiting caches.

8 CONCLUSION
In this paper, we investigate a hardware solution for mitigating
speculation-based attacks. We propose CleanupSpec, an undo ap-
proach to safe speculation by mitigating the cache side channel used
in these attacks to transmit secret information from the transient path
to the correct path. CleanupSpec allows transient loads to change
cache state, but when a mis-speculation is detected, these changes
are made imperceptible. As CleanupSpec incurs overheads only for
wrong-path loads and only those that miss in the L1 cache, it only in-
curs a minimal slowdown of 5.1%. While this undo-based approach
requires careful analysis of the implementation to ensure security,
we believe it is worth the effort given that the gains in performance
come at a minimal cost of <1 kilobyte per core storage overhead and
simple logic for tracking and undoing speculative cache changes.

9 ACKNOWLEDGMENT
We thank the anonymous reviewers of ISCA-2019 and MICRO-2019
for their valuable feedback. We also extend our gratitude to Mengjia
Yan and the other authors of InvisiSpec for help and guidance with
their Gem5-based simulation infrastructure. We would also like to
thank Sriseshan Srikanth, Vinson Young, Swamit Tannu, Sanjay
Kariyappa and Poulami Das for proof-reading initial drafts of the
paper and providing helpful feedback.

CleanupSpec: An “Undo” Approach to Safe Speculation MICRO-52, October 12–16, 2019, Columbus, OH, USA

REFERENCES
[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port contention for fun and profit. In 40th IEEE
Symposium on Security and Privacy (S&P’19).

[2] Erik August. 2018. Spectre example code on ErikAugust Github Repository. https:
//gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6. (Accessed:
March 19, 2019).

[3] Kristin Barber, Li Zhou, Anys Bacha, Yinqian Zhang, and Radu Teodorescu.
2019. Isolating Speculative Data to Prevent Transient Execution Attacks. IEEE
Computer Architecture Letters (2019).

[4] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. In Ph.D. Thesis,
Princeton University.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[6] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Srinivas Devadas,
et al. 2018. MI6: Secure Enclaves in a Speculative Out-of-Order Processor. arXiv
preprint arXiv:1812.09822 (2018).

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2018.
A Systematic Evaluation of Transient Execution Attacks and Defenses. arXiv
preprint arXiv:1811.05441 (2018).

[8] T.E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In High Per-
formance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for. 1–12.

[9] Michel Cekleov and Michel Dubois. 1997. Virtual-address caches. Part 1: prob-
lems and solutions in uniprocessors. IEEE Micro 17, 5 (1997).

[10] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2018. SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves
via Speculative Execution.(2018). arXiv preprint arXiv:1802.09085 (2018).

[11] Intel Corporation. 2018. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-
vol-1-2abcd-3abcd.pdf. (Accessed: December 1, 2018).

[12] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2018. Cache timing side-channel
vulnerability checking with computation tree logic. In Proceedings of the 7th
International Workshop on Hardware and Architectural Support for Security and
Privacy. ACM.

[13] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Analysis of Secure Caches
and Timing-Based Side-Channel Attacks. IACR Cryptology ePrint Archive 2019
(2019), 167.

[14] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable Caches: Low-complexity Mitigation of
Cache Side Channel Attacks. ACM Trans. Archit. Code Optim. 8, 4, Article 35
(Jan. 2012), 21 pages. https://doi.org/10.1145/2086696.2086714

[15] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya
Dwarkadas. 2018. Shielding software from privileged side-channel attacks. In
({USENIX} Security).

[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In International
Symposium on Engineering Secure Software and Systems. Springer, 161–176.

[17] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 368–379.

[18] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
279–299.

[19] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.
Cache storage channels: Alias-driven attacks and verified countermeasures. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 38–55.

[20] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17.

[21] Jann Horn. 2018. Speculative Execution, Variant 4: Speculative Store Bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528. (Accessed: De-
cember 1, 2018).

[22] Intel. 2018. Intel Analysis of Speculative Execution Side Channels
. https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-
of-Speculative-Execution-Side-Channels.pdf. (Accessed: December 1, 2018).

[23] Intel. 2018. Speculative Execution Side Channel Mitigations. https://software.intel.
com/security-software-guidance/api-app/sites/default/files/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf. (Accessed: December 1, 2018).

[24] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell,
Nael B. Abu-Ghazaleh, Dmitry V. Ponomarev, and Aamer Jaleel. 2017. RIC:
Relaxed Inclusion Caches for mitigating LLC side-channel attacks. 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC) (2017), 1–6.
[25] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry

Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. In Proceedings of
the Design Automation Conference (DAC).

[26] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel
Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture.

[27] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre attacks: exploiting speculative execution. In 40th
IEEE Symposium on Security and Privacy (S&P’19).

[29] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18).

[30] Ruby Lee. 2018. Security Aware Microarchitecture Design. Keynote at the 51st
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Fukuoka, Japan.

[31] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against
Spectre Attacks. In High Performance Computer Architecture (HPCA), 2019 IEEE
International Symposium on. IEEE.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 973–990.

[33] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv preprint arXiv:1902.05178 (2019).

[34] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology (CT-RSA’06). Springer-
Verlag, Berlin, Heidelberg, 1–20. https://doi.org/10.1007/11605805_1

[35] Gabriele Paoloni. 2010. How to Benchmark Code Execution Times
on Intel IA-32 and IA-64 Instruction Set Architectures. https:
//www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-
32-ia-64-benchmark-code-execution-paper.pdf.

[36] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks..
In USENIX Security Symposium. 565–581.

[37] Phoronix. 2018. Bisected: The Unfortunate Reason Linux 4.20 Is Running
Slower. https://www.phoronix.com/scan.php?page=article&item=linux-420-
bisect&num=1. (Accessed: December 1, 2018).

[38] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Dynamically Encrypted Address. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture.

[39] Moinuddin K. Qureshi. 2019. New attacks and defense for encrypted-address
cache. In Proceedings of the 46th International Symposium on Computer Architec-
ture (ISCA).

[40] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient Invisible Speculative Execution Through Selective
Delay and Value Prediction. In Proceedings of the 46th International Symposium
on Computer Architecture. ACM, 723–735.

[41] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio
Canella, and Daniel Gruss. 2019. ConTExT: Leakage-Free Transient Execution.
arXiv:arXiv:1905.09100

[42] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. Net-
spectre: Read arbitrary memory over network. arXiv preprint arXiv:1807.10535
(2018).

[43] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode Customization.
In Proceedings of the 20th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19).

[44] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate: Auto-
mated Synthesis of Hardware Exploits and Security Litmus Tests. In Proceedings
of the 51st International Symposium on Microarchitecture.

[45] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886. (Accessed: December
1, 2018).

[46] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In 27th USENIX Security Symposium USENIX
Security 18). USENIX Association.

https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6
https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1145/2086696.2086714
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://doi.org/10.1007/11605805_1
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.phoronix.com/scan.php?page=article&item=linux-420-bisect&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-420-bisect&num=1
http://arxiv.org/abs/arXiv:1905.09100
https://support.google.com/faqs/answer/7625886

MICRO-52, October 12–16, 2019, Columbus, OH, USA Saileshwar andQureshi

[47] Jack Wampler, Ian Martiny, and Eric Wustrow. 2019. ExSpectre: Hiding Malware
in Speculative Execution. In 26th Annual Network and Distributed System Security
Symposium (NDSS 2019).

[48] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward
Suh. 2016. SecDCP: secure dynamic cache partitioning for efficient timing channel
protection. In Design Automation Conference (DAC).

[49] Yao Wang and G Edward Suh. 2012. Efficient timing channel protection for on-
chip networks. In Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International
Symposium on. IEEE, 142–151.

[50] Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07). ACM, New York,
NY, USA, 494–505. https://doi.org/10.1145/1250662.1250723

[51] Zhenghong Wang and Ruby B. Lee. 2008. A Novel Cache Architecture with
Enhanced Performance and Security. In Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 41). IEEE Computer
Society, Washington, DC, USA, 83–93. https://doi.org/10.1109/MICRO.2008.
4771781

[52] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris Kasikc. 2019.
NDA: Preventing Speculative Execution Attacks at Their Source. In International
Symposium on Microarchitecture (MICRO).

[53] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. Technical Report. Technical report.

[54] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. SCATTERCACHE: Thwarting Cache Attacks
via Cache Set Randomization. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 675–692.

[55] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and method-
ological considerations. In ACM SIGARCH computer architecture news, Vol. 23.

ACM, 24–36.
[56] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:

High-speed Covert Channel Attacks in the Cloud.. In USENIX Security symposium.
159–173.

[57] Mengjia Yan. 2018. Invisispec 1.0. https://github.com/mjyan0720/InvisiSpec-
1.0/tree/39cfb858d4b2e404282b54094f0220b8098053f6. (Accessed: December
1, 2018).

[58] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution In-
visible in the Cache Hierarchy. In Proceedings of the 51st International Symposium
on Microarchitecture.

[59] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017.
Secure hierarchy-aware cache replacement policy (SHARP): Defending against
cache-based side channel attacks. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 347–360.

[60] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. 2016. ReplayConfusion: detect-
ing cache-based covert channel attacks using record and replay. In International
Symposium on Microarchitecture (MICRO).

[61] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side
Channel Attacks in a Non-Inclusive World. In 2019 IEEE Symposium on Security
and Privacy (SP).

[62] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are Coherence Pro-
tocol States Vulnerable to Information Leakage?. In High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 168–179.

[63] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium,
Vol. 1. 22–25.

[64] Zdnet.com. 2018. After big Linux performance hit, Spectre v2 patch needs
curbs. https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-
hit-spectre-v2-patch-needs-curbs/. (Accessed: December 1, 2018).

https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2008.4771781
https://github.com/mjyan0720/InvisiSpec-1.0/tree/39cfb858d4b2e404282b54094f0220b8098053f6
https://github.com/mjyan0720/InvisiSpec-1.0/tree/39cfb858d4b2e404282b54094f0220b8098053f6
https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/
https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Threat Model
	2.2 Speculation-Based Attacks
	2.3 InvisiSpec: Redo-Based Mitigation
	2.4 Undo Approach: Benefits and Challenges
	2.5 Goal of this Paper

	3 Design
	3.1 Overview of CleanupSpec Design
	3.2 Randomizing L2 Lines & L1 Replacement
	3.3 Removing L1 and L2 Installs
	3.4 Restoring Lines Evicted due to L1 Installs
	3.5 Delaying Coherence State Downgrades
	3.6 Protecting Installs in Speculation Window

	4 Security Analysis
	5 Experimental Methodology
	5.1 Simulation Framework
	5.2 Workloads
	5.3 Configuration

	6 Results
	6.1 Proof-of-concept Defense
	6.2 Performance
	6.3 Main Cause of Slowdown - Cleanup Stalls
	6.4 Analysis of Loads Requiring Cleanup
	6.5 Comparison with InvisiSpec
	6.6 Storage Overhead

	7 Related Work
	7.1 Types of Speculation-Based Attacks
	7.2 Software and Microcode Based Defenses
	7.3 Hardware Based Defenses

	8 Conclusion
	9 Acknowledgment
	References

