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ABSTRACT

Near-term quantum computers contain noisy devices, which makes
it difficult to infer the correct answer even if a program is run for
thousands of trials. On current machines, qubit measurements tend
to be the most error-prone operations (with an average error-rate
of 4%) and often limit the size of quantum programs that can be
run reliably on these systems. As quantum programs create and
manipulate correlated states, all the program qubits are measured
in each trial and thus, the severity of measurement errors increases
with the program size. The fidelity of quantum programs can be
improved by reducing the number of measurement operations.

We present JigSaw, a framework that reduces the impact of
measurement errors by running a program in two modes. First,
running the entire program and measuring all the qubits for half
of the trials to produce a global (albeit noisy) histogram. Second,
running additional copies of the program and measuring only a
subset of qubits in each copy, for the remaining trials, to produce
localized (higher fidelity) histograms over the measured qubits.
JigSaw then employs a Bayesian post-processing step, whereby
the histograms produced by the subset measurements are used to
update the global histogram. Our evaluations using three different
IBM quantum computers with 27 and 65 qubits show that JigSaw
improves the success rate on average by 3.6x and up-to 8.4x. Our
analysis shows that the storage and time complexity of JigSaw
scales linearly with the number of qubits and trials, making JigSaw
applicable to programs with hundreds of qubits.
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1 INTRODUCTION

Quantum computers can solve very hard problems by using prop-
erties of quantum bits (qubits) [29, 46]. Recently demonstrated
quantum hardware with fifty-plus qubits are getting to the regime
where they can outperform the most advanced supercomputer for
some computations [52]. Unfortunately, these machines are not
sufficiently large to implement quantum error correction and are
operated in the Noisy Intermediate Scale Quantum (NISQ) [41] model,
whereby the computation is run a large number of times (called
trials) and the answer is inferred from the output log. The ability
to obtain the correct answer on a NISQ machine depends on the
error-rates and the size of the program. Recently, various software
techniques have been investigated to improve application fidelity
that either perform noise-aware computations to enable better than
worst-case error rate [30, 33, 48, 50, 51] or reduce the program
length and number of computations [27, 45, 57].

This paper focuses on measurement operations, which are often
the most dominant source of error on current superconducting
quantum computers, with average error-rates ranging between 2-
7% [20, 52]. Measurement errors constrain the size of the largest
program that can be run on NISQ machines with high fidelity [13].
These errors arise from the imperfections in the qubit readout pro-
tocol [7, 53] and the long latency of these operations (about 4-5
microseconds on IBM quantum systems). Furthermore, measure-
ment operations suffer from measurement crosstalk [4, 23], which
means performing several measurement operations concurrently
increases the error rate of each measurement operation. Our ex-
periments on IBMQ machines show that the average measurement
error rate increases by up-to 2% when five qubits (and by up-to 4%
when ten qubits) are measured simultaneously compared to mea-
suring a single qubit in isolation. This indicates larger programs
become even more susceptible to measurement crosstalk due to
higher number of measurement operations. Similar observations
are reported for the Google Sycamore, where simultaneous mea-
surement operations have 1.26x higher error-rates compared to
isolated measurements [52]. Consequently, fast and accurate qubit
measurement at scale remain an open problem [24].

Spatial variation of measurement errors imposes further chal-
lenges in attaining high fidelity for large programs. For example, on
IBM’s 27-qubit Toronto device, the median measurement error rate
is about 2.7%, whereas the worst-case error rate is 22.2%. Existing
state-of-the-art noise-aware compilers avoid mapping programs
onto unreliable physical qubits [30, 51], to alleviate the impact of
worst-case errors. However, it is not always feasible for large pro-
grams, particularly in the context of measurement errors because
the qubits with the lowest measurement error rates are typically
not co-located in space. For example, it is challenging to map any
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GHZ-4: equal superposition
of 0000 and 1111.
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Figure 1: (a) Executing GHZ-4 kernel on NISQ machine (b) JigSaw obtains a global-PMF for the program by measuring all the
qubits, a high-fidelity local-PMF for each circuit with partial measurement (CPM), and uses the local-PMFs from CPMs to

update the global-PMF via a Bayesian Reconstruction algorithm.

program with more than six qubits on IBMQ-Toronto without using
a physical qubit with more than 2.7% measurement error-rate (the
median). In the limiting case, the compiler is forced to use qubits
with more than 20% measurement error-rate for any program that
uses sixteen qubits or more.

NISQ programs measure all the program qubits in each trial, and
thus, suffer from the accumulated measurement errors across all the
program qubits. The severity of measurement errors is compounded
in large programs by the fact that a correct output is obtained only
if all these measurements are error-free. The key insight in our
paper is to measure only a subset of program qubits for some of
the trials, so that these trials encounter fewer errors due to reduced
measurement crosstalk, and by avoiding the physical qubits most
susceptible to measurement errors. However, subset measurements
lack information about the global correlation across all the qubits.
Thus, we need a way to combine the benefits of both global runs (full
correlation but low fidelity) and subset runs (limited correlation
over fewer qubits but higher fidelity). To that end, we propose
JigSaw,! a framework that reduces measurement errors by running
a program in two modes: global and subset. The PMF (probability
mass function) produced for each mode are then combined using a
post-processing algorithm to generate a higher fidelity PMF.

To illustrate our design, we use the GHZ-4 program shown in
Figure 1(a) as an example. Ideally, GHZ-4 produces 0000 or 1111
with 50% probability each. However, errors can produce incorrect
outputs, some with probability higher than the two correct answers.
To improve the application fidelity using JigSaw, first, we run the
program in global-mode, wherein we measure all the qubits to
produce the global-PMF. In the second step, we run the circuit in
subset-mode, where multiple copies of the original program are
run, but where each copy only measures a subset of qubits and
produces a PMF only over the measured qubits. For example, in

! The name is inspired by the popular Jigsaw puzzle — the global-PMF represents a
noisy skeleton, and the subset measurements are small tiles. When both are used
together, the full picture is revealed.
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Figure 1(b), we run two such Circuits with Partial Measurements
(CPM) that perform all the computations but only measure two
qubits in each copy (Q, and Q; for the first copy, and Q, and Qs
for the second copy). Each CPM is recompiled to ensure that the
two measurement operations are performed on the physical qubits
with the least amount of measurement error. Therefore, we would
expect the measurement fidelity which is closer to the best-case
qubits rather than average-case or worst-case qubits. Measurement
subsetting and recompilation results in the higher reliability of
CPM marginals compared to the scenario of deriving the marginals
from the global-PMF.

Although fewer measurements can offer marginal information
with higher fidelity, the CPM may still not be able to produce the
output PMF as the correlation between different CPM are unknown.
To reconstruct the global-PMF using the local-PMFs, we employ a
Bayesian Reconstruction algorithm, analogous to Bayesian updating
in statistics, where a prior probability estimate is updated using
newer information. For JigSaw, the global-PMF is the prior estimate,
which is updated using more accurate marginal information from
the CPM. By performing Bayesian updates, the algorithm accentu-
ates the probabilities of the correct outcome(s) while reducing the
probabilities of the incorrect outcomes, thus improving the fidelity.
Our evaluations with three different quantum hardware from IBM,
with 27 and 65 qubits, show that JigSaw without recompilation (and
measurement subsetting only) improves the success rate of typical
quantum benchmarks on average by 1.85x and by up-to 3.26x. Note
that by default JigSaw uses CPM of size 2. Alternately, JigSaw with
both measurement subsetting and CPM recompilation improves
the fidelity of applications on average by 2.9x and by up-to 7.9x.

For an N-qubit program, it is possible to design a polynomial
number of CPM of subset size 2 (NC,). However, our experiments
show that the effectiveness of JigSaw saturates even when more
CPM of the same subset size are used because after a certain limit
these additional CPM do not offer incremental and unique informa-
tion. To overcome this limitation, we propose Multi-Layer JigSaw



JigSaw: Boosting Fidelity of NISQ Programs
via Measurement Subsetting

(FigSaw-M), which creates CPM of different sizes by exploiting
the trade-off between fidelity and the amount of correlation for a
CPM. While small CPM provide higher fidelity; they do not capture
sufficient correlation. Alternatively, larger CPM provide greater
correlation but also encounters more errors due to larger number of
measurements. Overall, our default JigSaw-M uses CPM of subset
sizes 2 to 5 qubits and improves application success rate on average
by 3.65x and by up-to 8.42x.

Overall, our paper makes the following contributions:

(1) We propose JigSaw, a framework that does not subject all
trials to measurement errors across all qubits. It performs
half of the trials with global measurements (for correlation)
and the other half with subset measurements (for higher
fidelity).

(2) We propose a Bayesian Reconstruction algorithm that uses
the PMFs from the subsets to improve the global-PMF.

(3) We propose FigSaw-M, which generates more unique non-
uniform sized CPM to further enhance the global-PMF.

Our scalability analysis of JigSaw show that the storage and
time complexity is linear with the number of trials and qubits,
making JigSaw applicable to programs with hundreds of qubits.
The algorithm for JigSaw and datasets used for evaluations in this
paper is available at this link.

2 BACKGROUND

2.1 Basics of Quantum Computing

A qubit is the fundamental unit of information on a quantum com-
puter and may be represented using a vector |¥) = « |0)+f |1), a su-
perposition of the basis states [0) and |1) such that | a |? + | 8 |?= 1.
When measured, a qubit collapses to a binary 0 or 1 with probabili-
ties | & |? and | B |? respectively. Similarly, an n-qubit system exists
in a superposition of 2" basis states and can produce any of the
2" bitstrings depending on the probabilities associated with them
upon measurement.

2.2 Errors and NISQ Model of Computing

Qubits are extremely sensitive devices and error prone. These er-
rors can corrupt their states, producing incorrect outcomes during
program execution. The state of a qubit naturally decays due to its
interactions with the environment, a phenomenon called decoher-
ence, whereas imperfections in quantum operations can lead to gate
errors. Measurement errors manifest due to errors in measurement
operations. Noisy Intermediate Scale Quantum (NISQ) computers
will be operated in the presence of noise as they may not be large
enough to achieve fault-tolerance [41]. By repeatedly executing
a program several times on the NISQ hardware (called trials), the
program solution can be inferred from the output distribution.

2.3 Measurement Errors

Qubit measurement error rates can constrain the size of the largest
program (in terms of number of qubits) that can be run reliably
on a NISQ machine [13]. As a result, software policies particularly
aimed at reducing the impact of measurement errors are currently
being developed [5, 8, 19, 26, 50].
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How are measurements performed? Superconducting qubits,
similar to the devices from IBM and Google, are measured using a
dispersive qubit readout protocol. In this protocol, a qubit is coupled
to a measurement resonator whose resonance frequency experi-
ences a shift depending on the state of the qubit and by measuring
this shift, the state of the qubit is determined [7, 24, 53]. For super-
conducting devices, a signal corresponding to the state of a qubit is
obtained when a readout pulse is applied to the qubit [52]. This sig-
nal is translated into a single-valued complex number to classify the
state of the qubit as “0" or “1" using a measurement discriminator.

Why are measurement operations error prone? Measurement
errors can be attributed to a variety of factors.

(1) The shift in resonance frequency during readout is very
sensitive to noise, is device-specific, and drifts in time.

(2) The measurement set-up involves various complex instru-
ments operating across multiple thermal domains that intro-
duces errors due to crosstalk and unwanted couplings. The
impact of crosstalk is generally not fully understood and
considered to be hard to minimize at device level [23, 52].

(3) Existing discriminators are inefficient and perform poorly
for several quantum states [37].

(4) Measurement operations are slow (typically takes about 4-
5 microseconds on recent IBMQ hardware and about 800
nanoseconds on Google devices [3]) and often cause qubits
to decay to the ground state during the readout process.

These factors limit the ability of existing quantum systems to

perform fast and accurate qubit measurements at scale. On existing
IBMQ and Google hardware, measurement operations tend to be
the dominant sources of errors, with median error rates between
2.76% to 7.1%, and worst-case error rates as high as 11.7% to 22.2%.

3 PROBLEM AND MOTIVATION

Measurement operations limit the fidelity of large programs mainly
due to two reasons:

(1) The impact of measurement crosstalk increases with the num-
ber of measurement operations.

(2) Spatial variation in measurement errors limit the ability of
compilers to avoid the most error-prone physical qubits.

3.1 Impact of Measurement Crosstalk

Measurement operations are more vulnerable to errors when a
larger number of qubits are simultaneously measured due to mea-
surement crosstalk. For example, the average error rate of simulta-
neous measurements is 1.26x higher than isolated measurements
on Google Sycamore, as shown in Table 1.

Table 1: Measurement Errors on Google Sycamore [4]

Measurement Error Rates (%)
Measurement Mode

Min | Average ‘ Median ‘ Max

Isolated 2.60 6.14 5.70 11.7
Simultaneous 3.30 7.73 7.10 20.9
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Characterization of Measurement Crosstalk:

We perform several characterization experiments and observe simi-
lar behavior on IBMQ hardware. To study measurement crosstalk,
we perform several characterization experiments on IBMQ hard-
ware. Figure 2(a) shows an N-qubit circuit that creates arbitrary
quantum states using single-qubit U3 gates [2]. During the experi-
ment, the Probe-Qubit (Q1) is always mapped to the physical qubit
on which the impact of measurement crosstalk is being determined,
whereas the other N-1 qubits are randomly mapped to the remain-
ing physical qubits of the machine in each sample and generate
multiple samples for each N. Note that N denotes the number of
measurements and N=1 corresponds to the case when the Probe-
Qubit is measured in isolation. For the results shown in Figure 2(b),
we vary N from 1 to 10 and take 10 samples for each N.

We compute the mean fidelity of the Probe-Qubit for each N by
measuring the Total Variation Distance (TVD) between the experi-
mental output and the output from a noise-free quantum computer.
Figure 2(b) shows the impact of increasing the number of mea-
surements from 1 to 10 for four different quantum states, prepared
by specifying the Euler angles for the U3 gates, when Qubit-6 is
probed on 27-qubit IBMQ-Paris. We observe that simultaneously
measuring a larger number of qubits can reduce the fidelity of these
operations significantly. We make similar observations on other
qubits and hardware devices. Further experiments also show that
the impact of such crosstalk depends on the quantum state and
physical qubit and therefore, is hard to characterize. Prior studies
state that it is hard to fully understand and minimize measurement
crosstalk at device level [4, 23].

() Probe-Qubit ®) 5 10 mog g8
us(eqm) 3 R e
b, S0.08 pL
E R-R-m_
U3(e,d,x) 509 State "0"  -m 33%"0"
& State "1" %~ 66% "0"

X 1 2 3 4 5 6 7 8 9 10
Us(@.o.8) Number of Measurements (Probe Qubit 6)

Figure 2: (a) Measurement crosstalk characterization cir-
cuits (b) Impact of increasing number of measurements on
the Fidelity of the Probe-Qubit.

3.2 Impact of Spatial Variation

To execute a program on a NISQ device, a compiler maps the pro-
gram qubits onto the physical qubits of the device and translates
the high-level program into low-level machine specific instruc-
tions. Compilers also need to insert SWAP instructions to over-
come the limited connectivity of NISQ devices. Noise-aware com-
pilers [30, 51] account for the error characteristics of the underlying
quantum hardware and avoid mapping program qubits on to hard-
ware qubits with worst-case errors. However, while this works very
efficiently for small programs, spatial variation in measurement
error rates often force compilers to map program qubits on unreli-
able physical qubits, as programs grow in size, because the qubits
with the lowest error rates are not spatial neighbors, as shown in
Figure 3. For example, it is not possible to map any program with
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more than six qubits on the 27-qubit IBMQ-Toronto without using
a physical qubit with more than 2.7% measurement error-rate (the
median error-rate). Further, the compiler is forced to use physical
qubits A and B with more than 20% measurement error rate for
programs with sixteen and twenty-one qubits or more respectively.

Measurement Error
Range (in percentiles)

Measurement
Error Rates

Mean:  4.70 % O <25
Median:  2.76 % [J 2550
Minimum: 0.85 % [ 50-75
Maximum: 22.2 % W 75

Figure 3: Spatial variation in measurement error rates of
qubits on IBMQ-Toronto

3.3 The Insight: Measurement Subsetting

NISQ applications measure all the program qubits in each trial,
subjecting all the trials to the accumulated measurement errors
from all the qubits. We can reduce the impact of measurement
errors on the fidelity of NISQ programs by:

(1) Reducing the number of measurement operations by perform-
ing some trials with measurements only on a subset of qubits
and effectively lowering the impact of crosstalk.

(2) Remapping to ensure that the subset measurements are per-
formed on the qubits with the lowest error rates. This allows
the us to get an effective measurement error rate that is closer
to the minimum rather than the average.

Correlation versus Fidelity Trade-off in Subsetting:
Quantum computers obtain their exponential power by creating
and manipulating highly correlated states. To measure this corre-
lated state, a NISQ program measures all the qubits in each trial.
If there was no correlation, and each qubit had an independent
probability of being in the 0 or 1 state, then one could simply split
the trials into N groups (one group for each qubit), obtain the in-
dependent probability of being in 0 or 1 state for each qubit, and
then obtain the probability distribution over all the qubits through
multiplication. While this approach has high fidelity for each trial
(only one measurement), it captures zero correlation between the
qubits. Measuring a subset of qubits (larger than a single qubit
but not all qubits) captures some correlation (within the measured
qubits) but the correlations between these marginal distributions
remain unknown, and therefore, multiplication or a tensor product
may not yield the correct output distribution.

3.4 The Goal: Reducing Measurement Errors

Thus, measuring all the qubits provides full correlation (but low fi-
delity) and fewer measurements provide higher fidelity (but weaker
correlation). Ideally, we want both full correlation and high fidelity.
The goal of this paper is to design scalable and effective policies
that can improve application fidelity by retaining the global cor-
relation of the original program, while simultaneously benefiting
from the higher fidelity obtained from fewer measurements. Next,
we discuss our proposed design, JigSaw.
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global-PMF obtained during the execution in global-mode.

4 JIGSAW: OVERVIEW AND DESIGN

We propose figSaw, a framework that relieves the NISQ program
from requiring to measure all the qubits of a program in each trial.
Figure 4 shows the overview of JigSaw. JigSaw executes a program
in two modes. First, JigSaw executes half of the trials in the global-
mode in which a program is executed in its entirety and all the qubits
are measured to obtain the global probability mass function (PMF).?
Second, for the remaining trials, JigSaw runs additional copies of the
program or Circuits with Partial Measurements (CPM) that measure
fewer qubits in the subset-mode, to obtain more accurate marginal
or local-PMFs over the subset of qubits being measured. However,
CPM alone cannot be used to infer the output PMF of a program
without information about the correlations between these local-
PMFs. To address this challenge, JigSaw employs a post-processing
or reconstruction step that updates the global-PMF using the local-
PMFs. This enables JigSaw to improve the application fidelity while
simultaneously retaining the global correlation without requiring
any additional trials.

4.1 Global-Mode: Generation of Global-PMF

In this mode, JigSaw executes the entire program and measures
all the program qubits to produce a global-PMF. This is identical
to the baseline policy and is done for half of the trials. We use
Noise-Aware SABRE [27] for compilation to obtain a global-PMF
with high fidelity. A NISQ compiler maps the logical qubits of a
program on to the physical qubits of the hardware and generates a
schedule by translating the high-level instructions into low-level
machine specific operations. To overcome limited connectivity on
NISQ hardware, compilers also insert SWAP instructions to bring
two non-adjacent qubits next to each other, so that CNOT operations
can be performed between them. Noise-Aware SABRE accounts for
the hardware error characteristics and generates a schedule that
maximizes the Expected Probability of Success (EPS) [34]. EPS is the
expected probability of successfully executing each gate and mea-
surement operation in a schedule and is computed at compilation
time by using the error rates obtained from the daily calibration
report of the NISQ hardware.

2We use Probability Mass Function (PMF) for the results of program execution because
these include discrete and not continuous values.
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4.2 Subset-Mode: Generation of Local-PMFs

In the subset-mode, JigSaw runs several Circuits with Partial Mea-
surements (CPM), for the remaining half of the trials which are
equally distributed between the CPM. We discuss how CPM are
generated and optimized for greater fidelity.

4.2.1 Circuits with Partial Measurements.

A CPM is identical to the original program, except that it measures
only a subset of qubits. CPM produces high-fidelity local-PMFs over
the qubits measured. For example, Figure 5(a) shows a CPM of a BV-
4 program that measures 2 qubits, Q, and Q. The key parameter in
JigSaw is the number of qubits measured in a CPM and is called the
subset size. Our default design uses CPM that measure 2 qubits. This
is the smallest possible subset size that captures some correlation
while performing fewest possible measurements. Measuring only
one qubit in a CPM captures zero correlation and therefore, not
used. By default, we use a sliding window method to generate
the CPM so that we get N unique CPM for an N-qubit program.
For example, for a 4-qubit program with qubits q,q;, q,, q3, We
generate 4 CPM, measuring (q,q;), (41, 92), (92, q3), and (g, q3).
Therefore, the number of CPM is same as the number of qubits.

Example of a CPM Avoid readout on Avoid Vulnerable Avoid Vulnerable

Vulnerable Qubit Qubit with SWAP Qubit without SWAP
o @HH Q- @
2 H]
Smiged: @

Figure 5: (a) Example of a CPM (b) Compiler avoids vulnera-
ble qubit. Mapping that avoids vulnerable qubit (c) with ex-
tra SWAP (d) without incurring extra SWAP

4.2.2 Optimizations to Improve Fidelity of the CPM.
As JigSaw heavily relies on the accuracy of the local-PMFs, the
compiler recompiles each CPM to maximize their fidelity.

Optimizing for Measurement Errors: We recompile each CPM
to exploit variability in measurement errors and ensure that mea-
surements of desired program qubits are performed on the strongest
physical qubits. The compiler avoids measurements on the physical
qubit(s) with the highest readout error rate, referred to as vulnerable
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Figure 6: Steps in Bayesian Reconstruction for a 3-qubit program (qubits Q,, Q;, Q,) using a CPM measuring Q,, Q,.

qubit(s), in an allocation. For example, the compiler eliminates the
allocation in Figure 5(b) for the CPM in Figure 5(a) to avoid readout
of Qg on the vulnerable qubit and selects an alternate allocation.

Avoiding Extra SWAPs: To avoid measurement on the vulnerable
qubit(s), the compiler often uses alternate qubit allocations, some
of which may need insertion of extra SWAP instructions. However,
we avoid such allocations that require extra SWAPs to avoid addi-
tional gate errors. For example, the compiler selects the allocation
shown in Figure 5(d) over Figure 5(c) because the latter requires an
extra SWAP (SWAP Qg, Q). While in most cases, the compiler finds
alternate mappings without incurring extra SWAPs, for cases where
the compiler cannot not find a mapping without inserting an extra
SWAP, it picks the mapping that maximizes the EPS.

The ability to find alternative mappings depends on device con-
nectivity, spatial location of good qubits, and program character-
istics. Our studies show most CPM can reuse qubit allocations
chosen by the Ensemble of Diverse Mappings [48] policy. Also, we
use SABRE, which has low latency.

4.3 Post-processing via Bayesian Method

JigSaw produces (N+1) PMFs for a program with N qubits: one
global-PMF and one local-PMF for each of the N CPMs. The post-
processing step aims to combine the higher fidelity local-PMFs from
each CPM into the global-PMF. To this end, we propose Bayesian
Reconstruction algorithm, which is inspired by Bayesian updating
in statistics, whereby a prior probability estimate is updated using
additional information [22]. For JigSaw, the global-PMF (P) offers
the prior probability estimate, whereas the set of marginals (M)
obtained from the CPM provides the additional information. We
use the term marginal to denote a set comprising of a subset of
qubits measured in a CPM and the local-PMF produced by the CPM.

Consider an example of a 3-qubit program. Let P = {000 : a,010 :
b,010 : ¢,011 : d,100 : e,101 : f,110 : g, 111 : h} represent a
generic global-PMF of a 3-qubit program (with qubits Q,, Qy, Qy),
where a to h are the probabilities of observing outcomes 000 to 111
respectively. Similarly, mg = [{00 : «,01 : 5,10 : y,11 : §},[1,0]]
refers to a generic marginal for a CPM measuring qubits [Q;, Q,].

The steps for the Bayesian Reconstruction algorithm are de-
scribed in Algorithm 1 (Appendix). The algorithm uses each mar-
ginal to update the probabilities of each outcome in the global-PMF
(P). The algorithm starts by searching for all outcomes in P associ-
ated with each outcome in a marginal, by evaluating the bits at the
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corresponding qubit positions. For example, for (Q,Q,) = 00 in
the marginal m, the candidates in P are (Q,, Q;, Q,) = 000 and 100.
For each marginal in M, the Bayesian Update function generates
an updated PMF (Ppost) by updating the probabilities of each out-
come in P using the associated probabilities in the marginals. For
example, the probabilities of 000 and 100, i.e., a and d respectively,
are updated in proportion with « (corresponding to 00 in my). The
algorithm produces a posterior output PMF (Poyt) by adding all the
intermediate PMFs (Ppost) to the global-PMF (P). The algorithm is
recursively called and terminates when the Hellinger Distance [17]
between the output PMF, Pgy, prior to and post the function call
does not change, implying the two PMFs are similar.

We explain the steps involved in the Bayesian update using a
quantitative example. Figure 6 shows the update sequence using
experimental data for a 3-qubit program whose global-PMF is de-
noted by P (in order Q,, Q;, Q,) using a marginal mg from a CPM
that measures (Q1, Q).

o Step 1: The algorithm searches for all candidate outcomes
in P for each entry in marginal mg by evaluating the bits at
the corresponding qubit positions. For example, 000 and 100
are the candidate outcomes in P for 00 in my, obtained by
matching the values for (Q;, Q) in P and my.

o Step 2 : Next, the function computes the Update Coefficients
C for each of the outcomes in P by normalizing their respec-
tive probabilities of occurrence in P.

e Step 3 : Next, the algorithm computes the posterior prob-
abilities for each observed outcome in P by scaling them
using the corresponding probabilities observed in my. Fig-
ure 6 explicitly shows the computation for obtaining the
posterior probability of outcome 000 (Ppost[000]) using the
Update Coeflicient C[000] and marginal information mg[00].

o Step 4 : The algorithm repeats Steps 1-3 to generate an
intermediate posterior PMF (Ppost) for each marginal.

e Step 5 : Each Ppt is added to the global-PMF (P).

o Step 6 : The final output PMF (Poyt) is obtained by normal-
izing the probabilities.

For readability, Figure 6 only shows the steps for marginal
[Q1,Qgl, whereas the output PMF shown is obtained from recur-
sive updates with additional marginals. Note that as the Bayesian
updates for each CPM are performed independently and the inter-
mediate PMFs are added in the final step, the order of updates does
not matter.
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4.4 Multi-Layer JigSaw (JigSaw-M)

Our studies show that the performance of JigSaw saturates when
additional CPM of the same subset size that do not offer any incre-
mental information are used. However, we can design more unique
CPM by using different subset sizes and improve the application
fidelity even further.

4.4.1 Global and Subset-Modes for JigSaw-M.

The global mode for JigSaw-M is identical to JigSaw that gener-
ates the global-PMF by executing the program and measuring all
the qubits. The subset-mode for JigSaw-M executes CPM of non-
uniform subset sizes s, such that sy, < s < Spax, where spax and
Smin are the maximum and minimum subset sizes respectively. We
use a sliding window method to generate unique CPM for each
subset size, similar to JigSaw, but other methods can be used too. If
CPM of S different sizes are used, JigSaw-M produces (SN+1) PMFs
for an N-qubit program, one global-PMF and N local-PMFs for each
subset size. By default, our design uses CPM of sizes 2 to 5.

4.4.2  Adapting Reconstruction for JigSaw-M.
JigSaw-M comprises of CPM of S different sizes. There is a choice
between which CPM must be used first to update the global-PMF.
However, note that there exists a trade-off between the fidelity of a
CPM and the correlation it can capture depending on the number of
qubits measured in the CPM. A smaller CPM offers higher fidelity
due to fewer measurement errors but captures limited correlation.
Alternately, a larger CPM offers higher correlation, but has lower
fidelity since it is more prone to measurement errors. Thus, for
JigSaw-M, the reconstruction algorithm first updates the global-
PMF using the CPM of the highest size (Spmax), limiting the loss of
global correlation. The updated PMF (Ps) is then further enhanced
using information from CPM of the next higher size. The process is
repeated until the smallest CPM are used. This top-down ordering
maximally preserves the global correlation, while simultaneously
improving the fidelity.

We discuss the evaluation methodology before discussing the
impact of JigSaw on the fidelity of NISQ applications.

5 EVALUATION METHODOLOGY

5.1 Quantum Hardware Platforms

For all our evaluations, we use three different quantum computers
from IBM: 27-qubit IBMQ-Toronto, 27-qubit IBMQ-Paris, and 65-
qubit IBMQ-Manhattan.

5.2 Baseline Compiler

For the baseline, we use Noise-Aware SABRE [27] to compile and
map the program onto the physical qubits with the lowest error
rates. We also evaluate JigSaw against an Ensemble of Diverse Map-
pings (EDM) policy that runs independent copies of the program
on different groups of physical qubits [48] and improves the ability
to infer the correct answer. Note that while we use Noise-Aware
SABRE, other noise-adaptive compilers [30, 51] may be used too.

5.3 Benchmarks

We use the benchmarks described in Table 2. The type and size
of benchmarks are derived from prior works [27, 30, 48, 51]. Note
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that the IBMQ machines used for evaluations have a Quantum
Volume [10] of 32, which means that square circuits of only up to
size 5 can be run reliably and therefore, the size of the benchmarks
used is already much larger even if they do not use all the qubits
that are present on the machine.

Table 2: Details of NISQ benchmarks

#Qubit 1 2

Name Algorithm Qubits Q Q

(n) Gates | Gates
BV-n Bernstein-Vazirani [6] 6 2(n+1) n
Graycode-n Graycode Decoder 18 n/2 (n-1)
QAOA-n (p=1) | Maxcut with p=1 [12] 8 4n (n-1)
QAOA-n (p=2)| Maxcut with p=2 10, 14 6n 2(n-1)
QAOA-n (p=4) | Maxcut with p=4 10, 12 10n 4(n-1)
Greenberger-Horne
GHZ-n 14 1 (n-1)
-Zeilinger [16]

Ising-n Ising model [21] 10 n(4.5n-2) | n(n-1)

5.4 Experimental Setup: Number of Trials

We use between 32K to 256K trials for the baseline depending
on program size. This represents the highest fidelity that can be
obtained by increasing trials alone and serves as a strong baseline
as more trials do not improve fidelity (mainly due to correlated
errors). Figure 7 shows the Probability of Successful Trial (PST)
of several GHZ and QAOA benchmarks executed on IBMQ-Paris
for up to 4 million trials. We observe similar behavior for other
workloads and machines.

— GHZ-12 - GHZ-16 —+= QAOA-10 (p2)
2 0.5 GHZ-14 --%-- QAOA-10 (pl) -A- QAOA-10 (p4)
C

'4% “,"'“':“:“L"“f',“i“:f pes L~7“J'“J~;~7“l“7
803

5

L 0.1 AndezA=deodnchk=dechmdezdmckodecA=deoAnok=r

8K 1million 2 million 4 million

Number of Trials executed on IBMQ-Paris

Figure 7: Impact of Number of Trials on Probability of Suc-
cessful Trial (PST) of Applications.

For EDM [48], we use an ensemble of four mappings and the trials
are equally divided among the mappings. For JigSaw and JigSaw-M,
the trials are equally split between the global-mode and the subset-
mode. In the subset-mode the trials are equally split between all the
CPM for both JigSaw and JigSaw-M. Therefore, JigSaw, JigSaw-M,
and EDM all use the same number of trials as the baseline. We run
all the experiments within the same calibration cycle but observe
similar results across different calibration cycles. We use equal split
for simplicity because the fidelity saturates for the number of trials
used in our evaluation. If the number of trials is severely limited,
the split between global-mode and subset-mode can be tuned to
possibly obtain even larger gains. We provide an estimate of the
number of trials required for each CPM in Appendix A.2.
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Figure 8: Probability of Successful Trial (PST) from JigSaw and JigSaw-M relative to baseline and comparison with prior work
Ensemble of Diverse Mappings (EDM) [48]. Number below the label shows absolute PST for the benchmark.

5.5 Figure-of-Merit

At present, there is no standard single metric to evaluate NISQ
application fidelity. Therefore, for our evaluations, we study three
generic metrics and an application-specific figure-of-merit for the
QAOA benchmarks. These metrics are derived from prior works
and the details are discussed below:

(1) Probability of Successful Trial (PST) [11, 28, 30, 48, 49, 51]
is the ratio of the number of trials with the correct output to the
total number of trials, as described in Equation (1).

Number of trials with the correct output

PST = (1)

Total number of trials
(2) Inference Strength (IST) [28, 38, 48] is used to quantify the
ability to infer the solution and distinguish it from incorrect out-
comes. IST is defined as the ratio of the probability of occurrence

of the correct outcome to the probability of occurrence of the most
frequent erroneous outcome, as shown in Equation (2).

Probability of correct outcome

IST (2

" Probability of most frequent incorrect outcome

(3) Fidelity of a program is obtained by measuring the Total Vari-
ation Distance (TVD) [54] between the output distributions on a
noise-free quantum computer (P) and real hardware (Q). TVD al-
lows us to measure the fidelity of quantum programs [42] whose
output can be a probability distribution with more than one correct
answer. The Fidelity ranges between 0 and 1, where 1 represents
two identical distributions and 0 means completely dissimilar dis-
tributions, as shown in Equation (3). While we use TVD, Hellinger
Distance [11, 17] or Kullback-Leibler divergence [25] may be used
too and these metrics are closely related [54].

k
TVD(P,Q) = Y Il Pi= Qi | o
i=1

Fidelity(P,Q) = 1 - TVD(P, Q)
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A higher Probability of Successful Trial (PST), Fidelity, and Inference
Strength (IST) is desirable.

(4) Approximation Ratio Gap (ARG) [1] is an application-
specific metric for Quantum Approximate Optimization Algorithm
(QAOA) [12] benchmarks. To solve MaxCut problems with QAOA,
the classical cost function which must be maximized is translated
into a cost Hamiltonian and the goal is to maximize the expectation
value of the cost Hamiltonian. The expectation value of a cost func-
tion is computed by taking a mean over the samples in the output
distribution of the QAOA circuit. The Approximation Ratio (AR) is
defined as the ratio between the mean cost function value over these
samples and the actual maximum function value of the optimal
solution and is used to quantify QAOA performance [9, 56]. The
Approximation Ratio Gap (ARG) denotes the percentage difference
between the approximation ratio obtained on an ideal quantum
computer (AR;gea1) and real hardware (AR ,1), as described in Equa-
tion (4). A lower ARG is desired as it indicates a performance closer
to the noise-free scenario.

_ 100 * (ARjgeal — ARreal)

ARG
ARjdeal

6 RESULTS AND SENSITIVITY STUDIES

In this Section, we discuss the impact of JigSaw on the reliability of
NISQ applications.

6.1 Results for Probability of Successful Trial

Figure 8 shows the improvement in Probability of Successful Trial
(PST) using JigSaw and JigSaw-M. Our evaluations using three
different quantum hardware from IBM and tens of quantum bench-
marks show that JigSaw the PST by 2.91x on average and by up-to
7.87x compared to the baseline. JigSaw-M improves PST by 3.65x
on average and up-to 8.42x compared to the baseline. Compared
to JigSaw, JigSaw-M improves the PST of applications by 1.26x on
average and up-to 1.72x.
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6.2 Results for Inference Strength

Inference Strength (IST) determines the capability to suppress cor-
related errors and infer the correct answer of a program from the
the output PMF. Table 3 shows the improvement in IST for EDM,
JigSaw, and JigSaw-M relative to the baseline. Note that the average
here is the geometric mean. JigSaw improves the IST on average by
2.19x and up-to 21.7x compared to the baseline, whereas JigSaw-M
improves the IST on average by 2.82x and up-to 27.9x. Unlike EDM
which only improves the IST, JigSaw improves both PST and IST.

Table 3: Inference Strength (IST) obtained from EDM, JigSaw,
and JigSaw-M relative to the Baseline

IBMQ EDM JigSaw JigSaw-M
(Hardware) || Min [ Max [ Avg || Min [ Max [ Avg || Min [ Max [ Avg
Toronto 0.92 225|136 1.22 | 21.7 | 2.87 || 1.23 | 27.9 | 3.84
Paris 0.78 | 6.54 | 1.36 || 1.07 | 9.07 | 2.33 || 1.09 | 28.1 | 3.13
Manbhattan || 0.75 | 2.74 | 1.27 [| 0.81 | 3.12 [ 1.35 || 0.83 | 3.40 | 1.46

6.3 Results for Fidelity

Table 4 compares the Fidelity for EDM, JigSaw, and JigSaw-M rela-
tive to the baseline. For instance, on IBMQ-Toronto, EDM degrades
Fidelity by 0.96x on an average, whereas JigSaw and JigSaw-M im-
prove it by 2.17x and 2.54x respectively. Overall, JigSaw improves
the Fidelity on average by 2.12x, whereas JigSaw-M improves the
Fidelity on average by 2.47x and by up-to 8.41x compared to the
baseline. Therefore, the output distributions of programs obtained
from JigSaw and JigSaw-M have higher Fidelity and are signifi-
cantly more similar to the distributions obtained on a noise-free
quantum computer.

Table 4: Fidelity obtained from EDM, JigSaw, and JigSaw-M
relative to the baseline

IBMQ EDM JigSaw-M
(Hardware) Min‘MaX‘Avg Min‘Max‘Avg Min‘MaX‘Avg

JigSaw

Toronto || 0.78|1.22 |0.96 || 1.07 | 7.86 | 2.17 || 1.07 | 8.41 | 2.54
Paris 0.77 | 2.54 | 1.19 || 1.09 | 5.07 | 2.33 || 1.11| 6.52 | 2.77
Manhattan (| 0.43| 1.62 [ 0.93 || 1.18 | 3.26 | 1.84|| 1.28 | 4.43 | 2.10

6.4 Results for Approximation Ratio Gap

We use Approximation Ratio Gap (ARG) as an application-specific
metric for the QAOA benchmarks. A lower ARG is desired as it
indicates a performance closer to the noise-free scenario [1]. Table 5
compares the ARG for the QAOA benchmarks evaluated in this
paper. We observe that JigSaw reduces the ARG by 0.41x on average
and by up-to 0.14x compared to the baseline. Alternately, JigSaw-M
reduces the ARG by 0.31x on average and up-to 0.08x compared
to the baseline. Overall, JigSaw and JigSaw-M consistently out-
performs the baseline and EDM. Overall, JigSaw outperforms the
baseline and prior work, EDM [48], across all the four metrics.
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Table 5: Comparison of Approximation Ratio Gap (ARG)
(values are %) between Baseline, EDM, JigSaw, and JigSaw-M

’ Machine H Workload H Baseline ‘ EDM ‘ JigSaw ‘JigSaw—M ‘

QAOA-8 p1 19.6 | 194 | 2.83 1.59
QAOA-10p2 || 245 | 240 | 123 10.6
Tor || QAOA-10p4|| 234 | 243 | 105 8.50
QAOA-12p4 || 123 | 138 | 482 3.11
QAOA-14p2|| 986 | 9.74 | 4.06 2.48
QAOA-8p1 || 217 | 175 | 391 250
QAOA-10p2|| 350 | 292 | 190 163
Par || QAOA-10p4| 303 | 294 | 8.60 6.19
QAOA-12p4 || 105 | 11.8 | 563 4.98
QAOA-14p2|| 850 | 9.66 | 3.95 2.95
QAOA-8 p1 182 | 184 | 887 8.23
QAOA-10p2|| 281 | 319 193 19.8
Man || QAOA-10p4| 311 | 299 | 137 111
QAOA-12p4 || 141 | 266 | 5.12 2.94
QAOA-14p2|| 115 | 143 | 593 449

6.5 Impact of Number of Circuits with Partial
Measurements and Selection Method

Our default design uses a sliding window method to generate a
handle of unique CPM. To understand the impact of the number of
CPM and selection method, we perform an empirical study using a
12-qubit QAOA program on IBMQ-Paris.

Sensitivity to Number of CPM: The total number of possible
CPM (measuring two qubits) for a Q qubit program is 2Cs. To un-
derstand the impact of the number of CPM (N) on its effectiveness,
JigSaw randomly generates N circuits with partial measurements of
subset size 2 out of all the 66 possibilities (‘2C; = 66) and uses these
N local-PMFs to update the global-PMF. The process is repeated
hundreds of times for each N and Figure 9(a) shows the average
improvement in Application PST from JigSaw as N is increased.

] 0000000000
2 .’..0.

Relative PST
Relative PST

—— Sliding Window
Random Selection

QAOA-12 (p4)
on IBMQ-Paris

2k 4K 6K 8K 10K
Number of Samples

10 20 30 40 50 60
Number of CPM (N)

(a) (b)

Figure 9: Impact of (a) Number of CPM and (b) CPM Selec-
tion Method on the Performance of JigSaw.

We observe that the performance of JigSaw saturates when addi-
tional CPM do not offer incremental information. Thus, only a few
and unique CPM are sufficient for JigSaw to be effective. Further, to
obtain a greater number of unique CPM, JigSaw-M generates CPM
of non-uniform subset sizes.
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Sensitivity to CPM Selection Method: To study the impact of
CPM selection method, JigSaw randomly selects a group of CPM of
subset size 2 from all the 66 possibilities while ensuring that each
program qubit is measured in a CPM at least once. As there are 12
qubits in the program JigSaw selects 12 random CPM each time and
the process is repeated 10,000 times. Figure 9(b) shows the relative
improvement in PST for this study, and we observe that we get
similar results irrespective of the CPM. Thus, although our default
design uses a sliding window method, JigSaw is equally effective
even if any other technique to generate the CPM is used.

6.6 Impact of Recompilation

JigSaw mainly benefits from measurement subsetting and recom-
pilation. By recompiling each CPM, the effective measurement
error-rates for CPM are close to the best-case qubits rather than
close to the average-case qubits (which is the case for the global-
mode and the baseline). For example, Figure 10 shows that the
probability of correctly measuring a qubit in a CPM increases by
up-to 3.25x compared to the baseline for a BV-6 benchmark on
IBMQ-Toronto. Note that the probability of correctly measuring a
qubit is computed from the set of outcomes where the particular
qubit is correctly measured, even if the overall outcome is erroneous
and does not represent the correct answer. Thus, recompiling CPM
can significantly enhance the effectiveness of JigSaw.

>
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Figure 10: The probability of successfully measuring each
qubit for a 6-qubit BV program on IBMQ-Toronto in the (a)
baseline (b) in each CPM after recompilation.

Figure 11 shows the Mean PST from JigSaw without recompila-
tion (subsetting only), JigSaw with recompilation, and JigSaw-M
relative to the baseline. Without recompilation, JigSaw improves
the PST by 1.92x on average and up-to 3.26x, whereas with recompi-
lation JigSaw improves the PST by 2.91x on average and up-to 7.8x
compared to the baseline. With recompilation, JigSaw-M improves
the PST by 3.65x on average and by up-to 8.4x.

[ EDM
3 JigSaw w/o Recompilation

B JigSaw with Recompilation
Il )igSaw-M with Recompilation

Mean Relative PST
= N W s

_____ -

IBMQ-Paris
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Figure 11: Comparison of Mean PST relative to the Baseline.
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7 SCALABILITY OF RECONSTRUCTION

The applicability of reconstruction algorithms is often limited by
their memory and time complexity. For example, tensor-product
based algorithms are extremely hard to scale due to their exponen-
tial complexity. Therefore, we study the scalability of our proposed
Bayesian Reconstruction using an analytical model, described next.

7.1 Insight: Bounded by Observations

JigSaw limits the complexity of the reconstruction algorithm by
storing and updating only the non-zero entries generated in the
global-mode. Although the number of possible non-zero entries
in the global-PMF can scale exponentially with the program size,
the actual number of entries observed is much lower and is lim-
ited by the number of trials, particularly for large programs. For
example, there are 21 possible outcomes for a 100-qubit program,
and assuming the circuit produces a uniform distribution, it would
require a minimum of 21% or 10%° trials to observe each of these
outcomes at least once, which is impractical. In practice, we may be
able to execute at-most a few million trials, since the time to execute
the trials still increases linearly with the number of trials. More-
over, practical quantum algorithms are designed to produce output
distributions with relatively low variance and bounded possible
outcomes. For example, Table 6 shows that a Graycode-18 bench-
mark produces only up to 18.5K unique outcomes when executed
for 512K trials, even though 256K (=2'8) outcomes are possible. We
bound the complexity of JigSaw reconstruction by focusing only
on the outcomes observed rather than all the possible outcomes.

Table 6: Number of Outcomes in the Global-PMF for a
Graycode-18 Benchmark on IBMQ Hardware

’ Outcomes ‘ IBMQ-Toronto ‘ IBMQ-Paris ‘ IBMQ-Manhattan
Observed (Obs) 17.0K 173K 18.5K
Maximum (Max) 256 K 256 K 256 K
Ratio (Obs/Max) 6.6 % 6.8 % 7.2 %

7.2 Memory Complexity

JigSaw only stores non-zero entries in the global, output, local
PMFs, and an intermediate PMF for each CPM. We assume N is the
number of CPM. For simplicity, we assume the global-mode and
each CPM in subset-mode uses T trials.3

Global, Intermediate, and Output PMFs: Each global-PMF en-
try comprises of an n-bit string outcome and its probability of
occurrence, as shown in Figure 12(a). We assume €T entries in the
global-PMF, where 0 < € < 1. As JigSaw only updates the probabil-
ities of the global-PMF entries, the intermediate and output PMFs
are only required to store the updated probabilities, as shown in
Figure 12(b). Hence, the global-PMF requires (n + 8) bytes per entry,
whereas the intermediate and output PMFs each require 8 bytes
per entry.

3For simplicity, we assume up-to 1 million trials each for the global-mode and each
CPM, which is a severely pessimistic assumption. In practice, the trials are split between
a large number of CPM, so the storage and timing complexity gets reduced further.
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Figure 12: Memory required to store (a) the global, (b) N in-
termediate and 1 output PMF, and (c) N local-PMFs.

Our experiments on IBMQ systems show that € < 1 and does
not change rapidly with increasing trials. For example, Figure 13
shows the number of unique outcomes and € when some GHZ and
QAOA benchmarks are executed for 4 million trials on IBMQ-Paris.
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Figure 13: (a) Number of Global-PMF entries and (b) Epsilon
(e) with increasing trials (T) on IBMQ-Paris.

Local-PMFs: A local-PMF for a CPM of subset size s consists of
L = min(2%,0T) entries, where 0 < § < 1, and requires L(s + 8)
bytes, as shown in Figure 12(c). To minimize errors on CPM, s must
be small such as 2 in the default JigSaw design. For such small s, a
local-PMF consists of all possible 2° entries. But for large s, L < 2°
and is denoted by §T. For example, local-PMFs of size 2 and 10 for
a GHZ-14 program on IBMQ-Toronto contain 4 and 297 entries
respectively, even though 1024 entries are possible for s = 10.
JigSaw stores one Global-PMF, N intermediate PMFs, one out-
put PMF and N local-PMFs. JigSaw-M stores one Global-PMF, N
intermediate PMFs, one output PMF and SN local-PMFs where S
subset sizes are used. Although JigSaw-M uses more CPM, since it
employs hierarchical reconstruction from the highest to the lowest
subset size, only N intermediate PMFs are required which are reused
across reconstruction rounds. Thus, the total memory capacity (in
bytes) is given by Equation (5). The memory complexity for JigSaw
is obtained for S = 1 since it uses CPM of a single subset size only.
Memory = {n + 8(2 + N)}eT + L(s + 8)SN (5)

7.3 Time Complexity

JigSaw updates each Global-PMF entry for each entry in a local-
PMF. Obtaining the update coefficients require €T operations and
the update itself requires 3e¢T operations per local-PMF. Assuming
JigSaw uses N CPM, it requires 4eNT operations. Similarly, JigSaw-
M requires 4eSNT operations. As JigSaw only stores and updates
non-zero PMF entries, which is much lower than the maximum
possible, and is limited by the number of trials, the time-complexity
increases linearly with the number of trials and qubits.

947

MICRO 21, October 18-22, 2021, Virtual Event, Greece

7.4 Results for Scalability Analysis

Table 7 shows the memory and number of operations required for
programs of different input sizes n, values of €, §, and number of
trials T. To obtain the typical complexity, we use T = 1 million and
€ = § = 0.05 (from Figure 13), whereas we use ¢ = § = 1 to obtain
the upper bound. For JigSaw, we assume CPM of subset size 5 and
the number of CPM (N) to be same as the number of qubits in the
program (as our default design). For JigSaw-M, we assume sizes
5,10,15, and 20. We observe that the storage and time complexity is
linear with the number of trials and qubits in the program, making
JigSaw applicable to programs with hundreds of qubits.

Table 7: Scalability Analysis of JigSaw and JigSaw-M: Mem-
ory (in GB) and Number of Operations (in million)

Qubits s Trials JigSaw JigSaw-M
() N (T) | Mem | OPs || Mem | OPs
0.05 32K 0.01 | 0.66 0.02 2.64

100 1024K | 0.05 | 21.0 0.42 83.9
1.0 32K 0.03 | 13.1 0.20 | 524

1024K | 0.96 | 419 3.97 | 1677

0.05 32K 0.01 3.28 0.1 13.12

500 1024K | 0.24 105 2.09 419
10 32K 0.15 | 65.5 0.99 262

1024K | 4.74 | 2097 19.8 | 8388

8 RELATED WORK

Software mitigation of NISQ hardware errors [11, 14, 15, 18, 30—
32,34-36, 39, 44, 45, 48, 49, 55, 57] is an active area of research. More
recently, schemes that specifically reduce the impact of measure-
ment errors have been proposed [5, 8, 19, 26, 37, 50]. We compare
with two of these proposals, and then other works.

— IBM MBM
3 JigSaw

B JigSaw + IBM MBM
5 B JigSaw-M + IBM MBM

oP 50 obs (\ oM (\ oM <\ oM (\ o (\
o 60( oM ((o o ((o ol \Qa ol \?3 ol R?
R R o> o> R W

Benchmarks (Results from IBMQ-Toronto and IBMQ-Paris)

Relative PST

Figure 14: JigSaw vs. IBM’s Error Mitigation [19]

Matrix-Based Error Mitigation: IBM’s matrix-based complete
measurement error mitigation (MBM) post-processes the outputs of
an n-qubit program using a 2" x 2" inverse noise matrix prepared by
calibrating 2™ basis states [19]. Jigsaw can be combined with MBM
for even higher fidelity than either scheme standalone, as shown in
Figure 14. Note that the complexity of MEM grows exponentially
with the program size, whereas JigSaw needs no characterization
and its post-processing step has linear complexity.
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State-Based Error Mitigation: Few prior schemes transform a
more error-prone quantum state to a less susceptible one [26, 50]
using single qubit gates, but has limited applicability on recent de-
vices as they do not exhibit considerable bias in measuring state “1"
over state “0". For example, the average probabilities of incorrectly
measuring states “0” and “1” on IBMQ-Manhattan are 2.3% and 3.6%,
respectively. We make similar observations on other machines too.

Related Works in Circuit Decomposition: Peng et. al. [40] pro-
posed circuit decomposition techniques and discussed the mathe-
matical validity of executing a larger program on smaller quantum
machines. A scalable approach for efficient circuit cutting was in-
troduced in [47]. However, these approaches use tensor products
and are hard to scale. On the contrary, JigSaw utilizes circuits iden-
tical to the original program except the reduced measurements
and incurs linear complexity, making it scalable and applicable
to all programs. Shehab et. al. [43] use partial circuits to reduce
computations and improve fidelity for QAOA applications.

9 CONCLUSION

In this paper, we propose JigSaw- a design that mitigates the impact
of measurement errors by executing programs in two modes: global-
mode in which the program measuring all the qubits generates a
global Probability Mass Function (PMF) over all the qubits, and
subset-mode in which multiple Circuits with Partial Measurements
(CPM) produce local-PMFs over only the measured qubits. The
global-PMF offers full correlation but low fidelity, whereas the
local-PMFs offer higher fidelity but poor correlation. By employing
Bayesian updates and the local-PMFs, JigSaw enhances the global-
PMF and improves the success rate of applications on average by
2.91x and up-to 7.87x. We also propose Multi-Layer JigSaw (FJigSaw-
M) which uses a larger number of unique CPM of non-uniform
subset sizes and employs an ordered reconstruction algorithm to
enhance the global-PMF. Overall, JigSaw-M improves the success
rate of applications on average by 3.65x and up-to 8.42x.
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A APPENDIX

A.1 Bayesian Reconstruction

The Bayesian Reconstruction algorithm is shown in Algorithm 1.

A.2 Estimate for the Number of Trials

For simplicity, by default we execute the global-mode for half of
the trials and the subset-mode for the remaining half. We also
equally distribute the trials in the subset-mode between the CPM
for both JigSaw and JigSaw-M. However, if the trials are severely
limited, (1) the distribution of trials may be fine-tuned or (2) the
subset-mode may be executed for few thousands of extra trials
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Algorithm 1: Bayesian Reconstruction Algorithm

Input: (1) Global-PMF P = {By : pry} where By is a n-bit
outcome (2) Set of j Marginals M = {m;} where
m; = [{By : pry}, {io...ix}] for k-bit outcome By,
Output: PMF Pyt = {Bx : Py}, Py € [0,1]
1 Function Bayesian_Update(P,m):

2 Po=P

3 for each (entry By : pry) in m: do

4 candidate = [ ]

5 for each By inP: do

6 // Obtain list of outcomes in P
7 outcome <« bits in By corresponding to
8 qubits {ip...ix}

9 candidate.append((outcome,pry))

// Obtain Update Coefficients
normalize candidate

10
11
for each outcome in candidate: do

// Obtain posterior probabilities
candidate[outcome]xpry

12
13

14

Po[outcome] =

(lfpry)
15 normalize P,
16 return P,
17 Function Bayesian_Reconstruction(P,M):
18 Pout =P

19 for each m; in M: do

20 Ppost = Bayesian_Update(P, m;)
21 Pout = Ppost + Pout
22 normalize Poyt

23 return Pqyt

(global-mode corresponds to the baseline). We perform an analysis
of how the trials may be allocated for each CPM.

Let there be N(= 2") possible outcomes for a program that
measures n qubits. If p is the probability of observing an outcome
and each of the N outcomes is equally likely to appear at the end
of a trial, then p = 1/N. The probability that a given outcome has
appeared at least once after ¢ trials is then given by Equation (6).

P=[1-(1-p)] ©)
Ift ~ N and N is large, P may be approximated as Equation (7).
™)

Thus, in order to obtain the given outcome at least once with prob-
ability P, the number of trials required is given by Equation (8).

P=1-¢¢

t=—-In(1 -P)N 8)

Hence, the total number of trials required to observe every possible
outcome at least once with probability P is given by Equation (9).

©)

We measure only 2 qubits in each CPM in the default JigSaw
design and thus, only about 150 trials are required to ensure (with
99.99% probability) that we obtain each possible answer at-least
one time. Similarly, as JigSaw-M uses CPM of different sizes, the
estimated number of trials would still range within a few thousands.

Total number of Trials = —In(1 — P)N' 2
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