
AQUA: Scalable Rowhammer Mitigation by Quarantining
Aggressor Rows at Runtime

Anish Saxena
Georgia Tech
Atlanta, USA

asaxena317@gatech.edu

Gururaj Saileshwar
Georgia Tech
Atlanta, USA

gururaj.s@gatech.edu

Prashant J. Nair
Univ. of British Columbia

Vancouver, Canada
prashantnair@ece.ubc.ca

Moinuddin Qureshi
Georgia Tech
Atlanta, USA

moin@gatech.edu

Abstract—Rowhammer allows an attacker to induce bit flips
in a row by rapidly accessing neighboring rows. Rowhammer
is a severe security threat as it can be used to escalate privilege
or break confidentiality. Moreover, the threshold of activations
needed to induce Rowhammer continues to reduce and new
attacks like Half-Double break existing solutions that refresh
victim rows. The recently proposed Randomized Row-Swap (RRS)
scheme is resilient to Half-Double as it provides mitigation by
swapping an aggressor row with a random row. However, to
ensure security, the threshold for triggering a row-swap must
be set much lower than the Rowhammer threshold, leading
to a significant performance loss of 20% on average, at a
Rowhammer threshold of 1K. Furthermore, the SRAM overhead
for storing the indirection table of RRS becomes prohibitively
large – 2.4MB per rank at a Rowhammer threshold of 1K.
Our goal is to develop a scalable Rowhammer mitigation that
incurs negligible performance and storage overheads.

To this end, we propose AQUA, a Rowhammer mitigation that
breaks the spatial correlation between aggressor and victim rows
by dynamically quarantining the aggressor row in a dedicated
region of memory. AQUA allows for an effective row migration
threshold much higher than in RRS, leading to an order of
magnitude less slowdown and SRAM. As the security of AQUA
is not reliant on keeping the destination row a secret, we further
reduce the SRAM overheads of the indirection table by storing
it in DRAM, and accessing it on-demand. We derive the size
of the quarantine region required to ensure security for AQUA
and show that reserving about 1% of DRAM is sufficient to
mitigate Rowhammer at a threshold of 1K. Our evaluations
show that AQUA incurs an average slowdown of 2% and an
SRAM overhead (for mapping and migration) of only 41KB
per rank at a Rowhammer threshold of 1K.

Keywords-DRAM, Security, Rowhammer, Isolation

I. INTRODUCTION

Technology scaling has been the prime driver for increased
DRAM capacity. Unfortunately, while smaller technology
nodes offer higher capacities, they also pack DRAM cells
more closely. This leads to increased inter-cell interference,
wherein activation of a row of DRAM cells can influence
the charge of its neighboring rows. This phenomenon is
called Rowhammer [17] and it has been shown to be a
critical security vulnerability [8]. Several prior work have
used Rowhammer to trigger confidentiality breaches [20] and
privilege escalation [29] exploits.

Rowhammer requires an attacker to rapidly perform row
activations in a limited period of time. The number of row
activations required to cause Rowhammer bit flips, called
the Rowhammer Threshold (TRH), has dramatically reduced.

For example, when Rowhammer was first characterized in
2014 [17], TRH was 130K activations, whereas it had reduced
to just 4.8K activations in 2020 [15]. TRH is expected to
reduce further, as DRAM technology becomes more dense.
Therefore, solutions for mitigating Rowhammer must be
effective not only at current TRH but also at lower thresholds
that are likely to be present in the near future.

Typical hardware-based defenses for mitigating Rowham-
mer consists of two parts: (1) Tracking mechanism, that
tracks frequently accessed rows (termed as aggressor rows)
and (2) Mitigative action, which is performed once the
aggressor row reaches a specified number of activations.
Tracking typically involves using counters that are either
stored in SRAM (e.g. Graphene [25], CBT [31], TWiCE [21],
TRR [7], Mithril [16]) or DRAM (e.g. CRA [4], [14]).
The mitigating action involves refreshing the contents of
the rows that are immediate neighbors of the aggressor
row. However, a recently developed attack pattern, called
Half-Double, influences rows that are a distance-of-2 away
from the aggressor row [18]. As shown in Figure 1, Half-
Double leverages the victim refresh-based mitigation on rows
adjacent to the aggressor to induce bit flips in rows distance-
of-2 away. If rows that are a distance-of-1 and a distance-of-2
are issued mitigating refreshes, then the Half-Double attack
might even be extended to influence rows that are a distance-
of-3 away and so on. Thus, we need mitigating action that
is resilient to attacks which exploit the spatial proximity
between aggressor and victim rows.

Row migration is an alternative to victim refresh that
provides mitigation by breaking the spatial correlation
between the aggressor and victim rows. For example, the re-
cently proposed Randomized Row-Swap [28] (RRS) scheme
prevents Rowhammer by swapping the aggressor row (once it
is flagged by the tracker) with a randomly selected row. If the
attacker continues to access the same physical DRAM row,
the row is swapped again to ensure that no row in memory
reaches the target number of activations. RRS maintains
an indirection table to track the mapping of the swapped
rows. This table must be stored in SRAM to enable constant-
latency lookups and eliminate timing channels that may
leak information about the destination row of a swap. Thus,
RRS provides security via randomization by ensuring the
probability of sufficiently hammering a physical row in
memory to induce Rowhammer bit flips is negligibly small.

(a) Half-Double Rowhammer Attack (c) Our Proposal: AQUA

2.1% Slowdown, 41KB SRAM (at TRH of 1K)

(b) Scalability Challenge for Randomized Row-Swap
Rowhammer Threshold (TRH)

4K 2K 1K

Sl
ow

do
w

n
(%

)

5

10

15

20

25

SR
A

M
 O

ve
rh

ea
d

Pe
r R

an
k

(M
B)

2.5

2.0

1.5

1.0

0.5

SRAM Overhead
Slowdown

Victim is beyond the Immediate Neighbor

Victim Row-1

Victim Row-2

Refresh (far aggressor)
Aggressor Row

Refresh (far aggressor)

DRAM Rows

Quarantine Area

Row
 Migration

Aggressor Row

Figure 1. (a) Half-Double attack [18] exploits victim-refresh to flip bits in rows distance-2 away from the aggressor. (b) Randomized Row-Swap (RRS) [28]
breaks spatial correlation between aggressors and victims but incurs significant slowdown and SRAM overhead as Rowhammer threshold reduces from 4K
to 1K. (c) AQUA enables scalable mitigation by migrating aggressor rows to a quarantine area in memory with negligible slowdown and SRAM overhead.

To ensure security against the attacker accidentally find-
ing the destination of the row-swap and inflicting more
activations on the same physical row (known as birthday
paradox attacks), RRS must swap rows at a threshold that
is substantially lower (about 6×) than TRH . Thus, migrating
rows with randomized-swap forces substantial performance
and SRAM overheads, both of which become unacceptable
at low TRH , as shown in Figure 1(b).

For example, at TRH of 1K activations, RRS must swap
rows after only 166 activations. At this lower effective
threshold, the number of rows that need to be swapped
rise drastically, leading to significant performance loss, on
average of 19.8%, at TRH of 1K. Moreover, the size of
indirection tables increases in inverse proportion of the
effective threshold and incurs almost 2.4MB of SRAM
overhead per rank (at TRH of 1K), which is beyond the
limits of practical adoption. For comparison, the recently
proposed Hydra tracker uses only 30KB of SRAM per rank
(and less than 0.1% DRAM) to track aggressors [26]. With
such a tracker, the RRS mitigation alone would account
for almost 99% of the overall SRAM overhead to protect
against Rowhammer. Finally, despite the significant slowdown
and storage overhead, the security guarantee of RRS is
probabilistic and an attacker can still cause a successful
attack on average within 4 years, and if the attacker targets
N machines, the time for a successful attack decreases by N.

We observe that one can reduce the overheads of RRS
by relying on isolation instead of randomization, to avoid
the artificial lowering of the row migration threshold in
RRS. With this insight, we propose an alternative row-
migration scheme, AQUA. AQUA provides mitigation by
dynamically moving the aggressor row to a dedicated region
of memory, called the Row Quarantine Area (RQA), as shown
in Figure 1(c). If a row is continuously activated while being
quarantined, it is moved from one location in the RQA to
another location in the RQA. The RQA is sized such that
no location is reused within the refresh period (64ms). Thus,
row migration with AQUA can be triggered at a threshold
determined by TRH (and any inefficiency due to the tracking
mechanism), rather than being artificially reduced like in
RRS. As AQUA operates at a higher threshold, we observe

that its performance loss is almost 10x lower than RRS, due
to three reasons: First, a smaller number of rows reach the
higher threshold within 64ms, requiring fewer mitigations.
Second, when a frequently accessed row reaches the higher
threshold, the mitigation is amortized over a greater number
of activations. Third, the act of migration to the quarantine
area incurs half as much time (one read and one write)
compared to swapping two rows (two reads and two writes).

A key parameter of AQUA is the size of the RQA as
it determines the maximum number of rows that can be
quarantined within 64ms. For security, we need to ensure
that a row quarantined in the RQA is not evicted prematurely
within the 64ms refresh interval. We analyze the time required
to trigger a row migration and then perform a migration to
bound the number of entries required in the RQA. We derive
that for TRH of 1K activations, we need a RQA with 23K rows,
which is approximately 1.1% of the rows in our baseline
16GB memory (two million rows of 8KB each). Thus, AQUA
requires negligible DRAM overheads to isolate aggressor
rows for the duration of the 64ms refresh interval.

AQUA also relies on an indirection table to store the
location of the quarantined rows. But as AQUA uses a
higher threshold than RRS, its indirection table incurs an
SRAM overhead of only 172KB per rank (12× lower than
RRS). Moreover, since AQUA’s security does not rely on
keeping destination of migrated rows secret, it can store the
indirection table in DRAM, cache it as needed in on-chip
SRAM, and even avoid unnecessary lookups using a small
16KB SRAM filter. Overall, such a hybrid design reduces
the SRAM overheads to identify row locations to only 32KB
per rank with negligible performance impact.

Overall, our paper makes the following contributions:
• We present AQUA, a scalable Rowhammer mitigation

mechanism that quarantines aggressor rows at runtime
in a dedicated region of memory.

• We analyze the size of the Row Quarantine Area (RQA)
required to ensure the security of AQUA and show that
provisioning only 1.1% of DRAM is sufficient.

• We reduce the SRAM overheads required to track the
location of quarantined rows to only 32KB per rank (at
TRH of 1K) by storing the indirection table in DRAM.

Our evaluations with gem5 show AQUA that incurs an
average performance loss of 2.1% (at TRH of 1K). AQUA
compares favorably with other recent schemes, as it requires
only 1.1% DRAM overhead, unlike CROW [9] which incurs
up to 1000%), and has a worst-case slowdown of 3×, unlike
Blockhammer [36] which can have up to 1280× slowdown.

II. BACKGROUND AND MOTIVATION

A. Threat Model

We assume an attacker that has the capability to run code
natively on a system with user-level privileges. The targeted
system uses DRAM that is vulnerable to Rowhammer bit
flips. The attacker knows (or is capable of discovering) the
mapping of DRAM rows to surgically hammer a single
row or a set of nearby rows, to launch a double-sided or
Half-Double attack. Moreover, the attacker is able to evict
addresses from the cache to hammer the DRAM with the
desired intensity. We assume a Rowhammer bit flip can occur
at any victim location when a row incurs more activations
than the Rowhammer Threshold (TRH) in a refresh interval
of 64ms. We assume an untargeted attack where the goal
for the attacker is to activate any single physical row of the
DRAM more than TRH times in 64ms.

B. Background on DRAM Organization

DRAM modules are logically divided into ranks, banks,
rows, and columns. Access to different banks can be time-
multiplexed by the memory controller. Moreover, consecutive
accesses to the same row are fast compared to different rows
in a bank. This is because to open a different row, the previous
row must be closed using the precharge command, followed
by an activation command to open the new row. The DDR4
standard [13] specifies the minimum time between activating
different rows (ACT-to-ACT delay) within the bank as tRC
(Row Cycle Time), which is typically 45ns.

The rows in memory lose charge over time and are
refreshed periodically. The time window within which a
given row must be refreshed is usually 64ms (tREFW). To
maintain quality-of-service, rows are refreshed in small
groups internally by the DRAM, and the memory controller
must send a refresh command every 7.8 µs (tREFI), and
then wait for 350ns (tRFC) to allow rows to be refreshed.
The maximum number of activations to a bank (ACTmax) are
bounded at ACTmax = tREFW (1− tRFC/tREFI)/tRC = 1360K.
Thus, the attacker has a budget of up to 1360K activations
within 64ms to cause Rowhammer bit flips in a single bank.

C. DRAM Vulnerability to Rowhammer

The root-cause of Rowhammer based bit-flips are data-
disturbance errors that occur when a row is activated
frequently and leaks sufficient charge from neighboring rows.
The row receiving frequent activations is called the aggressor
row and the row with bit flips is called the victim row. The

R
ow

ha
m

m
er

 T
hr

es
ho

ld

140K

18K

DDR3
(2014)

22K

DDR4

10K

LPDDR4
(2020)

5K

DDR5
(2022)

?

Figure 2. Rowhammer Threshold (TRH) over time

number of activations to the aggressor row(s) required to
induce a bit flip is called the Rowhammer Threshold (TRH).

Rowhammer was publicly demonstrated in 2014, where
Kim et al. [17] flipped bits in DDR3 memory by inflicting
about 139K activations to the same row within 64ms. As
technology shrinks, the threshold to induce Rowhammer
bit flips reduces. As shown in Figure 2, the Rowhammer
threshold decreased by almost 30× to 4.8K for LPDDR4
memory in 2020 [15]. Therefore, solutions for mitigating
Rowhammer must not only be effective for current TRH , but
also for lower TRH likely to be present in the near future.

Several exploits [8], [12], [22], [29], [33], [35] have
demonstrated that attacker programs can use Rowhammer
bit-flips to gain kernel privileges [38], escape browser
sandboxing [6], and leak secret data [20]. Moreover, at low
TRH , even benign applications can have many rows with
activations beyond TRH [23], [28]. Thus, Rowhammer is not
just a security threat, but also a reliability problem.

D. Mitigation via Victim Refresh: Pitfalls

Hardware-based mitigations of Rowhammer typically use
dedicated counters in SRAM (e.g. Graphene [25], CBT [31],
TWiCE [21], TRR [7], Mithril [16]), in DRAM (e.g.,
CRA [14], Panopticon [4]), or in both SRAM and DRAM with
a hybrid design (e.g., Hydra [26]) to track potential aggressors.
Such trackers provide guaranteed detection of rows that
exceed the Rowhammer threshold. Once an aggressor row is
identified, a popular mitigation approach is to do a victim
refresh, i.e., refresh the rows neighboring the aggressor row.

Victim refresh suffers from two shortcomings. First, to
implement victim refresh, the memory controller needs to pre-
cisely identify the neighbors of any given row. Unfortunately,
DRAM vendors often use proprietary internal row mapping
and this mapping is not exposed to the CPU, making the task
of identifying the neighboring rows difficult for the memory
controller. Second, the act of victim refresh can itself lead
to newer attacks. For example, the recently disclosed Half-
Double attack [2], [18] from Google uses the victim refreshes
to cause bit flips at a distance-of-two from the aggressor rows.
As victim refreshes retain the spatial correlation between
the aggressor and victim rows, it enables the attacker a long
period (64ms) to focus a large number of activations to a
single location and launch more effective attacks.

perlbench gcc
bwaves mcf

cactuBSSN
namd

povray lbm wrf
blender

deepsjeng
imagick leela nab

exchange2
roms xz

parestmix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

mix11
mix12

mix13
mix14

mix15
mix16

Gm
ean

-34

0.2
0.4
0.6
0.8
1.0

No
rm

. P
er

fo
rm

an
ce

TRH=4K TRH=2K TRH=1K

Figure 3. Performance of RRS workloads as the Rowhammer threshold decreases from 4K to 2K to 1K. At 4K threshold, RRS has low performance loss
(on average at 2.7%), but it increases dramatically at 2K to 8.2% and at 1K to 19.8%.

E. Mitigation via Row Migration

Row migration is a mitigation that overcomes both the
pitfalls of victim refresh: it can be enabled without the
knowledge of internal mappings of DRAM and it breaks the
spatial connection between aggressor and victim rows, thus
significantly reducing the time for the attacker to focus on
a given neighbourhood. The recently proposed Randomized
Row-Swap (RRS) [28] provides mitigation by swapping a
given aggressor row with a randomly selected row, once
the aggressor has accrued a threshold number of activations.
RRS uses a Row Indirection Table (RIT) to keep track of
the row locations. As the security of RRS is dependent on
keeping the destination of the swapped row a secret, the RIT
is stored entirely in SRAM1 to avoid any leakage due to
side-channels via DRAM accesses.

F. Scalability Challenges for RRS

RRS uses randomization for security. When an aggressor
row is randomly swapped with another destination row, an
attacker tries to discover the new destination of the row to
continue the attack on the same physical row. With RRS,
an attacker has a small probability of randomly discovering
the physical location of a previously attacked row (via the
birthday paradox). To defend against this, the threshold for
swapping a row (TRRS) needs to be much lower than TRH .
For example, RRS advocates TRRS to be one-sixth of TRH .

Figure 3 shows the slowdown due to RRS as TRH is varied
from 4K to 1K. We note that while RRS has a negligible
slowdown at 4K (on average, 2.7%), it becomes significantly
high at 1K (on average, 19.8%). At TRH of 1K, the effective
threshold for row swaps (TRRS) becomes 166 activations.
This causes a significant slowdown for two reasons: First,
as seen in Table II, workloads tend to have significantly
more rows that encounter 166 activations within 64ms (than
say 1K activations)), and a much greater number of rows
trigger mitigative action. Second, the overhead of row-swap is
amortized over only 166 activations instead of 1K activations.

1An alternative approach for row-migration is Row-Clone [30], which
migrates rows to alternative locations in the same sub-array (of 512 rows)
using in-DRAM logic. However, CROW [9] an early solution for mitigating
Rowhammer, that relies on Row-Clone for row-migration, would need to
provision each subarray with 1060% extra rows to be secure at a TRH of
1K. We discuss the shortcomings of this approach in Section VII.

The reduction in the effective threshold for RRS also
causes high SRAM overhead for the RIT. As TRH reduces
from 4K to 1K, effective threshold reduces from 800 to 166,
and the SRAM overhead for the RIT increases from 0.65MB
per rank to 2.4MB per rank.

G. Goal: Scalable Row-Migration
The goal of this paper is to develop a scalable and practical

row-migration scheme that incurs negligible slowdown and
SRAM overheads, even at lower thresholds (TRH of 1K). Fur-
thermore, the solution must be compatible with commodity
memory systems and should not require any changes to the
memory array or interfaces. Our key insight is to rely on
isolation instead of randomization to enable such a solution.
We describe our methodology before our solution.

III. EVALUATION METHODOLOGY

We use gem5 [24], a cycle-level simulator to perform
multi-core simulations in the Syscall Emulation (SE) mode
with an accurate out-of-order core and DDR4 memory model.
We use the DDR4 2400MT/s 8 Gbit memory configuration
which models the Micron MT40A2G4 [10]. We assume a
per-bank Misra-Gries tracker [25] in the memory controller.
Table I shows the configuration for our baseline system.

Table I
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 4 cores at 3GHz
ROB size 192

Fetch and Retire width 8
Last Level Cache (Shared) 4MB, 16-Way, 64B lines

Memory size 16 GB – DDR4
Memory bus speed 1.2 GHz (2400 MT/s)

tRCD-tCL-tRP-tRC 14.2-14.2-14.2-45 ns
tCCDS , tCCDL 3.3 ns, 5 ns

Banks x Ranks x Channels 16×1×1
Rows per bank 128K

Size of row 8KB

We evaluate our design with 18 SPEC2017 [1] rate
workloads and 16 mixed workloads, each a set of four random
SPEC2017 workloads. We fast-forward the workloads by 25
billion instructions to reach regions of interest and simulate
for 250 million instructions. Table II shows the Misses Per
1K Instructions (MPKI) and average number of rows with
166+, 500+, and 1000+ activations per 64ms epoch.

Table II
WORKLOADS CHARACTERISTICS: MPKI AND AVERAGE ROW

ACTIVATIONS OF 166+, 500+, 1000+ PER 64 MS.

Rows
Workload MPKI ACT-166+ ACT-500+ ACT-1K+

lbm 20.9 6794 5437 0
blender 14.8 6085 3021 572

gcc 6.32 4850 1836 111
mcf 7.02 4819 835 393

cactuBSSN 2.57 2515 0 0
roms 4.37 1150 191 11

xz 0.41 655 0 0
perlbench 0.74 0 0 0
bwaves 0.21 0 0 0
namd 0.38 0 0 0

povray 0.01 0 0 0
wrf 0.02 0 0 0

deepsjeng 0.25 0 0 0
imagick 0.27 0 0 0

leela 0.03 0 0 0
nab 0.54 0 0 0

exchange2 0.01 0 0 0
parest 0.1 0 0 0

Average 3.5 1665 694 57

IV. AQUA: QUARANTINING AGGRESSORS

AQUA provides mitigation by migrating the aggressor
rows to a dedicated quarantine region in memory. AQUA
provides the guarantee that no physical row can be activated
more than a specified threshold, thus providing principled
security while incurring negligible overheads in terms of
performance and storage. Next, we provide an overview of
AQUA, before describing its structures, analyzing the size of
the quarantine area, and evaluating its performance impact.

A. Overview of AQUA

Figure 4 provides an overview of AQUA. AQUA reserves
a small fraction of the memory space to form the Row
Quarantine Area (RQA). The RQA is not visible to software
or the operating system, and is accessible only by the
memory controller. To identify rows requiring mitigation
(quarantining), AQUA uses a Aggressor-Row Tracker (ART)
to track frequently accessed rows. To track quarantined rows,
AQUA has two tables: a Forward-Pointer Table (FPT) that
stores the location in the RQA for quarantined rows and a
Reverse-Pointer Table (RPT) which identifies the memory
row stored in a given RQA location. On a memory access,
the memory controller checks the FPT to determine if the
access is to be sent to the original location in memory or
the RQA. If the row is quarantined, the FPT provides the
location within the RQA where the access must be routed.

Figure 4- 3 outlines the events that occur when an
aggressor row is quarantined. When the ART identifies
an accessed row as an aggressor, an unused RQA row is
identified as the destination of the migration. Then, the
contents of the original row location (or its current location

Memory
Access

Aggressor Row
Tracker (ART)

DRAM

Forward Pointer
Table (FPT)1

1
4

 Present

2

Row Quarantine
Area (RQA)

3
3

Absent

Migrate

Migrate?

RPT

Figure 4. Overview of AQUA. The Forward-Pointer Table (FPT) determines
if the access should go to the original or the quarantined location. The
Aggressor-Row Tracker (ART) identifies rows that must get quarantined.

in the RQA if the row is presently quarantined) are copied
to the destination, and the FPT and RPT are updated.

We define the refresh interval of 64ms to be an epoch. The
ART is reset at the end of every epoch to ensure that only
the row access counts of the current epoch determine the
eligibility for getting quarantined. We do not reset the FPT
and RPT at that time, as this would require bulk eviction
of all the entries in the RQA, causing significant latency
overheads. Instead, we lazily drain out entries from the past
epoch when new entries are brought in, while ensuring that
an RQA entry is never reused in the same epoch. Thus,
each physical row is guaranteed to not have more than the
threshold number of activations within the epoch.

B. Tracking Aggressor Rows

The ART is responsible for identifying when activations
for a row exceed a threshold of activations within an epoch
and invoking a row-migration. Since the design of the tracker
itself is orthogonal to our mitigation technique, we design
AQUA to be compatible with any hardware-based ART. For
our analysis, we assume the ART uses a per-bank Misra-Gries
tracker in SRAM, as used in Graphene [25] and RRS [28].
However, AQUA is also compatible with the recent storage-
optimized Hydra tracker [26]). The ART is indexed with the
physical row address, obtained after consulting the FPT, and
updated on each DRAM activation.

The periodic reset of the tracker can cause a vulnerability
whereby the attacker can do a significant number of accesses
just before and after the reset, each below TRH individually,
but exceeding TRH activations in total within 64ms. To
account for the loss of state due to reset, the effective
threshold for the Misra-Gries tracker is set to be half of
TRH , in order to identify all rows that reach TRH activations
within 64ms. We use a default TRH of 1K, therefore, ART is
designed to initiate row-migration whenever a row reaches a
multiple of 500 activations.

C. Maintaining Location Information

AQUA maintains the location information using two tables:
FPT and RPT. The number of entries in both these structures
is determined by the size of the row-quarantine area (RQA).

For our 16GB memory containing 2 million rows, our analysis
shows that the RQA must have at least 23K entries to provide
security at TRH of 1K. Therefore, both FPT and RPT must
be designed to store at least 23K entries.

RPT is a direct-mapped structure with one entry for each
row in the quarantine area. Each entry contains a valid bit
and a 21-bit reverse pointer pointing to the original location
of the given row in memory. Thus, for storing 23K entries,
the RPT is required to be 64KB in size.

An entry in FPT is provisioned only for the rows that
are mapped to the quarantine area. Each entry in the FPT
contains a valid bit, a tag for identifying the row, and a 15-bit
forward-pointer identifying the location of the row in the
quarantine area. However, the entries in FPT can come from
arbitrary locations in memory, and the FPT must be able to
hold such entries without any set-conflicts. Therefore, we
design FPT as an over-provisioned collision-avoidance table
(CAT) adopted from RRS [27], [28], with 32K entries, for
storing 23K valid entries. Thus, the FPT size is 108KB.

Both the FPT and RPT are global structures and are
maintained at the memory controller for each rank. We
store both the FPT and RPT in SRAM. Thus, the mapping
structures for AQUA incur a combined storage overhead of
172KB, which is almost 12× lower than the 2.4MB SRAM
required to store the row mappings of RRS.

D. Process of Quarantining Aggressor Row

When the ART identifies a row for quarantining, we need
to specify the destination in the RQA where the incoming
row will be stored. We architect RQA logically as a circular
buffer, where the incoming entry is always stored at the oldest
install location. We maintain a pointer (RQA-Head-Pointer)
that identifies the destination location within the RQA.

To facilitate row-migration, we provision the channel
with a copy-buffer, which is sized the same as the DRAM
row (8KB in our study). Figure 5 describes the process
of quarantining Row-X, which is not currently quarantined.
Row-X is streamed into the copy buffer in the memory
controller and then streamed out from the copy-buffer to the
Row-Q1 in DRAM. After the quarantining operation, the
FPT is updated with the tuple <X, Q1> and the RPT entry
at index Q1 is updated to store X. The RQA-Head-Pointer is
then incremented to point to the next location in the RQA.

To perform row-migration efficiently, we leverage stream-
ing accesses from DRAM, whereby accesses to the same row
can be serviced quickly (one 64 byte line every 5ns, after
the first line) once the row has been activated. To transfer
the 8KB row (128 lines), we would need 640ns after a row
activation time of 45 ns (ACT-to-ACT delay). Thus, for our
system, it takes approximately 685ns to transfer the row
between DRAM and the copy-buffer. For moving the row
to the quarantine area, we need one row read and one row
write, which incurs a total latency of 1.37µs.

(a) Row-X is read

X

Copy Buffer

(b) Row-X is written to Row-Q1

X

X

Forward Pointer Table

Copy Buffer

X

Reverse Pointer Table
Q-Loc Orig-Loc

Orig-Loc Q-Loc
X Q1

Q1 XQ1Q1
RQA
Head RQA

Head

(c) Tables are updated

Figure 5. An overview of the quarantine process with AQUA. Row-X
needs to be moved to the location Q1 in RQA, pointed to by the RQA-Head-
Pointer. Subsequently, FPT and RPT entries are updated in the DRAM.

We note that if a row receives frequent activations, it
may trigger another row-migration, while still being in the
quarantine area. In this case, we copy the contents of the row
from the previous location in the RQA to the new location
within the RQA. Such an internal migration still incurs a
latency of 1.37µs, as the process is similar to moving a new
row into the RQA and needs one row-read and one row-write.
The FPT entry and RPT entry for new RQA location are
updated, and the original RQA entry is invalidated.

When row migration is triggered, it is possible that the
destination in the RQA stores valid data of a row quarantined
in the previous epoch (as indicated by the valid bit of the
associated RPT entry). Here, we first move out the row from
the RQA to its original location (invalidating the associated
FPT entry) and then move the new data in the RQA location.
AQUA incurs a latency of 1.37µs for moving out the old row
and 1.37µs for moving in the new row, for a total latency
of 2.74µs. We note that the latency for moving out a row
from the RQA can be removed from the critical path of row
access by periodically draining old entries.

E. Bounding the Size of Quarantine Area

A critical parameter in AQUA is the size of the quarantine
area. If the size is too small, the quarantined rows will be
evicted from the quarantine area within 64ms, potentially
leading to security problem. If the size is too large, there
is an unnecessary loss of DRAM memory and this requires
larger tracking structures (FPT and RPT). In this section, we
determine the minimum size of the quarantine area to ensure
security, considering worst-case adversarial access patterns.

The size of the quarantine area depends on two factors: (1)
the time (tAGG) incurred in performing enough activations to
an aggressor row to trigger a row-migration, and (2) the time
(tmov) incurred in performing row migration to the quarantine
area, which keeps the channel busy and makes it unavailable
for performing other DRAM accesses.

Let the threshold for initiating a row quarantine operation
be A activations, then the time (tAGG) to trigger a row-
migration can be computed as shown in Equation 1.

tAGG = A · tRC (1)

perlbench gcc
bwaves mcf

cactuBSSN
namd

povray lbm wrf
blender

deepsjeng
imagick leela nab

exchange2
roms xz

parestmix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

mix11
mix12

mix13
mix14

mix15
mix16

Amean

101

102

103

104

105

Ro
w

M
ig

ra
tio

n
Pe

r 6
4m

s

0

RRS AQUA

Figure 6. Number of row migrations performed per 64ms for AQUA. On average, AQUA performs 1099 row migrations per 64ms, which is 9× lower
than RRS, which performs 9935 row migrations per 64ms on average.

If there are B banks, then the attacker can concurrently
attack all B banks and cause B rows to initiate row-migration
within the tAGG period. Each of these rows would incur a
latency of tmov for the quarantine operation. Thus, the highest
rate at which rows can enter the quarantine region is, B rows
within a duration of tB, as shown in Equation 2.

tB = tAGG +B · tmov. (2)

Therefore, the maximal number or row migrations (Rmax)
to the quarantine area within tREFW is given by Equation 3.

Rmax = tREFW · B
tAGG +B · tmov

(3)

The quarantine area must be provisioned for at least Rmax
rows. Thus, for a Rowhammer threshold of 1K, A = 500, and
with 16 banks per each DDR4 rank, the quarantine region is
sized to Rmax = 23,053 rows or 180MB per rank. Thus, for
our 16GB memory and a Rowhammer threshold of 1K, the
DRAM overhead of AQUA is only 1.1%.

Using Eq. 3, we can also estimate the quarantine region
size at decreasing Rowhammer thresholds, as shown in
Table III. Overall, even if the effective threshold is reduced
significantly, to say 125 activations, the size of the quarantine
area needed for AQUA remains less than 2%. We note that
even at an impractical TRH of 2 (an effective threshold of 1),
the rate of row migration is at most one migration on every
access and requires DRAM overhead of at most 2.2%.

Table III
SIZE OF QUARANTINE AREA AS ROWHAMMER THRESHOLD IS VARIED

Effective Threshold Rmax Quarantine Size DRAM
(A) (Rows) (MB) Overhead

1000 15,302 120 MB 0.7%
500 23,053 180 MB 1.1%
250 30,872 241 MB 1.5%
125 37,176 290 MB 1.8%
50 42,367 331 MB 2%
1 46620 364 MB 2.2%

F. Results: Number of Mitigations

Our default design of AQUA targets a TRH of 1K. The
primary overhead of row migration is due to the mitigative
action that involves transferring rows from one location to
another. As RRS performs mitigation via row-swap, it needs
to migrates two rows and it uses an effective threshold of
166 (one-sixth of TRH). Whereas, AQUA performs mitigation
via a row-copy, so it needs to migrate only one row (from
the current location to the quarantine location) and it uses
an effective threshold of 500 (one-half of TRH).

Figure 6 shows the number of row migrations incurred
by RRS and AQUA. On average, AQUA requires 9× fewer
row migrations than RRS. While most workloads require
only a few mitigations (tens to hundreds) per 64ms, some
workloads, such as lbm and blender require thousands
of mitigations. Moreover, some workloads where no row
exceeds 500 activations (refer to Table II) suffer from spurious
mitigations (e.g., imagick) because Misra Gries is not an
exact tracker – newly installed rows (without an ACT) have
their estimated count starting from spill-counter value (non-
zero value) causing unnecessary mitigations.

Note that the cost of each mitigation is not equal between
AQUA and RRS. AQUA relies on migrating one row
to the quarantine area (one row-read and one row-write)
whereas mitigation in RRS (swap) typically requires two row
migrations (two row-reads and two row-writes). Furthermore,
if a row receives a lot of activations and requires mitigation
again in 64ms, the cost for AQUA remains one row migration,
whereas RRS requires four migrations (swap of both entries
of the existing row-pair <X, Y> to get <X, A> and
<Y, B>), a 4× overhead compared to AQUA. We observe
some rows are hammered continuously in lbm and it incurs
significantly more row migrations with RRS than AQUA.
Finally, we provide an analytical model of row migration
overhead of RRS compared to AQUA in Appendix A.

Thus, AQUA not only provides a more principled isolation-
based security (compared to the probabilistic guarantees of
RRS), but also requires fewer mitigations and each mitigation
has a lower cost than RRS.

perlbench gcc
bwaves mcf

cactuBSSN
namd

povray lbm wrf
blender

deepsjeng
imagick leela nab

exchange2
roms xz

parestmix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

mix11
mix12

mix13
mix14

mix15
mix16

Gm
ean

-34

0.2

0.4

0.6

0.8

1.0

No
rm

. P
er

fo
rm

an
ce

RRS AQUA

Figure 7. Performance of AQUA normalized to the baseline. Gmean-34 denotes the geometric mean over all the 34 workloads. On average, AQUA incurs
an performance loss of 1.8%, which is almost an order of magnitude less than the 19.8% performance loss with RRS (at TRH of 1K).

G. Results: Performance Impact of AQUA

The slowdown from row-migration schemes comes from
two sources: First, row migration makes the channel unavail-
able for servicing any memory request until the migration is
complete. Second, each access needs to first lookup a table
(FPT for AQUA and RIT for RRS) to decide the location
to access for the given request. Fortunately, these tables are
small and incur a latency of 3 to 4 cycles. Therefore, the
slowdown is dominated by row migrations for both designs.

Figure 7 shows the performance of AQUA and RRS
normalized to the baseline. AQUA has an average slowdown
of 1.8% which is correlated with the time spent in performing
row migrations. Workloads such as wrf and parest that
do not encounter any aggressor rows are unaffected by our
mitigation. Other workloads, such as cactuBSSN have a
lot of rows with 166+ activations that require thousands of
mitigations with RRS, have only a few rows above 500+
activations and incur no slowdown with AQUA.

Workloads such as lbm and blender encounter the most
number of mitigations and the performance loss with RRS
grows considerably in such cases. For instance, in case of
lbm, RRS incurs a slowdown of almost 3×. Whereas, the
slowdown with AQUA is less than 20% for lbm. Overall,
AQUA has an order of magnitude lower performance loss
than RRS, making it more practical for adoption, particularly
as TRH drops in future DRAM modules.

V. AQUA WITH MEMORY-MAPPED TABLE

The quarantine area for AQUA incurs negligible DRAM
space (1.1%). However, the structures for AQUA (FPT and
RPT) still incur 172KB of SRAM overheads for each rank.
In this section, we show how the SRAM overhead required
for these structures can be further reduced by almost 4×.

We propose a Memory-Mapped Table design for AQUA
that reduces the SRAM overhead of mapping tables by storing
them in DRAM and caching the recent entries on-chip.2

2We note that such a memory-mapped design is not viable for RRS, as
it relies on secrecy of the swapped location and variable access latency can
reveal the destination of a swapped location.

Storing the FPT and RPT in DRAM presents several
challenges. First, unlike the in-SRAM variant, which requires
fully associative FPT, we want to avoid an in-DRAM FPT
that requires multiple lookups. Second, as only a small
fraction of the rows are ever quarantined, we would like to
avoid accessing the FPT for non-quarantined rows. Third, we
would like to avoid incurring memory accesses for the FPT
even for rows that are quarantined, and ideally only perform
memory accesses for FPT and RPT when row migrations
are performed. Our design solves these challenges.

A. Design Overview

Figure 8 shows an overview of AQUA with memory-
mapped tables. To simplify our design, we provision an FPT
entry for each row in memory, requiring only 4MB of DRAM
for our 16GB memory with 2 million rows. Similarly, we
store the RPT as is in DRAM (0.1 MB of DRAM space).
Both tables are accessed using extra DRAM reads and writes.
RPT is accessed infrequently (only on row migrations), so
we optimize the latency of accessing the FPT, which is on
the critical path of every memory access.

Row-ID

0

1

Resettable
Bloom Filter

FPT Cache

No indirection

Miss

Main Memory

Forward
Pointer Table

(FPT)

Reverse
Pointer Table

(RPT)

Memory Controller

Figure 8. An overview of AQUA with Memory-Mapped Tables. The bloom
filter identifies rows that are possibly quarantined, the FPT-Cache stores
recent FPT entries, and the FPT and RPT are stored in DRAM.

Our design contains an FPT-Cache that stores the recently
accessed FPT-entries. A miss in the FPT-Cache would require
a DRAM access to get the FPT-entry. Even at TRH of 1K,
only a small fraction of the memory rows are quarantined
(about 1%), so for a vast majority of the rows, this access
is not needed. Leveraging this insight, our design contains
a Resettable Bloom-Filter to quickly identify if the row is

perlbench gcc
bwaves mcf

cactuBSSN
namd

povray lbm wrf
blender

deepsjeng
imagick leela nab

exchange2
roms xz

parestmix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

mix11
mix12

mix13
mix14

mix15
mix16

Gm
ean

-34
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

. P
er

fo
rm

an
ce

AQUA - SRAM AQUA - Memory Mapped

Figure 9. Performance of AQUA with SRAM and memory-mapped tables normalized to the baseline. On average, AQUA with SRAM tables incurs an
average performance-loss of 1.8%, whereas with memory-mapped tables it is 2.1%.

quarantined. A zero value in the bloom filter implies that
the row is not quarantined and we can access the original
location. A non-zero value in the bloom filter means that row
is possibly quarantined, and we access the FPT-Cache, and
DRAM on a miss in the FPT-Cache, to confirm and obtain the
mapping. Our default design uses a 128K-entry bloom-filter
(16KB SRAM) and a 4K-entry FPT-Cache (16KB SRAM).

B. Resettable Bloom Filter

While bloom filters are efficient at identifying the presence
of an item, it is challenging to remove an entry from the
bloom filter. We want a resettable bloom-filter design, without
resorting to counting bloom filters as it would incur almost
6× more SRAM. We develop a design that enables resettable
bloom-filters while having a single bit per entry.

We note that when a memory-mapped FPT is accessed, we
get 64-bytes containing FPT entries for 32 rows. We map a
group of G rows that belong to the same 64-byte line of the
memory-mapped FPT cacheline to the same bit in the bloom
filter. If any FPT entry in the group is valid, the bloom filter
indicates a 1. When an FPT entry is invalidated, we reset the
bloom-filter entry of the group only if all the remaining FPT
entries in the group are also invalid (otherwise the bloom
filter entry remains set). The bloom filter contains 128K
entries and the memory contains 2M rows, so each group
is formed over 16 FPT entries – upper half or lower-half of
the 64-byte line of the memory-mapped FPT.

C. FPT-Cache Organization

The FPT-Cache is designed as a 16-way set-associative
structure and uses RRIP replacement policy [11]. Each entry
in the FPT-Cache contains a valid bit, tag, RRIP replacement
bits, and a 2-byte FPT-entry. As the FPT-Cache is much
smaller (4K entries) than the number of rows in memory,
we avoid thrashing of the FPT-Cache by storing FPT-entries
only for the rows that are currently quarantined. Thus, the
FPT-Cache caters to a much smaller number of rows: at most
23K rows instead of all 2 million rows.

If a row finds a false positive in the bloom filter, then the
FPT-Cache is guaranteed to be a miss, and the request will
need to lookup the FPT entry in DRAM. We may need to

do this for almost 16% of the accesses (bloom filter false-
positive rate). We provide a simple optimization that avoids
these lookups for 99% of the rows.

D. Filtering Singleton Groups
We have 128K groups with a 128K-entry bloom-filter. Even

if 23K rows are quarantined, the likelihood that a group has
more than 1 quarantined row is negligibly small. For example,
on average, we expect, 84% groups to have no quarantined
rows, 14.7% groups to have exactly one quarantined row,
and only 1.3% groups to have multiple quarantined rows. So,
majority of the unnecessary FPT lookups occur for groups
that only have a single quarantined row. We call such groups
that have exactly one quarantined row as a singleton group.

For a singleton group, an access to the quarantined row
typically finds the entry in the FPT-Cache. However, accesses
to all other rows in the group still needs a lookup. We filter
such accesses by extending the FPT-Cache entry to include
a singleton bit. It is set if the group has exactly one valid
FPT-entry. We change the FPT-Cache indexing such that all
entries of a group map to the same set. When a row looks up
the FPT-Cache and gets a miss, we lookup the FPT-Cache
again to check if any entry of the group is present in the
same set. On such a hit, if the singleton bit of that entry is
set, we know that no other row in that group has a valid
FPT-entry and skip the FPT lookup. This optimization avoids
DRAM access for FPT-entries for 99% of the accesses.

E. Performance with Memory-Mapped Tables
Figure 9 shows the normalized performance of AQUA

with SRAM and with memory-mapped tables. The difference
between the performance of these two designs is negligible.
AQUA with SRAM has an average performance loss of 1.8%,
and with memory-mapped tables it becomes 2.1%.

Figure 10 classifies each FPT access into four categories:
(1) bloom-filter bit is reset, so no need to lookup the FPT,
(2) hit in the FPT-Cache, (3) miss in the FPT-Cache but
singleton bit set, and (4) DRAM access. The bloom-filter
is effective at filtering out 92.2% of the accesses, whereas
the FPT-Cache provides hits to 7.3% of the accesses. The
singleton optimization avoids DRAM accesses for 0.4% of
requests. Overall, only few (< 0.1%) accesses go to DRAM.

perlbench gcc
bwaves mcf

cactuBSSN
namd

povray lbm wrf
blender

deepsjeng
imagick leela nab

exchange2
roms xz

parestmix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

mix11
mix12

mix13
mix14

mix15
mix16

AMEAN
0%

20%

40%

60%

80%

100%

FP
T

Ac
ce

ss
es

 (%
)

Bloom-Filter Entry = 0 FPT-Cache Hit Singleton in FPT-Cache DRAM Access

Figure 10. Breakdown of FPT-Lookups into (1) Bloom-filter bit is reset (average: 92.2%), (2) Hits in the FPT-Cache (average: 7.3%), (3) Singleton in
FPT-Cache (average: 0.4%), and (4) DRAM Access (average: 0.02%).

F. Sensitivity to Threshold and Structures

We use a default Rowhammer threshold of 1K. Figure 11
shows sensitivity of AQUA to threshold. As threshold drops
from 2K to 500, the performance loss changes from 0.2% to
2.1% to 6.8%. We also analyzed the sensitivity of AQUA to
size of the bloom-filter and FPT-Cache. As the size of bloom-
filter is varied from 8KB to 16KB to 32KB, the performance
loss decreases from 2.3%, 2.1%, to 2%. The loss remained
2.1% as FPT-Cache is varied from 8KB to 32KB.

Spec-Rate-18 Spec-Mix-16 All-34
0.6

0.7

0.8

0.9

1.0

No
rm

. P
er

fo
rm

an
ce

TRH=2K TRH=1K TRH=500

Figure 11. Sensitivity to Rowhammer Threshold.

G. Storage Overhead

With memory-mapped tables, AQUA reduces the SRAM
overhead required for the tables from 172KB to approxi-
mately 32KB. Overall, AQUA requires 16KB for the bloom-
filter, 16KB for the FP-Cache, 8KB for the copy-buffer,
and approximately 0.6 KB to store the FPT entries for the
DRAM-rows storing the FPT and RPT (to avoid recursive
lookups). Thus, the SRAM overhead of AQUA for mapping
and migration is only 41KB. In comparison, RRS incurs an
SRAM overhead of 2.4MB. The SRAM overhead of ART is
orthogonal and hence we discuss it in Appendix B.

AQUA requires DRAM space for the quarantine area (23K
rows or 180MB), for storing the FPT (4MB) and the RPT
(0.1MB). So, the total DRAM overhead of AQUA is 185MB,
which is only 1.13% of the baseline 16GB memory.

H. Power Analysis

AQUA incurs DRAM power overhead for row-migrations
and to access the memory-mapped tables, and SRAM
power for the bloom-filter and FPT-Cache. For DRAM
power, we use the DDR4 power model in gem5. AQUA
increases DRAM power by 0.7% (8.5mW). For SRAM power

overheads, we use CACTI 7.0 [3] with 22nm technology.
AQUA SRAM structures incur 13.6 mW: 5.4 mW for bloom-
filter, 5.4 mW for FPT-Cache, and 2.8 mW for copy-buffer.

VI. SECURITY ANALYSIS

We define TRH as the minimum number of activations to
at least one row within 64ms which causes a bit flip via
any attack pattern (single-sided, double-sided, many-sided or
Half-Double [18] or a future attack pattern). So for security
of AQUA, our only assumption is:

A successful Rowhammer attack requires activating at least
one row more than TRH times within a refresh period.

A. Security Guarantee of AQUA

For security against Rowhammer, AQUA guarantees the
invariant: no physical row receives TRH activations in a 64ms
refresh period. This guarantee rests on three properties:

P1 The AQUA tracker issues a mitigation every T = TRH/2
activations to a row. The Misra-Gries based tracker (used
in Graphene [25] and RRS [28]) in AQUA satisfies this
property. As the tracker can be reset, up-to two tracking
epochs can span the refresh period of a row. So a row
can have at most TRH −1 activations in a refresh window
before a mitigation is issued for it by the tracker.

P2 For a row migrated to the quarantine region, it can be
moved back to its original location only in the next
epoch. Since at most two tracking epochs span a refresh
period for a row, and each tracking epoch only allows at
most TRH/2−1 activations at its original location, even
for such cases, the original location never receives more
than TRH activations in a refresh period.

P3 The tracker is indexed with the address of the accessed
DRAM row after consulting the FPT. So, the physical
location in the quarantine region will also be identified by
the tracker before it reaches TRH activations in a refresh
period. At that time, AQUA would perform another
migration and the previous quarantine row remains
unused for the remainder of the refresh period. Thus, no
physical row even in the quarantine area ever receives
TRH activations in a refresh period.

B. Security for AQUA’s Tables

Confidentiality: We note that the security of AQUA is not
dependent on keeping the location of rows in the quarantine
region a secret. Thus, confidentiality of AQUA’s tables is not
a concern. While the variable latency in accessing memory-
mapped tables can reveal if a row is quarantined or not,
AQUA’s security does not rely on keeping this secret.

Integrity: AQUA stores its FPT and RPT tables in the main
memory which allows an attacker to attempt a Rowhammer
attack on the memory-mapped tables by inducing repeated
accesses to the tables (like PTHammer [38]). AQUA avoids
this by quarantining even the rows storing the tables if they
get accessed beyond the threshold. The FPT-entries and RPT-
entries associated with rows storing AQUA’s tables are always
stored in SRAM to avoid recursive lookups. The SRAM
overhead is negligibly small: 512-bytes for FPT rows and
32-bytes for RPT rows.

C. Potential for Denial of Service

An attacker may induce repeated AQUA mitigations to
slow down the memory system and impact availability.
In the worst-case, an attacker can cause a new row to
be quarantined every 500 activations (for TRH = 1K), i.e.,
once every 500 · 45ns = 22.5µs. If quarantine operation
also requires an eviction, the total time to transfer both
rows would be 2 · 1.37µs = 2.74µs. However, the attacker
could also attack all the 16 banks in parallel, causing 16
mitigations every 22.5µs, the memory system would be
busy for 16 ·2.74µs = 43.8µs every 22.5µs. Therefore, the
worst-case slowdown for AQUA is 2.95×. This worst-case
slowdown is similar to the slowdown that may be observed
due to row-buffer conflicts even in current systems.

VII. RELATED WORK

Mitigating Rowhammer is an active area of research. In
this section, we describe closely related prior mitigations.

A. Mitigation via Victim-Refresh

Prior proposals [14], [17], [25], [31], [32], [37] employ
refreshing victims as the mitigation, where rows adjacent to
the aggressor row restore their charge to prevent Rowhammer.
Table IV compares AQUA with victim-refresh. While victim-
refresh mitigates the classic Rowhammer attacks, it is
vulnerable to complex patterns, such as Half-Double [18].
AQUA is robust to both classic and complex patterns.
Furthermore, AQUA does not require knowledge of internal
DRAM mappings.

B. Alternatives to Victim-Refresh

We compare AQUA to three recent schemes: RRS [28],
CROW [9], and Blockhammer [36], each of which relies on
mitigating action that is different from victim-refresh.

RRS [28] periodically swaps aggressor rows with a random
row in memory. Because its security relies on the adversary

Table IV
COMPARISON OF AQUA WITH VICTIM-REFRESH

Attribute Victim-Refresh AQUA
Slowdown <0.2% 2.1%

Mitigates Classic Rowhammer ✓ ✓

(Neighboring Row Bit Flips)
Mitigates Complex Patterns ✗ ✓

(Far Aggressors of Half-Double)
Works Without Knowing ✗ ✓

DRAM Mapping

not being able to guess the destination in DRAM, rows must
be swapped every TRH/6 activations. This results in frequent
row migrations. Overall, RRS incurs performance loss of
20% and 2.6MB of SRAM at TRH of 1K.

CROW [9] redesigns the DRAM subarray to provision extra
copy rows (8 copy rows for a subarray of 512 rows) and uses
these copy-rows to improve performance, energy-efficiency
and reliability. It proposes to improve the reliability against
Rowhammer by moving victim rows to the copy-rows.3

As CROW relies on Row-Clone [30] to perform row
migration, the rows can be copied only within the sub-
array of a bank. As an attacker can launch a focused attack
targeting a single subarray, the defense needs to provision
sufficient copy-rows in each subarray to accommodate all
aggressors to ensure security. CROW [9] provisions 8 copy
rows per subarray which can be overwhelmed with 4 or more
aggressors rows: so it is only secure above TRH of 340K.

Table V shows the Rowhammer threshold tolerated by
CROW as the number of copy-rows increase from 8 to
512 per sub-array of 512 rows. Even if CROW dedicates
an additional 100% of DRAM for copy-rows, it is only
secure above a Rowhammer threshold of 5.3K, whereas
current memories have already been shown to have lower
Rowhammer thresholds (4.8K) [15].

Table V
ROWHAMMER THRESHOLD TOLERATED BY CROW AS COPY-ROWS ARE

INCREASED FOR A SUBARRAY OF 512 ROWS

Copy-Rows DRAM Overhead Aggressors TRH Tolerated
8 (default) 1.6% 4 340K

32 6.3% 16 85K
128 25% 64 21.3K
512 100% 256 5.3K

CROW also requires significant changes to the sub-array
design (to include copy-rows) and changes to the memory
interfaces to access copy-rows. In contrast, AQUA works
with commodity DRAM – without changes to DRAM arrays
or interface – and incurs just 1.1% DRAM overhead.

3We note that the description of using CROW to tolerate Rowhammer is
limited to a small subsection [9]. It was not evaluated for any particular
Rowhammer threshold and does not have a security analysis. We show that
CROW incurs prohibitive storage overheads to ensure security for current
Rowhammer thresholds.

Table VI
COMPARISON OF DIFFERENT ROWHAMMER MITIGATION SCHEMES AT TRH OF 1K (SIGNIFICANT DRAWBACKS ARE IN BOLD.)

Metric Blockhammer CROW CROW-Agg RRS AQUA
SRAM for Mapping Tables N/A 26 MB 32 KB 2.4 MB 41KB
DRAM Storage Overhead 0% 1060% 530% 0% 1.1%

Normalized Perf. Loss (Avg) 36% <0.1% <0.1% 19.8% 2.1%
Worst-Case Slowdown 1280× <1% <1% 11× 3×

Commodity DRAM Yes NO NO Yes Yes

Blockhammer (BH) mitigates Rowhammer by limiting the
access rate to the aggressor rows, such that no row can have
more than a specified number of accesses within 64ms. While
such a design is effective at high Rowhammer thresholds
(TRH of 32K), it can inject unacceptably high delays at lower
thresholds (TRH of 1K). For example, consider a pattern that
continuously accesses two conflicting rows within a bank.
Such conflicting pattern takes 100ns per round and 640K
rounds can be performed within 64ms. BH, however, limits
the access rate to just 500 activations per row in 64ms (TRH
of 1K). Thus, such a pattern can only do 500 rounds in 64ms,
incurring a worst-case slowdown of 1280×. Overall, BH is
susceptible to significant denial-of-service attacks at TRH of
1K. This concern is also applicable to regular workloads, as
many workloads have thousands of aggressor rows crossing
500 activations in 64ms, as shown in Table II. In contrast,
AQUA has a worst-case slowdown under pathological access
pattern of only 2.95x, as described in Section VI-C.

Table VI compares the different mitigation schemes with
regards to SRAM overhead required for mapping tables,
DRAM overhead, slowdown (average and worst-case) and
compatibility with commodity DRAM. As all designs require
a tracker, we do not focus on tracker overheads.

For Blockhammer, we obtain the slowdown with an
implementation in our gem5 setup using a blacklisting
threshold of 256 (as per Table 7 in [36]) and an ideal tracker.
For CROW, we also evaluate an aggressor-focused mitigation
(CROW-Agg) that moves the aggressor row, like AQUA, and
uses AQUA’s memory-mapped design for the mapping tables.
We estimate the average case slowdown for CROW and
CROW-Agg to be negligible as the mitigative action uses
in-DRAM copying with Row-Clone [30].

Blockhammer incurs significant performance overhead and
is susceptible to denial-of service. CROW and CROW-Agg
incur unacceptable DRAM storage overheads and require
changes to the DRAM sub-array design. RRS requires
impractical SRAM overhead and slowdown. Whereas, AQUA
has low SRAM and DRAM overheads, low performance
loss, and is viable with commodity DRAM, thus making it
appealing for commercial adoption.

C. Memory Isolation via Software Support

AQUA provides Rowhammer mitigation by quarantining
the aggressor row in a dedicated area in memory, thus
isolating the aggressor from the neighborhood of victim rows.
Memory isolation can also be provided by software-based

approaches. For example, GuardION [34] inserts a guard
row between data of different security domains. However,
with a single guard-row, this solution can be broken with
Half-Double attack. Such solutions also require the software
to identify specifically which rows need to be protected
(which is difficult without knowing the internal DRAM row
mappings), whereas AQUA can protect all memory rows.

ZebRAM [19] and RIP-RH [5] provide isolation by
partitioning DRAM and mapping kernel and user space(s)
to different DRAM partitions. However, such solutions
require knowledge of the DRAM row mappings and are
also vulnerable to attacks like PTHammer [38] which can
hammer and induce bit flips in kernel memory via page table
walks. AQUA is immune to such attacks as it limits the
activations possible on any single physical row.

VIII. CONCLUSION

We present AQUA, a scalable and secure Rowhammer mit-
igation mechanism that quarantines aggressor rows. AQUA is
compatible with any tracking mechanism and performs a row
migration of the aggressor to a dedicated quarantine region
in the memory. We also propose memory-mapped tables
for AQUA and reduce the SRAM overhead required for the
mapping tables from 172KB to only 32KB, which is almost
two orders of magnitude lower than RRS, which incurs an
overhead of 2.4MB. Moreover, AQUA incurs a slowdown of
only 2.1%. Finally, the quarantine region in AQUA incurs
a negligible DRAM overhead of 1.1%. Thus, AQUA is a
scalable and practical solution to mitigate Rowhammer.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for feedback. We
also thank the members of the MICRO Artifact Evaluation
committee for their diligence. This work was supported in
part by SRC/DARPA Center for Research on Intelligent
Storage and Processing-in-memory (CRISP), the Natural
Sciences and Engineering Research Council of Canada
(RGPIN-2019-05059), and a gift from Intel.

APPENDIX A.
ANALYTICAL MIGRATION MODEL

The total overhead of row migration schemes depends on
two factors: first, how frequently a row migration is incurred
and second, the cost of each row migration. In this section,
we develop an analytical model to analyze the relative row-
migration overhead of AQUA as compared to RRS.

If a row incurs less than TRH/6 activations, neither RRS
nor AQUA perform any migrations. Let f be the fraction
of rows that incur TRH/2 activations compared to the rows
that incur TRH/6 activations. For simplicity, we assume that
a row incurs either TRH/6 activations or TRH/2 activations.
For a given f , exactly f (fraction of) rows incur a mitigation
in AQUA. Whereas in RRS, f rows incur 3 mitigations each
while (1− f) rows incur 1 mitigation in RRS.

Figure 12 plots the relative number of row migrations
in RRS compared to AQUA, r. In the best case, RRS has
r = 6× overhead compared to AQUA because: (1) each
mitigation launched by AQUA corresponds to 3 mitigations
launched by RRS, and (2) each mitigation in AQUA performs
one row migration while that in RRS performs two row
migrations. Across our 34 benchmarks, the average relative
row migration overhead in RRS is r = 9×. Note that the
estimated row migration overhead derived from our analytical
model matches well with the row migration overhead obtained
experimentally for the workloads, as shown in Figure 6.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
f = Rows with ACT = TRH/2

Rows with ACT = TRH/6

0

6

12

18

24

30

r=
RR

S
ro

w
m

ig
ra

tio
ns

AQ
U

A
ro

w
m

ig
ra

tio
ns

Workload average, r = 9 ×

Minimum, r = 6 ×

Relative row migrations in RRS compared to AQUA

Figure 12. The relative number of row migrations, r, performed by RRS
compared to AQUA. f is the fraction of rows that incur TRH/2 activations
from the set of rows that have at-least TRH/6 activations. AQUA is guaranteed
to incur at-least 6x lower migration overheads than RRS.

APPENDIX B.
TRACKER STORAGE OVERHEAD

Like all rowhammer mitigations, AQUA needs a tracker
to identify aggressor rows exceeding a threshold. Although
AQUA uses the Misra-Gries (MG) tracker by default, the
choice of tracker is orthogonal to AQUA’s design, making
it compatible with any aggressor tracker. Table VII shows
the total storage overhead per rank for AQUA (including the
tracker overhead) compared with prior mitigation RRS [28].

For a 16GB DRAM at TRH=1K, AQUA incurs an SRAM
overhead for its structures (mapping tables and copy buffer) of
40.6 KB (as discussed in Section V-G). With the default MG
tracker, AQUA-MG incurs an SRAM overhead of 437 KB
including the MG tracker SRAM overhead of 396 KB. In
comparison, RRS (RRS-MG) requires 2870 KB.

However, AQUA (and RRS) can also be combined with
a recent storage-optimized tracker design, Hydra [26] that
uses hybrid tracking using SRAM and DRAM to reduce the

SRAM overhead of tracking. Hydra requires 28.3KB SRAM
(at the cost of 0.02% DRAM capacity loss). AQUA with the
Hydra tracker (AQUA-Hydra) would incur 71KB SRAM
overhead, while RRS-Hydra would incur a total SRAM
overhead of 2502 KB.

Table VII
SRAM OVERHEADS OF RRS AND AQUA INCLUDING TRACKERS (WITH

MISRA-GRIES [25] AND HYDRA [26] TRACKERS).

Structure RRS-MG AQUA-MG RRS-Hydra AQUA-Hydra
Tracker 396 KB 396 KB 28.3 KB 30.3 KB

Mapping
Table(s)

2.4 MB 32.6 KB 2.4 MB 32.6 KB

Buffer(s) 16 KB 8 KB 16 KB 8 KB
Total 2,870 KB 437 KB 2,502 KB 71 KB

APPENDIX C.
ARTIFACT APPENDIX

A. Abstract

This artifact presents the code and methodology for AQUA,
our Rowhammer mitigation, along with the Misra-Gries
aggressor row tracker (ART) as well as Randomized Row-
Swap (RRS), another Rowhammer mitigation. We provide the
C++ code for AQUA, Misra-Gries, and RRS implemented
within the gem5 [24] simulator. The data structures and
algorithms are implemented within the memory controller
in the simulator source code. The Rowhammer defense
functionality is tunable using the command line. We provide
scripts to compile the simulator, and run the baseline, AQUA
with SRAM tables and memory-mapped tables, and RRS for
all the SPEC 2017 workloads we studied in this paper. We
also provide scripts to parse the results and plot the graphs
to recreate Figures 3, 6, 7, 9, 10, and 11.

B. Artifact check-list (meta-information)
• Algorithm: Misra-Gries tracking mechanism, Randomized

Row-Swap mitigation, and Aqua mitigation.
• Program: 18 SPEC-2017 workload binaries checkpointed

using gem5 simulator and simulated with gem5’s Syscall-
Emulation (SE) mode.

• Compilation: Tested with gcc v6.4.0 with scons v3.0.5
software construction tool.

• Binary: SPEC-2017 workloads- perlbench, gcc, bwaves, mcf,
cactuBSSN, namd, povray, lbm, wrf, x264, blender, deepsjeng,
imagick, leela, nab, exchange2, roms, xz, and parest.

• Data set: SPEC-2017 rate workloads mentioned above are
running in ref mode.

• Run-time environment: Tested on RHEL 7.9 with Linux
kernel 3.10 running on x86 64 server.

• Hardware: Requires many-core server. Our machine has 72
cores and 512GB DRAM. The experiments take 3-4 days to
complete as there are about 350 gem5 instances required to
reproduce all graphs.

• Execution: gem5 simulations.
• Metrics: Normalized IPC (performance metric) and number

of row migrations.
• Output: Recreating Figures 3, 6, 7, 9, 10, and 11.

• Experiments: Instructions to run the experiments, parse results,
and plot graphs are available in the README file.

• How much disk space required (approximately)?: About
10-20 GB excluding the SPEC2017 benchmark installation.

• How much time is needed to prepare workflow (approx-
imately)?: SPEC-2017 installation takes between 2-6 hours
and gem5 simulator compilation takes 30-60 minutes on a
server system.

• How much time is needed to complete experiments
(approximately)?: Approximately 3 days on a 72 core system.
There are 350 parallelizable gem5 execution instances that
each take between 6 to 24 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Unlicense License.
• Data licenses (if publicly available)?: None.
• Workflow framework used?: gem5 simulator and SPEC-2017

benchmarks.
• Archived (provide DOI)?: The artifact is available at https:

//doi.org/10.5281/zenodo.6998384.

C. Description

1) How to access: The code and instructions to run
the artifact are available at https://doi.org/10.5281/zenodo.
6998384 and at the GitHub repository https://github.com/
Anish-Saxena/aqua rowhammer mitigation.

2) Hardware dependencies: Running all of the simulations
requires a cluster with many cores (ours has 72 cores)
and large memory (ours has 512GB DRAM) – these allow
running all the 34 workloads in parallel per configuration
(∼10 configurations including checkpointing and baseline).

3) Software dependencies: Gcc for compilation, Perl to
parse results, Python with Jupyter Notebooks, and matplotlib
to plot results. Additionally all the dependencies for Gem5
itself are needed. An installed copy of SPEC CPU-2017
workloads is required.

D. Installation

The scons software construction tool is used to compile
the gem5 simulator. The SPEC-2017 workloads must be
installed separately as we cannot provide them due to SPEC’s
restrictive license.

E. Experiment workflow

The README provides detailed instructions required to
reproduce the results from the paper. These include:

• Compilation of gem5 simulator on the platform and
required software dependencies.

• Creating gem5 checkpoints for the workloads.
• Executing the simulations (baseline, AQUA, and RRS).
• Parsing the simulation results and plotting the graphs

to create relevant figures.

F. Evaluation and expected results

The artifact provides the scripts to collate results and
gather the normalized performance (IPC) and row migration
metrics that are used to plot figures. The relevant commands
are provided in the artifact README. Moreover, the python

scripts to plot the graphs, encapsulated in Jupyter Notebooks,
is provided as well. The expected result from this artifact is
to recreate Figures 3, 6, 7, 9, 10, and 11.

G. Experiment customization

Scripts to conduct test runs before launching full check-
pointing and simulation runs are provided in the artifact.
Although customization is not expected, it can be done in
interest of limited time or resources by changing a few
parameters in the scripts in the artifact.

H. Troubleshooting Steps Useful for Debugging

1) Verify gem5 experiment completion: Use the
count_successful_exps.sh script in scripts/
directory which counts successful runs for each multi-core
configuration. If the number outputted differs from 34
for any configuration, it would mean some experiments
failed for that configuration. Note that 34 is the sum of 18
SPEC-17 and 16 SPEC-MIX workloads.

2) Verify stat file generation: Compare the stats generated
using the stats present in the GitHub repository in the
scripts/stats_scripts/data directory. For each
Figure, first compare the representative mean (the last line
in the stat file) in both files, before comparing individual
stats. The stat file rrs_scalability.stat corresponds
to stats used in Figure 3, for example.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] “Spec cpu2017 benchmark suite,” in Standard Performance
Evaluation Corporation. [Online]. Available: http://www.spec.
org/cpu2017/

[2] (2021) “Half-Double”: Next-Row-Over Assisted
RowHammer. https://github.com/google/hammer-
kit/blob/main/20210525 half double.pdf.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,
A. Shafiee, and V. Srinivas, “Cacti 7: New tools for inter-
connect exploration in innovative off-chip memories,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 14, no. 2, pp. 1–25, 2017.

[4] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon:
A complete in-dram rowhammer mitigation,” in Workshop on
DRAM Security (DRAMSec), 2021.

[5] C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“Rip-rh: Preventing rowhammer-based inter-process attacks,” in
Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, 2019, pp. 561–572.

https://doi.org/10.5281/zenodo.6998384
https://doi.org/10.5281/zenodo.6998384
https://doi.org/10.5281/zenodo.6998384
https://doi.org/10.5281/zenodo.6998384
https://github.com/Anish-Saxena/aqua_rowhammer_mitigation
https://github.com/Anish-Saxena/aqua_rowhammer_mitigation
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://www.spec.org/cpu2017/
http://www.spec.org/cpu2017/
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf

[6] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer
Attacks from JavaScript,” in USENIX Security 21, 2021.

[7] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting
the many sides of target row refresh,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 747–762.

[8] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A remote software-induced fault attack in javascript,” in
Detection of Intrusions and Malware, and Vulnerability
Assessment, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez,
Eds. Cham: Springer International Publishing, 2016, pp.
300–321.

[9] H. Hassan, M. Patel, J. S. Kim, A. G. Yaglikci, N. Vijaykumar,
N. M. Ghiasi, S. Ghose, and O. Mutlu, “Crow: A low-cost
substrate for improving dram performance, energy efficiency,
and reliability,” in ISCA, 2019, pp. 129–142.

[10] M. T. Inc., “Ddr4 sdram datasheet
(mt40a2g4),” 2015. [Online]. Available:
https://www.micron.com/-/media/client/global/documents/
products/data-sheet/dram/ddr4/8gb ddr4 sdram.pdf

[11] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer,
“High performance cache replacement using re-reference
interval prediction (rrip),” SIGARCH Comput. Archit. News,
vol. 38, no. 3, p. 60–71, jun 2010. [Online]. Available:
https://doi.org/10.1145/1816038.1815971

[12] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and
K. Razavi, “BLACKSMITH: Rowhammering in the Fre-
quency Domain,” in 43rd IEEE Symposium on Security
and Privacy’22 (Oakland), 2022, https://comsec.ethz.ch/wp-
content/files/blacksmith sp22.pdf.

[13] JEDEC, “Ddr4 sdram standard (jesd79-4b),” 2017.

[14] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural
support for mitigating row hammering in dram memories,”
IEEE CAL, vol. 14, no. 1, pp. 9–12, 2014.

[15] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi,
L. Orosa, and O. Mutlu, “Revisiting rowhammer: An ex-
perimental analysis of modern dram devices and mitigation
techniques,” in ISCA. IEEE, 2020, pp. 638–651.

[16] M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham,
J. W. Lee, and J. H. Ahn, “Mithril: Cooperative row hammer
protection on commodity dram leveraging managed refresh,”
arXiv preprint arXiv:2108.06703, 2021.

[17] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in memory
without accessing them: An experimental study of dram
disturbance errors,” ISCA, 2014.

[18] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat,
E. Shiu, M. Nissler, and D. Gruss, “Half-Double: Hammering
from the next row over,” in USENIX Security Symposium,
2022.

[19] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos,
C. Giuffrida, and K. Razavi, “ZebRAM: comprehensive and
compatible software protection against rowhammer attacks,”
in 13th USENIX - (OSDI 18), 2018, pp. 697–710.

[20] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed:
Reading bits in memory without accessing them,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 695–711.

[21] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe:
preventing row-hammering by exploiting time window coun-
ters,” in ISCA, 2019.

[22] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga,
C. Maurice, and D. Gruss, “Nethammer: Inducing rowhammer
faults through network requests,” in 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroSPW),
2020, pp. 710–719.

[23] K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and
B. Kasikci, “Moesi-prime: preventing coherence-induced ham-
mering in commodity workloads,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture,
2022, pp. 670–684.

[24] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Am-
slinger, M. Andreozzi, A. Armejach, N. Asmussen, S. Bharad-
waj, G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho,
J. Castrillón, L. Chen, N. Derumigny, S. Diestelhorst, W. El-
sasser, M. Fariborz, A. F. Farahani, P. Fotouhi, R. Gambord,
J. Gandhi, D. Gope, T. Grass, B. Hanindhito, A. Hansson,
S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell,
S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones,
M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna,
T. Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji,
K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. S.
Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta,
R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and É. F.
Zulian, “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[25] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in
MICRO. IEEE, 2020, pp. 1–13.

[26] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra:
enabling low-overhead mitigation of row-hammer at ultra-low
thresholds via hybrid tracking,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture,
2022, pp. 699–710.

[27] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-
based cache attacks with a practical fully-associative design,”
in 30th USENIX Security Symposium (USENIX Security 21),
Aug. 2021, pp. 1379–1396.

[28] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Random-
ized row-swap: mitigating row hammer by breaking spatial cor-
relation between aggressor and victim rows,” in Proceedings
of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
2022, pp. 1056–1069.

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://doi.org/10.1145/1816038.1815971
https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf
https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf

[29] M. Seaborn and T. Dullien, “Exploiting the DRAM rowham-
mer bug to gain kernel privileges,” Black Hat, vol. 15, p. 71,
2015.

[30] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch et al., “RowClone: Fast and energy-efficient in-
DRAM bulk data copy and initialization,” in Proceedings
of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, 2013, pp. 185–197.

[31] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating
wordline crosstalk using adaptive trees of counters,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 612–623.

[32] M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger
against row hammering,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[33] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida,
“Drammer: Deterministic rowhammer attacks on mobile
platforms,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS ’16, New York, NY, USA, 2016, p. 1675–1689. [Online].
Available: https://doi.org/10.1145/2976749.2978406

[34] V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai,
G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “Guardion:

Practical mitigation of dma-based rowhammer attacks on arm,”
in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2018, pp.
92–113.

[35] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisen-
barth, and B. Sunar, “Jackhammer: Efficient rowhammer on
heterogeneous fpga-cpu platforms,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020,
2020.

[36] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun,
L. Orosa, H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi
et al., “Blockhammer: Preventing rowhammer at low cost
by blacklisting rapidly-accessed dram rows,” in 2021 IEEE
International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 345–358.

[37] J. M. You and J.-S. Yang, “Mrloc: Mitigating row-hammering
based on memory locality,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[38] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“Pthammer: Cross-user-kernel-boundary rowhammer through
implicit accesses,” in 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 28–41.

https://doi.org/10.1145/2976749.2978406

	Introduction
	Background and Motivation
	Threat Model
	black!80!blackBackground on DRAM Organization
	black!80!blackDRAM Vulnerability to Rowhammer
	Mitigation via Victim Refresh: Pitfalls
	Mitigation via Row Migration
	Scalability Challenges for RRS
	Goal: Scalable Row-Migration

	Evaluation Methodology
	AQUA: Quarantining Aggressors
	Overview of AQUA
	Tracking Aggressor Rows
	Maintaining Location Information
	Process of Quarantining Aggressor Row
	Bounding the Size of Quarantine Area
	Results: Number of Mitigations
	Results: Performance Impact of AQUA

	AQUA with Memory-Mapped Table
	Design Overview
	Resettable Bloom Filter
	FPT-Cache Organization
	Filtering Singleton Groups
	Performance with Memory-Mapped Tables
	Sensitivity to Threshold and Structures
	Storage Overhead
	Power Analysis

	Security Analysis
	Security Guarantee of AQUA
	Security for AQUA's Tables
	Potential for Denial of Service

	Related Work
	Mitigation via Victim-Refresh
	Alternatives to Victim-Refresh
	Memory Isolation via Software Support

	Conclusion
	Appendix A: black!80!blackAnalytical Migration Model
	Appendix B: Tracker Storage Overhead
	Appendix C: Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Troubleshooting Steps Useful for Debugging
	Verify gem5 experiment completion
	Verify stat file generation

	Methodology

	References

