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Abstract—Quantum computing is an information processing
paradigm that uses quantum-mechanical properties to speedup
computationally hard problems. Gate-based quantum computers
and Quantum Annealers (QAs) are two commercially available
hardware platforms that are accessible to users today. Although
promising, existing gate-based quantum computers consist of only
a few dozen qubits and are not large enough for most applica-
tions. On the other hand, existing QAs with few thousand qubits
have the potential to solve some domain-specific optimization
problems. QAs are single instruction machines and to execute a
program, the problem is cast to a Hamiltonian, embedded in the
hardware, and a single quantum machine instruction (QMI) is
run. Unfortunately, noise and imperfections in hardware result
in sub-optimal solutions on QAs even if the QMI is run for
thousands of trials.

Due to the limited programmability of QAs users execute the
same QMI for all trials. This subjects all trials to a similar noise
profile throughout the execution, resulting in a systematic bias. We
observe that systematic bias leads to sub-optimal solutions and
cannot be alleviated by executing more trials or using existing
error-mitigation schemes. To address this challenge, we propose
EQUAL (Ensemble QUantum AnneaLing). EQUAL generates an
ensemble of QMIs by adding controlled perturbations to the
program QMI. When executed on the QA, the ensemble of
QMIs steers the program away from encountering the same bias
during all trials and thus, improves the quality of solutions. Our
evaluations using the 2041-qubit D-Wave QA show that EQUAL
bridges the difference between the baseline and the ideal by an
average of 14% (and up to 26%) without requiring any additional
trials. EQUAL can be combined with existing error mitigation
schemes to further bridge the difference between the baseline
and ideal by an average of 55% (and up to 68%).

Index Terms—Quantum Annealers, Quantum Computing

I. INTRODUCTION

Quantum computing is an information processing paradigm
that leverages quantum mechanical properties of quantum bits
(qubits) to store and process information and promises signif-
icant computational advantages for many hard problems [1]–
[4]. There exist different models for the physical realization
of this computational paradigm [5], [6]. Currently, prototypes
of both gate model [7]–[9] and annealing [10] types are
available, and some of them can already outperform modern
supercomputers for some tasks [11]–[14].
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Gate-based quantum computers, such as IBM and Google
machines, use discrete quantum gate operations to manipulate
qubits such that the state of the qubits evolve to produce
the desired outcome as the program proceeds. Such systems
with about 50-plus qubits are already available [7], [15], [16].
To solve a problem on a gate-based quantum computer, we
map it to an efficient quantum algorithm, map the high-level
program qubits to the physical qubits of the device, translate
the instructions into a series of low-level quantum gates, and
execute them, as shown in Fig. 1(a). Although these types
of systems promise significant computational advantages, they
must grow in size for practical applications [5], [12], [17].

Unlike gate model quantum computers that can be pro-
grammed to solve different classes of problems, Quantum
Annealers (QAs) are single-instruction machines that can only
solve a specific discrete optimization problem by minimizing
the energy of a physical system, called Hamiltonian [6], [18].
To solve a problem on a QA, (a) we cast it to a Hamiltonian,
(b) embed it to match the topology of the QA device, (c) obtain
the resulting single Quantum Machine Instruction (QMI),
(d) execute the single QMI, and (e) repeatedly run the same
QMI multiple times [19], as shown in Fig. 1(b). The outcome
with the lowest energy is deemed as the solution.

As QAs can only minimize a specific objective function,
any other problem must be cast to this Hamiltonian. Casting
computes the coefficients of the Hamiltonian such that the
global minima of the Hamiltonian represent the global optima
of the problem of interest [19]–[21]. Embedding maps the
problem graph to the QA topology. As QAs have limited con-
nectivity between qubits, embedding encodes a program qubit
with higher connectivity by using a chain of physical qubits.
The problem of limited connectivity exists even on most
existing gate-based quantum computers and can be overcome
by inserting SWAP operations [22]–[24]. However, a similar
approach is impractical for QAs as they can only execute a
single QMI. Unlike gate-based systems, QAs available today
with 5000-plus qubits [10], [15], [25] are much larger, scale
faster, and have the potential to power a wide range of real-
world applications in many domains [21], [26]–[41].

Although promising, QA hardware suffers from various
drawbacks such as noise, device errors, limited programmabil-
ity, and low annealing time, which degrade their reliability [6],
[19], [42]. Addressing these limitations requires device-level
enhancements that may span generations of QAs. Therefore,
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Fig. 1. Steps involved in solving a problem using (a) gate-model quantum computers and (b) quantum annealers. (c) Energy histogram of a 2000-qubit
optimization benchmark executed on D-Wave QA (in logscale). The QA can quickly identify the region of the ground state energy (overlapping region), but
the solution is far from the global optima due to systematic bias.

software techniques to improve the reliability of QAs is an
important area of research [43]–[49].

Despite recent hardware and software enhancements, ex-
isting QAs may fail to find the global minima for certain
problems [42]. For example, Fig. 1(c) shows the energy
histogram of a 2000-qubit optimization problem on a D-Wave
QA. We can think of QA as a machine that samples from a
Boltzmann distribution such that samples with lower energy
values are exponentially more likely to be observed [42],
[50]. In theory, QA can find the optimal solution with a very
high probability [51]. However, in this example, we observe
that although the QA can quickly identify the region of the
global optima, the best solution from the QA is far from the
global optima. As users run only a single QMI, the program
is subjected to a similar noise profile for all trials, resulting
in a systematic bias. Our experiments show that running more
trials or relying on existing error-mitigation schemes cannot
overcome this bias. Unfortunately, systematic bias produces
incorrect solutions far from the global optima and limits the
reliability of QAs for practical applications.

In this paper, we propose Ensemble Quantum Annealing
(EQUAL), an effective scheme for mitigating systematic bias
and improving the reliability of QAs by running an ensemble
of QMIs with controlled perturbations. EQUAL is based on the
insight that running the same QMI for all trials projects QAs to
a very similar noise profile and bias. Instead, EQUAL uses an
ensemble of QMIs that subjects the system to different noise
profiles and biases. Generating effective ensembles of QMIs
is nontrivial, and our design focuses on addressing it. 1

To generate ensembles, EQUAL creates new Hamiltoni-
ans, called Perturbation Hamiltonians, and adds them to the
original problem Hamiltonian. Every perturbation Hamiltonian
adds noise to the original Hamiltonian and the QMI obtained
from this process is a perturbed variation of the original QMI.
The challenge in this step is that adding extremely small
perturbations will have no impact on the systematic bias,
whereas adding large perturbations can significantly change
the landscape of the original Hamiltonian. In the worst case,
the final perturbed Hamiltonian may correspond to a problem

1The problem of systematic bias is similar to correlated errors on gate-
model quantum computers that can be addressed by mapping programs to
different sets of physical qubits on the same machine [52], inserting different
SWAP routes [52], or using different machines [53]. The equivalent step for
QAs would be to use multiple embeddings. However, this is not viable for
QA, and we discuss the details in Section VI.

completely different from the one at hand. Thus, there exists a
trade-off between the ability to eliminate systematic bias and
the correctness of a Hamiltonian. Ideally, we want a perturbed
Hamiltonian that can eliminate systematic bias without altering
the characteristics of the problem Hamiltonian significantly. To
address this challenge, EQUAL exploits the fact that QAs only
allow a limited precision of coefficients for a Hamiltonian due
to hardware limitations. For every ensemble, EQUAL draws
the coefficients of the corresponding perturbation Hamiltonian
randomly at a range just below the supported precision so that
adding the Perturbation Hamiltonian may only shift the coef-
ficients of the QMI (post truncation) to one of the neighboring
quantization levels and not impose significant changes to the
landscape of the original Hamiltonian.

We also analyze existing error-mitigation approaches for
QAs. Our characterization experiments on D-Wave show that
the SQC [42] postprocessing technique is highly effective for
D-Wave. We compare EQUAL with SQC and show that the
two schemes can be combined for even greater benefit. The re-
sulting design, EQUAL+, provides significantly better fidelity
than EQUAL and SQC standalone. As the SQC postprocessing
relies only on classical computations, EQUAL+ does not incur
any additional trials compared to EQUAL.

Our evaluations on D-Wave’s 2041-qubit QA show that
EQUAL bridges the difference between the baseline and the
ideal by an average of 14% (and up to 26%). EQUAL+ further
bridges the difference between the baseline and the ideal by
an average of 55% (and up to 68%).

Overall, this paper makes the following contributions:

1) We show that there is a systematic bias associated with
each QMI, running on QA, that deviates the anneal-
ing process from achieving the ground state of the
corresponding Hamiltonian and produces sub-optimal
solutions.

2) We propose EQUAL (Ensemble Quantum Annealing) to
mitigate the bias by forming multiple perturbed copies
of a given QMI and running each for a subset of trials.

3) We propose an effective method to generate the per-
turbed copies while retaining the structure of the prob-
lem by leveraging the hardware imperfections from
limited precision.

4) We propose EQUAL+ that combines EQUAL with the
existing SQC error-mitigation technique to further im-
prove the reliability.



II. BACKGROUND AND MOTIVATION

A. Quantum Computing

Quantum computing is a computational paradigm that stores
and processes information using quantum bits or qubits. The
state of a qubit |ψ⟩ can be represented as a superposition of its
two basis states |0⟩ and |1⟩ using a vector: |ψ⟩ = α |0⟩+β |1⟩,
where α and β are complex probability amplitudes associated
with the basis states. Similarly, an N -qubit system exists in a
superposition of 2N basis states. This exponential scaling in
state space with a linear increase in qubits enables quantum
advantage. Currently, two types of quantum platforms are
available to users through cloud services [7], [15], [16]—gate-
based quantum computers and quantum annealers.

Gate-based Quantum Computers: A gate-based quantum
computer executes a predefined sequence of quantum gate
operations (known as a quantum circuit) to transform the
initial state of qubits to the desired state by changing the
superposition. Quantum computers from IBM, Google, and
others use a gate-based model.

Quantum Annealers: Quantum annealing is a meta-heuristic
for solving combinatorial optimization problems that runs on
classical computers [18], [51], [54]–[57]. Quantum Annealers
are single instruction machines for solving combinatorial op-
timization problems. Unlike gate model quantum computers,
where we directly change the state of qubits via quantum gates,
QAs control the environment, and qubits evolve to remain in
the ground state (i.e., a configuration with the lowest energy
value) of a Hamiltonian (or energy/cost function) [6], [18].
Quantum annealers, such as the ones from D-Wave, are analog
systems that can only minimize the following energy function:

Hp := f(z) =

N−1∑
i=0

hizi +

N−1∑
i=0

N−1∑
j=i+1

Jijzizj , (1)

where N is the number of qubits, hi ∈ R specifies the linear
coefficient of qubit i, Ji,j ∈ R represents the coupler weight
between qubits i and j, and zi ∈ {−1,+1} is the problem
variable [19], [21], [42]. Ever since the introduction in 2011,
QAs have rapidly scaled in size up to few thousand of qubits,
as shown in Fig. 2(a) and promise significant computational
advantage for a wide range of applications.

B. Operation Model of QA

To execute a program on a QA, the problem is cast to
a Hamiltonian such that its global minimum represents the
optimal solution to the problem at hand. This step computes
the coefficients h and J , denoted in (1), corresponding to
the quantum machine instruction (QMI) to be executed on
the QA. Executing the QMI on a QA returns a sample
z = {z0, z1, . . . , zN−1} as a potential minimum of the
corresponding energy function. Unfortunately, executing a
QMI only once may not result in the ground state of the
Hamiltonian [42]. Thus, in practice, the process of executing
the single QMI is repeated for thousands of trials. The sample
with the lowest energy is reported as the solution.
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Fig. 2. (a) Evolution of Quantum Annealers (QAs) over time. (b) A cropped
view of the connectivity graph for D-Wave 2000Q where the nodes denote
qubits and edges represent couplers (or connectivity between two qubits).

C. The Opportunity: Solving Large Problems with QA

Google Sycamore is a state-of-the-art 54-qubit gate-based
quantum computer that can outperform even the most powerful
supercomputer for some tasks [11]. We compare the perfor-
mance of the D-Wave 2041-qubit QA and Google Sycamore
for 18 different Max-Cut problems. The Max-cut problems
used in this evaluation correspond to the fully-connected
Sherrington–Kirkpatrick (SK) Model [58] and uses up to 17
qubits [59]–[61]. These are some of the hardest benchmarks
on Sycamore as fully connected graphs require many SWAP
operations to overcome the limited connectivity. Running the
same benchmarks on the D-Wave QA requires only 102 qubits
(less than 5% of the qubits). Fig. 3 shows the value of the
solution obtained from both machines.

We use the same weighted graphs from prior work [59]
that result in negative cut values. Both quantum machines are
successful in finding the optimal cut at small problem sizes.
However, the performance of Google Sycamore degrades with
increasing problem size [59] due to an increase in SWAPs
and circuit depth. Furthermore, due to the limited capacity
of 54-qubits, the problem size for Sycamore is limited to
no more than 54 nodes. However, as QAs are much larger
(2000–5000 qubits), we can use them to solve larger problems
more relevant to real-world applications and exceed the size
of near-term gate-based quantum computers. For example,
Fig. 4 shows the performance of the D-Wave QA for Max-
Cut problems corresponding to the SK Model using up to 60
qubits. For each problem, the D-Wave QA can find the optimal
cut value. To determine the optimal cut value, we evaluate all
possible combinations for problems using up to 25 qubits and
use the best estimate for the larger problems.
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Fig. 3. Comparison of 54-qubit Google Sycamore [59] and 2041-qubit D-
Wave Quantum Annealer.
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Fig. 4. Performance of D-Wave QA for larger Max-Cut problems correspond-
ing to the SK Model.

D. The Challenge: Hardware and Software Limitations

Although QAs look promising for various applications,
several challenges limit us from solving real-world problems
on them.

1) Hardware-Level Challenges:

Limited coherence/annealing time: The probability of find-
ing the ground state of a Hamiltonian using a QMI increases
exponentially with increasing annealing time [6] and theoret-
ically, many hard problems may require large annealing time.
Unfortunately, the annealing time on current QAs is in the
order of microseconds [19], [42] as qubits can retain their
state only for a short span of time. Increasing the annealing
time causes qubits to decohere and lose their state.

Noise and limited connectivity: Thermal noise and op-
erational errors add unwanted perturbations during anneal-
ing and prevent QAs from reaching the ground state of a
Hamiltonian [6]. QAs also suffer from sparse connectivity
between qubits, as shown in Fig. 2(b). To address the same
drawback on gate-model quantum computers, compilers insert
SWAP instructions that interchange the state of physically
adjacent qubits [22]–[24]. However, QAs cannot use a similar
approach as they use only one QMI. Instead, we embed the
problem graph to match the target device topology where
multiple physical qubits represent a program qubit with higher
connectivity. This can reduce the effective capacity of QAs.

Limited precision and range of coefficients: Casting a
problem to a Hamiltonian and generating the corresponding
QMI coefficients can require a double-precision representa-
tion. However, large precision impacts the performance of
the digital-to-analog converters (DACs) used on the real QAs,
which slows the annealing process. Therefore, existing QAs
trade-off precision to achieve lower annealing times and trun-
cate the QMI coefficients post casting to match the precision
supported in hardware. This subjects the QMI to quantization
errors, and the reduced precision QMI actually executed on a
QA can be slightly different from the QMI that we originally
intended to run, leading to a ground state that may not
represent the solution of the problem at hand [42], [62], [63].

2) Software-level Challenges:
Limited programmability: QA can only minimize a specific
objective function and any input problem must be cast to
a Hamiltonian. Unfortunately, casting is nontrivial due to a

lack of standardized algorithms and often comes with some
approximations [19], [21]. Additionally, QAs can only execute
a single QMI that performs the annealing step, and therefore,
fine-grained optimizations at the instruction-level are infeasi-
ble.

Limitations of Embedding: To overcome the limited connec-
tivity of the physical QAs, a problem graph is embedded in the
QA to match the device topology. Finding the best embedding
is NP-hard [43], [44], [47], [64] and existing algorithms
can take several hours despite approximations. Moreover, our
studies show they often fail large programs.

E. Impact of Trials on Energy Residual

In theory, QAs should find the global optima of a problem
with high probability [6], [51]. However, in reality, QAs often
fail to find the global optima for large problems due to noise
and imperfect control. Moreover, the limited programmability
of QAs forces users to run a single QMI for thousands of trials,
resulting in a bias. As a user runs a single QMI for all trials,
the noise profile is similar throughout execution, resulting in
similar quality outcomes due to the inherent bias in the noise
profile. We refer to this bias as Systematic Bias.

Fig. 5 shows the Energy Residual (ER) [65], [66] for an
optimization problem on D-Wave QA. ER compares the gap
between the energy of the solution from a noisy QA and the
global minima. The energy of the best solution from a noisy
QA remains far from the global optima even after running 1
million trials. This nonzero ER occurs due to systematic bias,
and is particularly severe for large problems.

F. Goal of this Paper

Hardware and software limitations of QAs cause programs
to encounter a systematic bias during execution which cannot
be bypassed by executing more trials. Moreover, the operation
model of QAs precludes leveraging proposed policies for gate-
based quantum computers. Ideally, we want QAs to be free
from systematic bias. In this paper, we propose Ensemble
Quantum Annealing (EQUAL) that uses an ensemble of QMIs
(with different biases) to mitigate systematic bias. We discuss
the evaluation methodology before discussing our solution.

Gap

Fig. 5. Energy Residual of an optimization problem on D-Wave QA with
increasing number of trials.



III. EVALUATION METHODOLOGY

We discuss the evaluation infrastructure used in this paper.

A. Quantum Platform and Baseline

For our evaluations, we use the 2041-qubit quantum an-
nealer from D-Wave Systems via Amazon BraKet cloud ser-
vice [15]. We use the default annealing time (i.e., 20 µseconds)
and schedule recommended for this system. For the baseline,
we use 100,000 trials for each benchmark. Such a large
number of trials reduces sampling errors and therefore, this
serves as a strong baseline. For EQUAL, trials are equally
split between QMIs. Thus, EQUAL requires the same number
of trials as the baseline.

B. Benchmarks

We use random weighted Max-Cut problems, similar to
Quantum Approximate Optimization Algorithms [67] used on
gate-based quantum computers. For the benchmarks, we draw
the Hamiltonian coefficients of the QMIs from the standard
normal distribution (a mean of 0 and a standard deviation
of 1). This approach is a common practice used in prior
works related to benchmarking QAs [18], [42], [46], [63],
[68]. To avoid the impact of embedding on our evaluations,
we directly use the connectivity graph of the D-Wave QA.
Thus, the number of program qubits in benchmarks is equal
to the number of physical qubits on the QA. As the size of
benchmarks significantly exceeds the size of existing gate-
model quantum computers, we cannot compare our results
with them.

C. Figure-of-Merit

We evaluate the reliability of QA using Energy Residual
(ER). The best solution from a QA is the outcome with the
minimum energy. ER computes the energy gap between the
minimum energy (Emin) obtained on a QA with respect to
the global energy minimum (Eglobal) of the application as
follows:

Energy Residual (ER) = |Emin − Eglobal| . (2)

Ideally, when the best solution obtained on a QA corresponds
to the ground state of the problem Hamiltonian, ER is zero.
Thus, a lower value (closer to zero) for ER is desirable.

The challenge in computing the ER for random large bench-
marks spanning 2000+ qubits is that finding the ground state of
the Hamiltonian is nontrivial. To overcome this challenge and
still enable a fair comparison, we perform intensive classical
computations using state-of-the-art tools [69] and approximate
the global optimum of our benchmark problems. Recent stud-
ies have shown that this algorithm can estimate the ground
state of Chimera based Hamiltonians [10], [43] (such as the
ones considered in our paper) with a high probability. The
techniques used to derive the best estimate of the ground state
energy of a Hamiltonian require intensive classical computing
resources and could take up to days for problem sizes with a
few thousand qubits. We discuss more on this in Section VI.

IV. EQUAL: ENSEMBLE QUANTUM ANNEALING

The vulnerability of a program to systematic bias results
from limited programmability and the current operating model
of QAs where the same QMI is executed for thousands of
trials. This subjects each trial to a similar noise profile on the
QA, and the entire execution suffers from the same inherent
bias. Our proposed solution EQUAL—Ensemble Quantum
Annealing—takes a different approach. Instead of a single
QMI, EQUAL generates an ensemble of QMIs that subjects
the program execution to different noise profiles and, there-
fore, different systematic biases. When results are aggregated,
ensembles enable us to improve the quality of solutions.

A. Challenges in Generating Ensembles in EQUAL

There is potential to generate ensembles during any one of
the three phases that a problem goes through before execution
on a physical QA hardware: (1) casting, (2) embedding, and
(3) QMI generation. Generating ensembles during casting was
previously studied in the context of Boolean satisfiability
(SAT) [21] and binary compressive sensing [37] problems
on QAs. Unfortunately, these methods exploit the features
of the application-specific casting algorithms. Therefore, this
approach has limited applicability and is hard to generalize
for QAs. The other alternative approach is to use an ensemble
of embeddings for a given problem. However, this approach
too has its limitations. Firstly, finding the best embedding is
an NP-hard problem in itself [43], [44], [47], [64]. Secondly,
current embedding schemes for QAs use several approxima-
tions and may or may not be able to determine an ensemble
of embeddings of similar quality [43], [44], [47], [64]. Our
studies show that existing embedding algorithms often fail
to find an adequate number of embeddings, particularly for
problems at scale that require 2000+ qubits. Thirdly, even if
it is possible to find multiple embeddings, they are often of
inferior quality and require larger chains of physical qubits
to represent a program qubit with higher connectivity. This
makes the embedding significantly more vulnerable to noise
compared to the best embedding. Thus, generating ensembles
at the embedding step is nontrivial. Instead, EQUAL focuses
on generating ensembles at the instruction-level and produces
multiple QMIs.

B. Overview of Design

Fig. 6 shows an overview of EQUAL. It relies on adding
controlled perturbations to the original QMI. For each ensem-
ble, EQUAL generates a Perturbation Hamiltonian, denoted
by δ. Each of these Perturbation Hamiltonians creates a new
QMI when added to the original Hamiltonian. For example, if
EQUAL generates m ensembles of QMIs, it generates m per-
turbation Hamiltonians, namely δ1, δ2, . . . , δm. The ensemble
QMIs—QMI1, QMI2 to QMIm—are obtained by adding the
original Hamiltonian (say H) and the respective perturbation
Hamiltonians. In other words, the ensemble of QMIs now cor-
responds to the perturbed versions of the original Hamiltonian.
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Fig. 6. Overview of EQUAL. EQUAL creates an ensemble of QMIs by adding controlled perturbations to the original QMI. It executes the original QMI as
well as the ensemble of QMIs separately on the QA hardware and returns the outcome with the lowest energy value. EQUAL can also optionally leverage
the benefits of existing postprocessing error mitigation schemes (EQUAL+).

C. Generating Ensembles via Controlled Perturbations

Creating an effective perturbation Hamiltonian is nontriv-
ial. If the perturbations add too little noise, the resulting
Hamiltonian will be too close to the problem Hamiltonian
and encounter a similar bias. Alternatively, too large pertur-
bations result in a Hamiltonian significantly different from
the problem of interest and can produce infeasible results.
For example, Fig. 7(a) shows the landscape of an example
optimization problem— minx,y x

2 + y2 for x, y ∈ [−2,+2].
Fig. 7(b) shows that injecting an extremely noisy perturbation
Hamiltonian significantly changes the landscape of the original
problem. Thus, there is a trade-off between the effectiveness
of a perturbation Hamiltonian to reduce bias and its ability to
alter the problem Hamiltonian. To address this challenge and
generate an effective ensemble of QMIs, EQUAL exploits the
device-level characteristics of QAs.

1) Exploiting Hardware Characteristics of QAs: Recollect
that casting a problem to a Hamiltonian can require a double-
precision representation of the Hamiltonian coefficients. Un-
fortunately, real QAs can only support a small range and
precision of coefficients due to the limitations imposed by
the digital to analog converters (DACs) used on QAs. If the
precision of the coefficients are too large, the DACs are too
slow, which eventually slows the controlling modules of QAs
and is not desirable. To bridge this gap, post the casting step,
the coefficients of the QMI are truncated to match the precision
supported by the hardware. While this is a limitation on QAs,
EQUAL leverages it to its advantage and draws the coefficients
of the perturbation Hamiltonian randomly at a range that is
below the supported precision so that adding the perturbation
Hamiltonian only shifts the coefficients of the QMI (post
truncation) to one of the neighboring quantization levels and
thus, does not significantly alter the problem landscape. More
specifically, let b be the number of bits used for representing
coefficients of a physical QA. For every ensemble, EQUAL
draws a uniform random number r ∈

[
1

2b+1 ,
1
2b

]
and set all

coefficients of the Perturbation Hamiltonian to be r.
2) Profiling QAs to estimate Hardware Precision: Un-

fortunately, the precision of the coefficients supported on
real devices is unavailable to programmers. Determining this

(a) (b)

Fig. 7. (a) Landscape of an example optimization problem. (b) The resultant
landscape differs significantly from (a) when an extremely noisy perturbation
is imposed. (This figure is for illustrative purposes only. Hamiltonians and
QAs can only deal with discrete optimization problems.)

precision is vital for the performance of EQUAL. Drawing
the perturbation Hamiltonian coefficients far below the sup-
ported precision introduces large noise and may alter the
Hamiltonian landscape significantly. Alternately, drawing them
far above the supported range may not have any effect post
truncation. To tackle this challenge, EQUAL profiles the QA
using random benchmarks to estimate the precision supported
by QAs. In this experiment, we truncate all coefficients of
the benchmark for 2, 3, . . . , 16 bits precision and execute
the corresponding QMIs. Fig. 8 shows the relative Energy
Residual of the truncated QMIs with respect to the original
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Fig. 8. Relative Energy Residual of QMIs with truncated coefficients with
respect to the original problem QMI for bits values of precision. (Lower is
better)
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Fig. 9. Energy Residual of six random benchmarks on D-Wave QA hardware
using EQUAL relative to the baseline.

problem (without truncation). Our profiling experiments with
multiple benchmarks show that the hardware is likely limited
by 7–8 bits of precision. Thus, EQUAL generates coefficients
of ensembles in

[
1
29 ,

1
28

]
.

D. Execution on QA Hardware

EQUAL splits the trials between the ensemble of QMIs
equally, including the original QMI (without perturbation), and
executes them separately on the QA hardware. Our default
design uses 10 ensembles of QMIs, and allocates 10,000 trials
for every ensemble. We do a more rigorous sensitivity analysis
for the number of trials and ensembles in Section IV-H.

E. Aggregating Results

By default, the outcome with the lowest energy is deemed
as the solution for problems executed on QAs. In the base-
line, this corresponds to the outcome with the lowest energy
obtained by executing the original QMI. As EQUAL executes
multiple QMIs, the outcome with the lowest energy among
all the QMIs is returned as the solution. Also, as EQUAL
runs the ensemble of perturbed QMIs in addition to the
original program QMI, the final solution is guaranteed not
to perform worse than the baseline, assuming there are no

sampling errors. Note that the solution with the minimum
energy corresponds to an outcome that may come from a single
QMI. For the baseline, this corresponds to the original QMI,
whereas for EQUAL it comes from one or more of the QMIs
in the ensemble. However, which QMI corresponds to the best
solution is not known a-priori and EQUAL must execute the
entire ensemble.

F. Results for Energy Residual

Energy Residual (ER) computes the gap between the energy
obtained from the best outcome on a QA with the global
optima. Fig. 9 shows the ER of EQUAL for our benchmarks
executed on D-Wave 2041-qubit QA relative to the baseline.
We observe that EQUAL bridges the difference between the
baseline and the ideal by an average of 14% (and up to
26%). QAs deal with industry-scale optimization problems
where even a minuscule improvement has a tremendous impact
in terms of practical advantage, such as saving millions of
dollars [39], [70], [71] in the context of scheduling and
planning applications or finding better candidates for drug
discovery [41] and material science [40]. Thus, the quality
of solutions is of utmost importance.

Fig. 10 compares the ER of the individual benchmarks
for baseline and EQUAL. We observe that the ER quickly
saturates in the baseline for all benchmarks, whereas improves
for EQUAL as more QMIs are executed. As the QMIs are
generated using random controlled perturbations, some of
them may result in higher ER compared to the baseline due
to a different noise profile at run time. However, the ensemble
overall enables EQUAL to reach a better solution. In the worst
case, EQUAL performs similar to baseline as the original
program QMI is executed too. We observe that the fidelity of
the baseline saturates with more trials, whereas the diversity
of EQUAL helps it keep on improving with additional trials.

Fig. 10. Trends in Energy Residual for the baseline and EQUAL for all the benchmarks.
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Fig. 11. Histogram of energy values from the outcomes on the QA for benchmark B1 using the Baseline and EQUAL. The solution from EQUAL is closer
to the ideal solution compared to the baseline solution (d2 < d1). The histograms for the baseline and EQUAL largely overlaps which indicates that EQUAL
does not significantly alter the problem Hamiltonian.

G. Case-Study: How EQUAL Reduces Systematic Bias

Fig. 11 shows the histograms of the energy values obtained
by running benchmark B1 for the baseline and EQUAL. The
goal of QAs is to obtain the outcome corresponding to the
ground state energy. We observe that the optimal solution is
at a distance d1 from the ground state, and EQUAL produces
a solution at a distance d2 that is closer to the ground state
energy (d2 < d1) by minimizing the impact of bias. We also
observe that distributions for both the baseline and EQUAL
overlap largely, indicating that the ensemble of QMIs do not
largely alter the original Hamiltonian corresponding to our
problem. We make similar observations for other benchmarks.

The best solution obtained by a QA depends on the overlap-
ping region between the ideal and the noisy distributions. From
Fig. 11, we observe two potential approaches to get closer to
the global optima. First, by flattening the energy histogram of
the Hamiltonian such that it covers a broader search space.
Second, by shifting the energy histogram towards the ideal
solution. Note that both of these techniques must ensure that
the properties of the original program Hamiltonian remain
unaltered. EQUAL uses the first approach. The performance
of EQUAL can be improved further if we could shift the
histogram closer to the ideal solution. We explore combining
EQUAL with existing error mitigation schemes to obtain the
advantage of both flattening the histogram and shifting the
histogram towards the ground state.

H. Impact of Number of Ensembles

We study the impact of the number of ensembles on the
effectiveness of EQUAL using a single benchmark problem.
For a given trial budget of 100K trials, we choose two modes
for EQUAL. In the first instance, we use 10 QMIs and run each
of them for 10K trials each. In the second instance, we use 100
QMIs and run each of them for 1K trials each. Fig. 12 shows
the ER for the baseline and these two instances of EQUAL.
Note that we access the QA device through cloud services,
and more rigorous sensitivity analysis in terms of QMIs and
trials is challenging. We observe that executing more QMIs
introduces more randomness and makes them vulnerable to
sampling errors. EQUAL with 10 QMIs achieve a sweet spot
between the baseline and EQUAL with a large number of
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Fig. 12. Energy Residual for benchmark (B1). The baseline executes a single
QMI for all 100K trials. EQUAL has 10 QMIs for 10K trials each or 100
QMIs executed for 1K trials each.

ensembles such that we have both diversity as well as sufficient
trials for each QMI to reduce sampling errors.

V. COMBINING EQUAL WITH ERROR-MITIGATION

Ensembles are generated by only adding controlled per-
turbations to the problem Hamiltonian. Therefore, they have
limited capability to shift the noisy distribution from a QA
towards the ideal distribution even if a large number of en-
sembles are used. Alternately, large perturbations may signif-
icantly change the landscape of the problem. Instead, we take
an orthogonal approach and explore existing error-mitigation
schemes that introduce a shift in the energy histogram.

A. Primer on Error-Mitigation Schemes for QA

Error-mitigation schemes for QAs can be classified into:
(1) preprocessing techniques that are applied at the casting or
embedding steps; (2) hardware-based schemes that control the
device-level parameters; and (3) postprocessing policies that
apply modifications on the outcomes obtained from QAs. For
our analysis, we choose spin reversal transform, longer inter-
sample delay, and single-qubit correction (SQC) as represen-
tatives of preprocessing, hardware-based, and postprocessing
techniques, respectively [42]. We perform characterization
studies for these three error mitigation schemes and found
that SQC is the most effective scheme in (1) eliminating the
systematic bias on their own and (2) shifting the noisy distri-
bution of the QA towards the ideal distribution. Therefore, we
use SQC as the error mitigation scheme for our study.



B. Overview of SQC PostProcessing

SQC is analogous to the gradient descent scheme but
only applicable to discrete optimization problems. Instead of
computing the gradient for determining the direction of the
move in every iteration, SQC uses a greedy approach and
moves to a neighbor with the lowest energy value. Fig. 13
illustrates the overview of an iteration of SQC. For each
candidate outcome generated by executing the QMI, SQC
evaluates the one Hamming distance away neighbors and move
to the candidate with the lowest energy value. The process is
repeatedly executed until we cannot find any new neighbor
that has better quality.

C. EQUAL+: Combining EQUAL and SQC

Fig. 14 shows an overview of EQUAL+. EQUAL+ applies
SQC on the outcomes of each QMI and obtains the best
outcome for each QMI. The process is performed for each
QMI in parallel. Once applying SQC on each QMI converges,
the final output of EQUAL+ is picked as the candidate with
the lowest energy among all the individual best candidates
from the QMIs. The time to converge depends on several
factors, such as the size of the problem, number of outcomes,
and quality of the outcomes. However, our evaluations show
that EQUAL+ converges within a few seconds even for large
benchmarks such as the ones used in our evaluations.

Using this greedy approach helps locate neighbors from
current outcomes that were not produced by the QA originally.
With each neighbor located, EQUAL+ shifts the outcome dis-
tribution towards the ideal solution (global optima). Note that
although SQC is effective on its own, the diversity of EQUAL+
is essential to improve its search space. The capability of SQC
alone to introduce new outcomes is limited by the quality of
outcomes from the QMI. In EQUAL+, the ensembles enable us
to explore a much larger neighborhood compared to applying
SQC alone. In the end, EQUAL+ may discover a solution
from one of the weakest outcomes corresponding to one of the
weakest QMIs (sub-optimal outcome that did not correspond
to the best solution in any of the QMIs).

Note that EQUAL+ is versatile, and any other postprocess-
ing candidate that introduces the desired shifting property in
the energy distribution may be used. We use SQC for its
performance and low time complexity.

D. Analysis of Overheads

We discuss the overheads for both EQUAL and EQUAL+.
EQUAL generates the ensemble of QMIs prior to execution
on the QA. As the perturbed Hamiltonian only adjusts the co-
efficients of the original problem QMI, the ensemble does not
need to re-perform the casting or embedding step. Although
embedding can take up to several hours and may fail for
certain Hamiltonians, this overhead and limitation is entirely
avoided by EQUAL. EQUAL also requires the programmer to
estimate the precision of the hardware using a set of profiling
experiments. However, profiling need not be done for each
application. As the precision supported is only device-specific,
profiling once for each QA hardware is enough, and the
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Fig. 13. Single Qubit Correction PostProcessing [42].
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Fig. 14. Overview of EQUAL+ design. It applies the SQC postprocessing
algorithm to the outcomes from each QMI in parallel. Finally, it selects the
best outcome from all the QMIs as the output solution.

same information can be re-used for multiple applications. For
execution on the QA, EQUAL requires the same number of
trials as the baseline and therefore, does not incur any overhead
of additional trials.

EQUAL+ incurs some additional overheads for the postpro-
cessing step as it applies the SQC heuristic algorithm to all the
outcomes obtained from all the QMIs. The space complexity of
the postprocessing phase in EQUAL+ is linear with the number
of qubits [42]. As SQC is iteratively applied to every outcome
of a QMI, the time complexity depends on the number of
outcomes which is equal to the number of trials in the worst
case (assuming each trial generates a unique outcome). The
postprocessing for each QMI is done in parallel. Our studies
show that EQUAL+ converges within a few iterations and the
postprocessing step for EQUAL+ only takes a few seconds.
Therefore, the overheads are acceptable.

E. Case-Study: How EQUAL+ reduces Systematic Bias

Fig. 15 shows the histograms of energy values of benchmark
B1 for EQUAL and EQUAL+. We observe that the optimal
solution is at a distance d1 from the ground state energy in
EQUAL. EQUAL+ exploits the shifting property of SQC to
obtain a solution at distance d2 and is closer to the ground
state energy (d2 < d1). Note that EQUAL+ shifts the overall
histogram towards the ideal solution and achieves the intended
goal. As EQUAL+ applies postprocessing on the outcomes
from the QMIs, the introduced shift in the histogram does not
alter the original problem Hamiltonian.

F. Results for Energy Residual

Fig. 16 shows the Energy Residual of EQUAL+ relative
to the baseline. We also compare against EQUAL and SQC
standalone. We observe that EQUAL+ improves the ER by
0.45 compared to the baseline on average and by up to 0.32.
In other words, EQUAL+ improves the quality of solutions by
55% on average and up to 68%.
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Fig. 16. Energy Residual using EQUAL+ relative to the baseline. We also
compare with EQUAL and SQC standalone.

VI. RELATED WORK

Both gate-model quantum computers and QAs promise sig-
nificant advantages for a wide range of applications [11], [21],
[26]–[41], [67], [72], [73]. Thus, developing error-mitigation
policies is an active area of research for both QAs and
gate-model quantum computers. We discuss prior works and
compare them against schemes that use ensembles.

A. Priors works using Ensembles

The potential of ensembles has been explored for both gate-
model quantum computers and QAs.

Ensemble policies for Gate-model quantum computers:
Systematic bias in QAs is similar to correlated errors on
gate-based quantum computers. To tackle these errors on
gate-model quantum computers, recent studies propose the
use of an ensemble of diverse mappings [52] or different
machines [53]. Leveraging a similar approach for EQUAL is
nontrivial due to the complexities involved in the embedding
process, particularly for problems at scale. Instead, EQUAL
uses an ensemble of QMIs by introducing controlled pertur-
bations while minimizing the alterations in the functionality
of the original problem Hamiltonian.
Ensemble policies for QAs: Using ensembles in QAs have
been investigated at the casting level for two different ap-
plications [21], [37]. However, as each application uses its
own casting algorithm, this approach cannot be generalized.
On the other hand, EQUAL avoids such application-specific

assumptions and is applicable irrespective of the problem at
hand.

B. Software error mitigation policies

These techniques are either applied prior to the execution of
the QMI (preprocessing) or after the QMI is executed (postpro-
cessing). Preprocessing schemes transform the problem QMI
at the casting or embedding level such that it is less vulnerable
to errors during execution time [21], [42], [74]. Preprocessing
schemes are analogous to compiler-level optimizations on
gate-model quantum computers [22]–[24], [52], [53], [75]–
[80], [80]–[90]. Postprocessing schemes for QAs exploit the
fact that even if a QA cannot generate the solution with the
lowest energy, it quickly locates the neighborhood where the
optimal solution might reside. By modifying the outcome
obtained from the QA using classical heuristic algorithms,
postprocessing schemes can significantly improve the quality
of solutions [42], [45], [46]. We use Multi-Qubit Correction
(MQC) [42], [69] to obtain the best-known estimate of the
ground state energy in our evaluations. However, this algo-
rithm requires significant classical computational overheads
and may take up to days to obtain a better quality solution.
Nonetheless, the performance of MQC depends on the quality
of the outcomes obtained from the QA and both EQUAL and
EQUAL+ can benefit from it. Postprocessing algorithms can
significantly improve the application fidelity even for gate-
based quantum computers [53], [91]–[94].

VII. CONCLUSION

This paper proposes EQUAL—Ensemble Quantum
Annealing—a software framework that creates multiple
perturbed copies of an input problem by injecting controlled
perturbations to the original problem Hamiltonian. By
executing an ensemble of quantum machine instructions
(QMIs), EQUAL projects the program to different noise
profiles and therefore, different biases. Our evaluations using
the 2041-qubit D-Wave QA show that EQUAL bridges the
difference between the baseline and the ideal by an average of
14% (and up to 26%), without requiring any additional trials.
We also propose EQUAL+, which exploits the properties of
existing error mitigation schemes for enhanced performance.
EQUAL+ bridges the difference between the baseline and the
ideal by an average of 55% (and up to 68%).
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John Realpe-Gómez, Eleanor Rieffel, et al., “A nasa perspective on
quantum computing: Opportunities and challenges,” Parallel Computing,
vol. 64, 2017.

[27] Eleanor G Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B Do,
Elicia M Prystay, and Vadim N Smelyanskiy, “A case study in pro-
gramming a quantum annealer for hard operational planning problems,”
Quantum Information Processing, vol. 14, no. 1, 2015.

[28] Davide Venturelli, Dominic JJ Marchand, and Galo Rojo, “Quantum
annealing implementation of job-shop scheduling,” arXiv:1506.08479,
2015.

[29] Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang,
Bryan O’Gorman, Davide Venturelli, and J Christopher Beck, “A hybrid
quantum-classical approach to solving scheduling problems,” in SOCS
2016, 2016.

[30] Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey,
William G Macready, and Aidan Roy, “Mapping constrained optimiza-
tion problems to quantum annealing with application to fault diagnosis,”
Frontiers in ICT, vol. 3, 2016.

[31] Juexiao Su, Tianheng Tu, and Lei He, “A quantum annealing approach
for boolean satisfiability problem,” in DAC 2016. ACM, 2016.

[32] Daniel O’Malley, Velimir V Vesselinov, Boian S Alexandrov, and
Ludmil B Alexandrov, “Nonnegative/binary matrix factorization with
a d-wave quantum annealer,” PloS one, vol. 13, no. 12, 2018.

[33] WangChun Peng, BaoNan Wang, Feng Hu, YunJiang Wang, XianJin
Fang, XingYuan Chen, and Chao Wang, “Factoring larger integers
with fewer qubits via quantum annealing with optimized parameters,”
SCIENCE CHINA Physics, Mechanics & Astronomy, vol. 62, no. 6,
2019.

[34] Feng Hu, Lucas Lamata, Mikel Sanz, Xi Chen, Xingyuan Chen, Chao
Wang, and Enrique Solano, “Quantum computing cryptography: Finding
cryptographic boolean functions with quantum annealing by a 2000 qubit
d-wave quantum computer,” Physics Letters A, vol. 384, no. 10, 2020.

[35] Alejandro Perdomo-Ortiz, Joseph Fluegemann, Sriram Narasimhan, Ru-
pak Biswas, and Vadim N Smelyanskiy, “A quantum annealing approach
for fault detection and diagnosis of graph-based systems,” The European
Physical Journal Special Topics, vol. 224, no. 1, 2015.

[36] Ramin Ayanzadeh, Seyedahmad Mousavi, Milton Halem, and Tim Finin,
“Quantum annealing based binary compressive sensing with matrix
uncertainty,” arXiv:1901.00088, 2019.

[37] Ramin Ayanzadeh, Milton Halem, and Tim Finin, “An ensemble
approach for compressive sensing with quantum annealers,” in IGARSS
2020. IEEE, 2020.

[38] Daisuke Inoue, Akihisa Okada, Tadayoshi Matsumori, Kazuyuki Aihara,
and Hiroaki Yoshida, “Traffic signal optimization on a square lattice with
quantum annealing,” Scientific reports, vol. 11, no. 1, 2021.

[39] Nada Elsokkary, Faisal Shah Khan, Davide La Torre, Travis S Humble,
and Joel Gottlieb, “Financial portfolio management using d-wave
quantum optimizer: The case of abu dhabi securities exchange,” Tech.
Rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States),
2017.

[40] Koki Kitai, Jiang Guo, Shenghong Ju, Shu Tanaka, Koji Tsuda, Junichiro
Shiomi, and Ryo Tamura, “Designing metamaterials with quantum
annealing and factorization machines,” Physical Review Research, vol.
2, no. 1, 2020.

[41] Vikram Khipple Mulligan, Hans Melo, Haley Irene Merritt, Stewart
Slocum, Brian D Weitzner, Andrew M Watkins, P Douglas Renfrew,
Craig Pelissier, Paramjit S Arora, and Richard Bonneau, “Designing
peptides on a quantum computer,” bioRxiv, 2020.

[42] Ramin Ayanzadeh, John Dorband, Milton Halem, and Tim Finin, “Multi-
qubit correction for quantum annealers,” Scientific Reports, vol. 11,
2021.

[43] Jun Cai, William G Macready, and Aidan Roy, “A practical heuristic
for finding graph minors,” arXiv:1406.2741, 2014.

[44] Prasanna Date, Robert Patton, Catherine Schuman, and Thomas Potok,
“Efficiently embedding qubo problems on adiabatic quantum comput-
ers,” Quantum Information Processing, vol. 18, no. 4, 2019.

[45] John K Golden and Daniel O’Malley, “Pre-and post-processing in
quantum-computational hydrologic inverse analysis,” Quantum Infor-
mation Processing, vol. 20, no. 5, 2021.

[46] Ajinkya Borle and Josh McCarter, “On post-processing the results of
quantum optimizers,” in TPNC 2019. Springer, 2019.



[47] Timothy D Goodrich, Blair D Sullivan, and Travis S Humble, “Opti-
mizing adiabatic quantum program compilation using a graph-theoretic
framework,” Quantum Information Processing, vol. 17, no. 5, 2018.

[48] Shuntaro Okada, Masayuki Ohzeki, Masayoshi Terabe, and Shinichiro
Taguchi, “Improving solutions by embedding larger subproblems in a
d-wave quantum annealer,” Scientific reports, vol. 9, no. 1, 2019.

[49] D-Wave Systems Inc., “D-wave ocean software documentation,” https:
//docs.ocean.dwavesys.com/en/stable/, 2022, [Online; accessed 22-July-
2021].

[50] Walter Vinci, Tameem Albash, and Daniel A Lidar, “Nested quantum
annealing correction,” npj Quantum Information, vol. 2, no. 1, 2016.

[51] Hidetoshi Nishimori and Kabuki Takada, “Exponential enhancement of
the efficiency of quantum annealing by non-stoquastic hamiltonians,”
Frontiers in ICT, vol. 4, 2017.

[52] Swamit S Tannu and Moinuddin Qureshi, “Ensemble of diverse
mappings: Improving reliability of quantum computers by orchestrating
dissimilar mistakes,” in MICRO 2019, 2019.

[53] Tirthak Patel and Devesh Tiwari, “Veritas: accurately estimating the
correct output on noisy intermediate-scale quantum computers,” in SC20.
IEEE, 2020.

[54] Patricia Amara, D Hsu, and John E Straub, “Global energy mini-
mum searches using an approximate solution of the imaginary time
schrödinger equation,” The Journal of Physical Chemistry, vol. 97, no.
25, 1993.

[55] AB Finnila, MA Gomez, C Sebenik, C Stenson, and JD Doll, “Quantum
annealing: a new method for minimizing multidimensional functions,”
Chemical physics letters, vol. 219, no. 5-6, 1994.

[56] Tadashi Kadowaki and Hidetoshi Nishimori, “Quantum annealing in the
transverse ising model,” Physical Review E, vol. 58, no. 5, 1998.

[57] Masayuki Ohzeki and Hidetoshi Nishimori, “Quantum annealing: An
introduction and new developments,” Journal of Computational and
Theoretical Nanoscience, vol. 8, no. 6, 2011.

[58] David Sherrington and Scott Kirkpatrick, “Solvable model of a spin-
glass,” Physical review letters, vol. 35, no. 26, 1975.

[59] Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger,
Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends,
Sergio Boixo, et al., “Quantum approximate optimization of non-planar
graph problems on a planar superconducting processor,” Nature Physics,
vol. 17, no. 3, 2021.

[60] Quantum AI team and collaborators, “Recirq,” Oct. 2020.
[61] Google AI Quantum and Collaborators, “Sycamore qaoa experimental

data,” 7 2020.
[62] John E Dorband, “Extending the d-wave with support for higher

precision coefficients,” arXiv:1807.05244, 2018.
[63] Kristen L Pudenz, Tameem Albash, and Daniel A Lidar, “Quantum

annealing correction for random ising problems,” Physical Review A,
vol. 91, no. 4, 2015.

[64] Tomas Boothby, Andrew D King, and Aidan Roy, “Fast clique minor
generation in chimera qubit connectivity graphs,” Quantum Information
Processing, vol. 15, no. 1, 2016.

[65] Hamed Karimi, Gili Rosenberg, and Helmut G Katzgraber, “Effective
optimization using sample persistence: A case study on quantum anneal-
ers and various monte carlo optimization methods,” Physical Review E,
vol. 96, no. 4, 2017.

[66] Hamed Karimi and Gili Rosenberg, “Boosting quantum annealer
performance via sample persistence,” Quantum Information Processing,
vol. 16, no. 7, 2017.

[67] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, “A quantum
approximate optimization algorithm,” arXiv:1411.4028, 2014.

[68] Ramin Ayanzadeh, Milton Halem, John Dorband, and Tim Finin,
“Quantum-assisted greedy algorithms,” arXiv:1912.02362, 2019.

[69] Ramin Ayanzadeh, John Dorband, Milton Halem, and Tim Finin, “Multi
qubit correction (mqc) for quantum annealers,” 2021, Python implemen-
tation of MQC.

[70] Ravindra K Ahuja, Claudio B Cunha, and Güvenç Şahin, “Network
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